/* * Copyright (C) 2017 Thales Lima Oliveira * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef RATELIMITER_H #define RATELIMITER_H #include "ControlElement.h" class RateLimiterForm; /** * @class RateLimiter * @author Thales Lima Oliveira * @date 05/10/2017 * @brief Limits the rising and/or falling rate.
* @file RateLimiter.h */ class RateLimiter : public ControlElement { public: RateLimiter(int id); ~RateLimiter(); virtual void Draw(wxPoint2DDouble translation, double scale) const; virtual void DrawDC(wxPoint2DDouble translation, double scale, wxGraphicsContext* gc) const; virtual bool Contains(wxPoint2DDouble position) const { return m_rect.Contains(position); } virtual bool Intersects(wxRect2DDouble rect) const { return m_rect.Intersects(rect); } virtual bool ShowForm(wxWindow* parent, Element* element); virtual void Rotate(bool clockwise = true); virtual void UpdatePoints(); double GetUpLimit() const { return m_upLimit; } double GetLowLimit() const { return m_lowLimit; } void SetUpLimit(double upLimit) { m_upLimit = upLimit; } void SetLowLimit(double lowLimit) { m_lowLimit = lowLimit; } /** * @brief Calculate the rate and limits it if exceeds.
* * The rate is calculated by: *
\f$ rate = \frac{x(i) - y(i-1)}{\Delta t} \f$
* Where, \f$ x(i) \f$ is the current input and \f$ y(i-1) \f$ is the previous output.

* If the \f$rate\f$ is greater than rising rate (\f$ R \f$), the output will be:
*
\f$ output = \Delta t \cdot R + y(i-1)\f$
* If the \f$rate\f$ is lower than falling rate (\f$ F \f$), the output will be:

*
\f$ output = \Delta t \cdot F + y(i-1) \f$
* Otherwise: *
\f$ output = input \f$
. * @param input Input value. * @param timeStep Time step. * @return Always true. */ virtual bool Solve(double* input, double timeStep); virtual rapidxml::xml_node<>* SaveElement(rapidxml::xml_document<>& doc, rapidxml::xml_node<>* elementListNode); virtual bool OpenElement(rapidxml::xml_node<>* elementNode); virtual Element* GetCopy(); protected: double m_upLimit = 5.0; double m_lowLimit = -5.0; }; #endif // RATELIMITER_H