1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
/*
* libpinyin
* Library to deal with pinyin.
*
* Copyright (C) 2006-2007 Peng Wu
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include "memory_chunk.h"
#include "phrase_index.h"
#include "lookup.h"
#include "winner_tree.h"
WinnerTreeBranchIterator::WinnerTreeBranchIterator(WinnerTree & tree)
:m_tree(tree), m_counter(0){
m_max_value = m_tree.m_items[m_tree.get_winner()];
m_counter = 0;
}
bool WinnerTreeBranchIterator::has_next(){
if ( m_counter >= m_tree.m_tree_size)
return false;
return m_counter < nbranch;
}
lookup_value_t WinnerTreeBranchIterator::next(){
int winner = m_tree.get_winner();
lookup_value_t tmp = m_tree.m_items[winner];
m_tree.m_items[winner].m_poss =
- FLT_MAX;
m_tree.replay(winner);
++m_counter;
return tmp;
}
void WinnerTree::play(int p, int lc, int rc){
m_tree[p] = winner(lc, rc);
//continue competition
while( p > 1 && p % 2) {
m_tree[p/2] = winner( m_tree[p - 1], m_tree[p]);
p/=2;
}
}
bool WinnerTree::initialize(LookupStepContent cur_step){
size_t size = cur_step->len;
if ( size > m_max_tree_size ){
init(size);
}
assert(size > nbranch);
m_tree_size = size;
//initialize array tree
int nindex = 1;
for( size_t i = 0; i < cur_step->len ; ++i){
lookup_value_t * cur_value = &g_array_index(cur_step, lookup_value_t, i);
m_items[nindex++] = *cur_value;
}
//compute s = 2 ^ log(n -1)
int i, s;
for( s = 1; 2 * s <= m_tree_size - 1; s += s);
m_low_ext = 2 * (m_tree_size - s);
m_offset = 2 * s - 1;
//compute outside nodes
for( i = 2; i <= m_low_ext; i += 2)
play((m_offset + i)/2, i - 1, i);
//compute other nodes
if ( m_tree_size % 2){
play( m_tree_size / 2, m_tree[m_tree_size - 1], m_low_ext +1);
i = m_low_ext + 3;
}else i = m_low_ext + 2;
//compute others
for( ; i <= m_tree_size; i += 2)
play( (i - m_low_ext + m_tree_size - 1) / 2, i - 1, i);
return true;
}
void WinnerTree::replay(int i){
assert( 1 <= i && i <= m_tree_size);
int p; //compete node
int lc; //p's left child
int rc; //p's right child
//first compete
if ( i <= m_low_ext){
p = (m_offset + i) / 2;
lc = 2 * p - m_offset;
rc = lc + 1;
}else{
p = (i - m_low_ext + m_tree_size -1) / 2;
if ( 2 * p == m_tree_size - 1 ){
lc = m_tree[2*p];
rc = i;
}else{
lc = 2 * p - m_tree_size + 1 + m_low_ext;
rc = lc + 1;
}
}
m_tree[p] = winner(lc, rc);
//added by wupeng
if ( ( p | 0x01 ) == m_tree_size ){
p /= 2;
m_tree[p] = winner( m_tree[2 * p], m_low_ext + 1 );
}
//compute others
p /= 2;
for( ; p >= 1 ; p /= 2)
m_tree[p] = winner( m_tree[2 * p], m_tree[2 * p + 1]);
}
int WinnerTree::winner(int lc, int rc){
return m_items[lc].m_poss > m_items[rc].m_poss ?
lc : rc;
}
|