summaryrefslogtreecommitdiffstats
path: root/runtime/relayfs/relayfs.txt
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/relayfs/relayfs.txt')
-rw-r--r--runtime/relayfs/relayfs.txt214
1 files changed, 0 insertions, 214 deletions
diff --git a/runtime/relayfs/relayfs.txt b/runtime/relayfs/relayfs.txt
deleted file mode 100644
index 6d973063..00000000
--- a/runtime/relayfs/relayfs.txt
+++ /dev/null
@@ -1,214 +0,0 @@
-
-relayfs - a high-speed data relay filesystem
-============================================
-
-relayfs is a filesystem designed to provide an efficient mechanism for
-tools and facilities to relay large and potentially sustained streams
-of data from kernel space to user space.
-
-The main abstraction of relayfs is the 'channel'. A channel consists
-of a set of per-cpu kernel buffers each represented by a file in the
-relayfs filesystem. Kernel clients write into a channel using
-efficient write functions which automatically log to the current cpu's
-channel buffer. User space applications mmap() the per-cpu files and
-retrieve the data as it becomes available.
-
-The format of the data logged into the channel buffers is completely
-up to the relayfs client; relayfs does however provide hooks which
-allow clients to impose some stucture on the buffer data. Nor does
-relayfs implement any form of data filtering - this also is left to
-the client. The purpose is to keep relayfs as simple as possible.
-
-This document provides an overview of the relayfs API. The details of
-the function parameters are documented along with the functions in the
-filesystem code - please see that for details.
-
-
-The relayfs user space API
-==========================
-
-relayfs implements basic file operations for user space access to
-relayfs channel buffer data. Here are the file operations that are
-available and some comments regarding their behavior:
-
-open() enables user to open an _existing_ buffer.
-
-mmap() results in channel buffer being mapped into the caller's
- memory space.
-
-poll() POLLIN/POLLRDNORM/POLLERR supported. User applications are
- notified when sub-buffer boundaries are crossed.
-
-close() decrements the channel buffer's refcount. When the refcount
- reaches 0 i.e. when no process or kernel client has the buffer
- open, the channel buffer is freed.
-
-
-In order for a user application to make use of relayfs files, the
-relayfs filesystem must be mounted. For example,
-
- mount -t relayfs relayfs /mnt/relay
-
-NOTE: relayfs doesn't need to be mounted for kernel clients to create
- or use channels - it only needs to be mounted when user space
- applications need access to the buffer data.
-
-
-The relayfs kernel API
-======================
-
-Here's a summary of the API relayfs provides to in-kernel clients:
-
-
- channel management functions:
-
- relay_open(base_filename, parent, subbuf_size, n_subbufs,
- overwrite, callbacks)
- relay_close(chan)
- relay_flush(chan)
- relay_reset(chan)
- relayfs_create_dir(name, parent)
- relayfs_remove_dir(dentry)
- relay_commit(buf, reserved, count)
- relay_subbufs_consumed(chan, cpu, subbufs_consumed)
-
- write functions:
-
- relay_write(chan, data, length)
- __relay_write(chan, data, length)
- relay_reserve(chan, length)
-
- callbacks:
-
- subbuf_start(buf, subbuf, prev_subbuf_idx, prev_subbuf)
- deliver(buf, subbuf_idx, subbuf)
- buf_mapped(buf, filp)
- buf_unmapped(buf, filp)
- buf_full(buf, subbuf_idx)
-
-
-A relayfs channel is made of up one or more per-cpu channel buffers,
-each implemented as a circular buffer subdivided into one or more
-sub-buffers.
-
-relay_open() is used to create a channel, along with its per-cpu
-channel buffers. Each channel buffer will have an associated file
-created for it in the relayfs filesystem, which can be opened and
-mmapped from user space if desired. The files are named
-basename0...basenameN-1 where N is the number of online cpus, and by
-default will be created in the root of the filesystem. If you want a
-directory structure to contain your relayfs files, you can create it
-with relayfs_create_dir() and pass the parent directory to
-relay_open(). Clients are responsible for cleaning up any directory
-structure they create when the channel is closed - use
-relayfs_remove_dir() for that.
-
-The total size of each per-cpu buffer is calculated by multiplying the
-number of sub-buffers by the sub-buffer size passed into relay_open().
-The idea behind sub-buffers is that they're basically an extension of
-double-buffering to N buffers, and they also allow applications to
-easily implement random-access-on-buffer-boundary schemes, which can
-be important for some high-volume applications. The number and size
-of sub-buffers is completely dependent on the application and even for
-the same application, different conditions will warrant different
-values for these parameters at different times. Typically, the right
-values to use are best decided after some experimentation; in general,
-though, it's safe to assume that having only 1 sub-buffer is a bad
-idea - you're guaranteed to either overwrite data or lose events
-depending on the channel mode being used.
-
-relayfs channels can be opened in either of two modes - 'overwrite' or
-'no-overwrite'. In overwrite mode, writes continuously cycle around
-the buffer and will never fail, but will unconditionally overwrite old
-data regardless of whether it's actually been consumed. In
-no-overwrite mode, writes will fail i.e. data will be lost, if the
-number of unconsumed sub-buffers equals the total number of
-sub-buffers in the channel. In this mode, the client is reponsible
-for notifying relayfs when sub-buffers have been consumed via
-relay_subbufs_consumed(). A full buffer will become 'unfull' and
-logging will continue once the client calls relay_subbufs_consumed()
-again. When a buffer becomes full, the buf_full() callback is invoked
-to notify the client. In both modes, the subbuf_start() callback will
-notify the client whenever a sub-buffer boundary is crossed. This can
-be used to write header information into the new sub-buffer or fill in
-header information reserved in the previous sub-buffer. One piece of
-information that's useful to save in a reserved header slot is the
-number of bytes of 'padding' for a sub-buffer, which is the amount of
-unused space at the end of a sub-buffer. The padding count for each
-sub-buffer is contained in an array in the rchan_buf struct passed
-into the subbuf_start() callback: rchan_buf->padding[prev_subbuf_idx]
-can be used to to get the padding for the just-finished sub-buffer.
-subbuf_start() is also called for the first sub-buffer in each channel
-buffer when the channel is created. The mode is specified to
-relay_open() using the overwrite parameter.
-
-kernel clients write data into the current cpu's channel buffer using
-relay_write() or __relay_write(). relay_write() is the main logging
-function - it uses local_irqsave() to protect the buffer and should be
-used if you might be logging from interrupt context. If you know
-you'll never be logging from interrupt context, you can use
-__relay_write(), which only disables preemption. These functions
-don't return a value, so you can't determine whether or not they
-failed - the assumption is that you wouldn't want to check a return
-value in the fast logging path anyway, and that they'll always succeed
-unless the buffer is full and in no-overwrite mode, in which case
-you'll be notified via the buf_full() callback.
-
-relay_reserve() is used to reserve a slot in a channel buffer which
-can be written to later. This would typically be used in applications
-that need to write directly into a channel buffer without having to
-stage data in a temporary buffer beforehand. Because the actual write
-may not happen immediately after the slot is reserved, applications
-using relay_reserve() can call relay_commit() to notify relayfs when
-the slot has actually been written. When all the reserved slots have
-been committed, the deliver() callback is invoked to notify the client
-that a guaranteed full sub-buffer has been produced. Because the
-write is under control of the client and is separated from the
-reserve, relay_reserve() doesn't protect the buffer at all - it's up
-to the client to provide the appropriate synchronization when using
-relay_reserve().
-
-The client calls relay_close() when it's finished using the channel.
-The channel and its associated buffers are destroyed when there are no
-longer any references to any of the channel buffers. relay_flush()
-forces a sub-buffer switch on all the channel buffers, and can be used
-to finalize and process the last sub-buffers before the channel is
-closed.
-
-Some applications may want to keep a channel around and re-use it
-rather than open and close a new channel for each use. relay_reset()
-can be used for this purpose - it resets a channel to its initial
-state without reallocating channel buffer memory or destroying
-existing mappings. It should however only be called when it's safe to
-do so i.e. when the channel isn't currently being written to.
-
-Finally, there are a couple of utility callbacks that can be used for
-different purposes. buf_mapped() is called whenever a channel buffer
-is mmapped from user space and buf_unmapped() is called when it's
-unmapped. The client can use this notification to trigger actions
-within the kernel application, such as enabling/disabling logging to
-the channel.
-
-
-Resources
-=========
-
-For news, example code, mailing list, etc. see the relayfs homepage:
-
- http://relayfs.sourceforge.net
-
-
-Credits
-=======
-
-The ideas and specs for relayfs came about as a result of discussions
-on tracing involving the following:
-
-Michel Dagenais <michel.dagenais@polymtl.ca>
-Richard Moore <richardj_moore@uk.ibm.com>
-Bob Wisniewski <bob@watson.ibm.com>
-Karim Yaghmour <karim@opersys.com>
-Tom Zanussi <zanussi@us.ibm.com>
-
-Also thanks to Hubertus Franke for a lot of useful suggestions and bug
-reports.