#include "Load.h" Load::Load() : Shunt() { } Load::Load(wxString name) : Shunt() { m_electricalData.name = name; } Load::~Load() {} bool Load::AddParent(Element* parent, wxPoint2DDouble position) { if(parent) { m_parentList.push_back(parent); parent->AddChild(this); wxPoint2DDouble parentPt = parent->RotateAtPosition(position, -parent->GetAngle()); // Rotate click to horizontal position. parentPt.m_y = parent->GetPosition().m_y; // Centralize on bus. parentPt = parent->RotateAtPosition(parentPt, parent->GetAngle()); // Rotate back. m_position = parentPt + wxPoint2DDouble(0.0, 100.0); // Shifts the position to the down of the bus. m_width = m_height = 20.0; m_rect = wxRect2DDouble(m_position.m_x - 10.0, m_position.m_y - 10.0, m_width, m_height); m_pointList.push_back(parentPt); m_pointList.push_back(GetSwitchPoint(parent, parentPt, m_position)); m_pointList.push_back(m_position + wxPoint2DDouble(0.0, -20.0)); m_pointList.push_back(m_position + wxPoint2DDouble(0.0, -10.0)); m_triangPts.push_back(wxPoint2DDouble(-m_width / 2.0, -m_height / 2.0)); m_triangPts.push_back(wxPoint2DDouble(m_width / 2.0, -m_height / 2.0)); m_triangPts.push_back(wxPoint2DDouble(0.0, m_height / 2.0)); m_inserted = true; wxRect2DDouble genRect(0, 0, 0, 0); m_switchRect.push_back(genRect); // Push a general rectangle. UpdateSwitches(); m_pfDirection = PF_TO_ELEMENT; UpdatePowerFlowArrowsPosition(); return true; } return false; } void Load::Draw(wxPoint2DDouble translation, double scale) const { OpenGLColour elementColour; if(m_online) elementColour = m_onlineElementColour; else elementColour = m_offlineElementColour; if(m_inserted) { // Draw Selection (layer 1). if(m_selected) { glLineWidth(1.5 + m_borderSize * 2.0); glColor4dv(m_selectionColour.GetRGBA()); std::vector selTriangPts; selTriangPts.push_back( m_triangPts[0] + m_position + wxPoint2DDouble(-m_borderSize / scale, -m_borderSize / scale)); selTriangPts.push_back( m_triangPts[1] + m_position + wxPoint2DDouble(m_borderSize / scale, -m_borderSize / scale)); selTriangPts.push_back(m_triangPts[2] + m_position + wxPoint2DDouble(0.0, m_borderSize / scale)); glPushMatrix(); glTranslated(m_position.m_x, m_position.m_y, 0.0); glRotated(m_angle, 0.0, 0.0, 1.0); glTranslated(-m_position.m_x, -m_position.m_y, 0.0); DrawTriangle(selTriangPts); glPopMatrix(); DrawLine(m_pointList); // Draw node selection. DrawCircle(m_pointList[0], 5.0 + m_borderSize / scale, 10, GL_POLYGON); } // Draw Load (layer 2). glLineWidth(1.5); // Draw node. glColor4dv(elementColour.GetRGBA()); DrawCircle(m_pointList[0], 5.0, 10, GL_POLYGON); DrawLine(m_pointList); DrawSwitches(); DrawPowerFlowPts(); std::vector triangPts; for(int i = 0; i < 3; i++) { triangPts.push_back(m_triangPts[i] + m_position); } glPushMatrix(); glTranslated(m_position.m_x, m_position.m_y, 0.0); glRotated(m_angle, 0.0, 0.0, 1.0); glTranslated(-m_position.m_x, -m_position.m_y, 0.0); glColor4dv(elementColour.GetRGBA()); DrawTriangle(triangPts); glPopMatrix(); } } void Load::Rotate(bool clockwise) { double rotAngle = m_rotationAngle; if(!clockwise) rotAngle = -m_rotationAngle; m_angle += rotAngle; if(m_angle >= 360 || m_angle <= -360) m_angle = 0.0; m_pointList[2] = RotateAtPosition(m_pointList[2], rotAngle); m_pointList[3] = RotateAtPosition(m_pointList[3], rotAngle); UpdateSwitchesPosition(); UpdatePowerFlowArrowsPosition(); } bool Load::GetContextMenu(wxMenu& menu) { menu.Append(ID_EDIT_ELEMENT, _("Edit Load")); GeneralMenuItens(menu); return true; } bool Load::ShowForm(wxWindow* parent, Element* element) { LoadForm* loadForm = new LoadForm(parent, this); if(loadForm->ShowModal() == wxID_OK) { loadForm->Destroy(); return true; } loadForm->Destroy(); return false; } LoadElectricalData Load::GetPUElectricalData(double systemPowerBase) { LoadElectricalData data = m_electricalData; switch(data.activePowerUnit) { case UNIT_W: { data.activePower = data.activePower / systemPowerBase; data.activePowerUnit = UNIT_PU; } break; case UNIT_kW: { data.activePower = (data.activePower * 1e3) / systemPowerBase; data.activePowerUnit = UNIT_PU; } break; case UNIT_MW: { data.activePower = (data.activePower * 1e6) / systemPowerBase; data.activePowerUnit = UNIT_PU; } break; default: break; } switch(data.reactivePowerUnit) { case UNIT_VAr: { data.reactivePower = data.reactivePower / systemPowerBase; data.reactivePowerUnit = UNIT_PU; } break; case UNIT_kVAr: { data.reactivePower = (data.reactivePower * 1e3) / systemPowerBase; data.reactivePowerUnit = UNIT_PU; } break; case UNIT_MVAr: { data.reactivePower = (data.reactivePower * 1e6) / systemPowerBase; data.reactivePowerUnit = UNIT_PU; } break; default: break; } return data; } Element* Load::GetCopy() { Load* copy = new Load(); *copy = *this; return copy; } wxString Load::GetTipText() const { wxString tipText = m_electricalData.name; // TODO: Avoid power calculation. double activePower = m_electricalData.activePower; double reactivePower = m_electricalData.reactivePower; if(!m_online) { activePower = 0.0; reactivePower = 0.0; } if(m_online && m_electricalData.loadType == CONST_IMPEDANCE) { std::complex v = static_cast(m_parentList[0])->GetElectricalData().voltage; reactivePower *= std::pow(std::abs(v), 2); activePower *= std::pow(std::abs(v), 2); } tipText += "\n"; tipText += _("\nP = ") + wxString::FromDouble(activePower, 5); switch(m_electricalData.activePowerUnit) { case UNIT_PU: { tipText += _(" p.u."); } break; case UNIT_W: { tipText += _(" W"); } break; case UNIT_kW: { tipText += _(" kW"); } break; case UNIT_MW: { tipText += _(" MW"); } break; default: break; } tipText += _("\nQ = ") + wxString::FromDouble(reactivePower, 5); switch(m_electricalData.reactivePowerUnit) { case UNIT_PU: { tipText += _(" p.u."); } break; case UNIT_VAr: { tipText += _(" VAr"); } break; case UNIT_kVAr: { tipText += _(" kVAr"); } break; case UNIT_MVAr: { tipText += _(" MVAr"); } break; default: break; } return tipText; }