
Puppet-Gluster

A GlusterFS Puppet module by James

Available from:

https://github.com/purpleidea/puppet-gluster/

Also available from:

https://forge.gluster.org/puppet-gluster/

This documentation is available in: Markdown or PDF format.

Table of Contents

1. Overview
2. Module description - What the module does
3. Setup - Getting started with Puppet-Gluster

• What can Puppet-Gluster manage?
• Simple setup
• Elastic setup
• Advanced setup
• Client setup

4. Usage/FAQ - Notes on management and frequently asked questions
5. Reference - Class and type reference

• gluster::simple
• gluster::elastic
• gluster::server
• gluster::host
• gluster::brick
• gluster::volume
• gluster::volume::property
• gluster::mount

6. Examples - Example configurations
7. Limitations - Puppet versions, OS compatibility, etc. . .
8. Development - Background on module development
9. Author - Author and contact information

1

https://ttboj.wordpress.com/
https://github.com/purpleidea/puppet-gluster/
https://forge.gluster.org/puppet-gluster/
https://github.com/purpleidea/puppet-gluster/blob/master/DOCUMENTATION.md
https://github.com/purpleidea/puppet-gluster/raw/master/puppet-gluster-documentation.pdf

Overview

The Puppet-Gluster module installs, configures, and manages a GlusterFS
cluster.

Module Description

This Puppet-Gluster module handles installation, configuration, and management
of GlusterFS across all of the hosts in the cluster.

Setup

What can Puppet-Gluster manage?

Puppet-Gluster is designed to be able to manage as much or as little of your
GlusterFS cluster as you wish. All features are optional. If there is a feature
that doesn’t appear to be optional, and you believe it should be, please let me
know. Having said that, it makes good sense to me to have Puppet-Gluster
manage as much of your GlusterFS infrastructure as it can. At the moment, it
cannot rack new servers, but I am accepting funding to explore this feature ;)
At the moment it can manage:

• GlusterFS packages (rpm)
• GlusterFS configuration files (/var/lib/glusterd/)
• GlusterFS host peering (gluster peer probe)
• GlusterFS storage partitioning (fdisk)
• GlusterFS storage formatting (mkfs)
• GlusterFS brick creation (mkdir)
• GlusterFS services (glusterd)
• GlusterFS firewalling (whitelisting)
• GlusterFS volume creation (gluster volume create)
• GlusterFS volume state (started/stopped)
• GlusterFS volume properties (gluster volume set)
• And much more. . .

Simple setup

include ‘::gluster::simple’ is enough to get you up and running. When using the
gluster::simple class, or with any other Puppet-Gluster configuration, identical
definitions must be used on all hosts in the cluster. The simplest way to
accomplish this is with a single shared puppet host definition like:

2

node /^annex\d+$/ { # annex{1,2,..N}
class { ’::gluster::simple’:
}

}

If you wish to pass in different parameters, you can specify them in the class
before you provision your hosts:

class { ’::gluster::simple’:
replica => 2,
volume => [’volume1’, ’volume2’, ’volumeN’],

}

Elastic setup

The gluster::elastic class is not yet available. Stay tuned!

Advanced setup

Some system administrators may wish to manually itemize each of the required
components for the Puppet-Gluster deployment. This happens automatically
with the higher level modules, but may still be a desirable feature, particularly
for non-elastic storage pools where the configuration isn’t expected to change
very often (if ever).

To put together your cluster piece by piece, you must manually include and
define each class and type that you wish to use. If there are certain aspects that
you wish to manage yourself, you can omit them from your configuration. See
the reference section below for the specifics. Here is one possible example:

class { ’::gluster::server’:
shorewall => true,

}

gluster::host { ’annex1.example.com’:
use uuidgen to make these
uuid => ’1f660ca2-2c78-4aa0-8f4d-21608218c69c’,

}

note that this is using a folder on your existing file system...
this can be useful for prototyping gluster using virtual machines
if this isn’t a separate partition, remember that your root fs will
run out of space when your gluster volume does!
gluster::brick { ’annex1.example.com:/data/gluster-storage1’:

3

areyousure => true,
}

gluster::host { ’annex2.example.com’:
NOTE: specifying a host uuid is now optional!
if you don’t choose one, one will be assigned
#uuid => ’2fbe6e2f-f6bc-4c2d-a301-62fa90c459f8’,

}

gluster::brick { ’annex2.example.com:/data/gluster-storage2’:
areyousure => true,

}

$brick_list = [
’annex1.example.com:/data/gluster-storage1’,
’annex2.example.com:/data/gluster-storage2’,

]

gluster::volume { ’examplevol’:
replica => 2,
bricks => $brick_list,
start => undef, # i’ll start this myself

}

namevar must be: <VOLNAME>#<KEY>
gluster::volume::property { ’examplevol#auth.reject’:

value => [’192.0.2.13’, ’198.51.100.42’, ’203.0.113.69’],
}

Client setup

Mounting a GlusterFS volume on a client is fairly straightforward. Simply use
the ‘gluster::mount’ type.

gluster::mount { ’/mnt/gluster/puppet/’:
server => ’annex.example.com:/puppet’,
rw => true,
shorewall => false,

}

In this example, ‘annex.example.com’ points to the VIP of the GlusterFS cluster.
Using the VIP for mounting increases the chance that you’ll get an available
server when you try to mount. This generally works better than RRDNS or
similar schemes.

4

Usage and frequently asked questions

All management should be done by manipulating the arguments on the appropri-
ate Puppet-Gluster classes and types. Since certain manipulations are either not
yet possible with Puppet-Gluster, or are not supported by GlusterFS, attempting
to manipulate the Puppet configuration in an unsupported way will result in
undefined behaviour, and possible even data loss, however this is unlikely.

How do I change the replica count?

You must set this before volume creation. This is a limitation of GlusterFS.
There are certain situations where you can change the replica count by adding a
multiple of the existing brick count to get this desired effect. These cases are
not yet supported by Puppet-Gluster. If you want to use Puppet-Gluster before
and / or after this transition, you can do so, but you’ll have to do the changes
manually.

Do I need to use a virtual IP?

Using a virtual IP (VIP) is strongly recommended as a distributed lock manager
(DLM) and also to provide a highly-available (HA) IP address for your clients to
connect to. For a more detailed explanation of the reasoning please see:

How to avoid cluster race conditions or: How to implement a distributed lock
manager in puppet

Remember that even if you’re using a hosted solution (such as AWS) that doesn’t
provide an additional IP address, or you want to avoid using an additional IP,
and you’re okay not having full HA client mounting, you can use an unused
private RFC1918 IP address as the DLM VIP. Remember that a layer 3 IP can
co-exist on the same layer 2 network with the layer 3 network that is used by
your cluster.

Is it possible to have Puppet-Gluster complete in a single run?

No. This is a limitation of Puppet, and is related to how GlusterFS operates. For
example, it is not reliably possible to predict which ports a particular GlusterFS
volume will run on until after the volume is started. As a result, this module
will initially whitelist connections from GlusterFS host IP addresses, and then
further restrict this to only allow individual ports once this information is known.
This is possible in conjunction with the puppet-shorewall module. You should
notice that each run should complete without error. If you do see an error, it
means that either something is wrong with your system and / or configuration,
or because there is a bug in Puppet-Gluster.

5

https://ttboj.wordpress.com/2012/08/23/how-to-avoid-cluster-race-conditions-or-how-to-implement-a-distributed-lock-manager-in-puppet/
https://ttboj.wordpress.com/2012/08/23/how-to-avoid-cluster-race-conditions-or-how-to-implement-a-distributed-lock-manager-in-puppet/
https://github.com/purpleidea/puppet-shorewall

Can you integrate this with vagrant?

Yes, see the vagrant/ directory. This has been tested on Fedora 20, with vagrant-
libvirt, as I have no desire to use VirtualBox for fun. I have written an article
about this:
Automatically deploying GlusterFS with Puppet-Gluster + Vagrant!
You’ll probably first need to read my three earlier articles to learn some vagrant
tricks, and to get the needed dependencies installed:

• Vagrant on Fedora with libvirt
• Vagrant vsftp and other tricks
• Vagrant clustered SSH and ‘screen’

Puppet runs fail with “Invalid relationship” errors.

When running Puppet, you encounter a compilation failure like:

Error: Could not retrieve catalog from remote server:
Error 400 on SERVER: Invalid relationship: Exec[gluster-volume-stuck-volname] {
require => Gluster::Brick[annex2.example.com:/var/lib/puppet/tmp/gluster/data/]
}, because Gluster::Brick[annex2.example.com:/var/lib/puppet/tmp/gluster/data/]
doesn’t seem to be in the catalog
Warning: Not using cache on failed catalog
Error: Could not retrieve catalog; skipping run

This can occur if you have changed (usually removed) the available bricks, but
have not cleared the exported resources on the Puppet master, or if there are
stale (incorrect) brick “tags” on the individual host. These tags can usually be
found in the /var/lib/puppet/tmp/gluster/brick/ directory. In other words, when
a multi host cluster comes up, each puppet agent tells the master about which
bricks it has available, and each agent also pulls down this list and stores it in
the brick directory. If there is a discrepancy, then the compile will fail because
the individual host is using old data as part of its facts when it uses the stale
brick data as part of its compilation.
This commonly happens if you’re trying to deploy a different Puppet-Gluster
setup without having first erased the host specific exported resources on the
Puppet master or if the machine hasn’t been re-provisioned from scratch.
To solve this problem, do a clean install, and make sure that you’ve cleaned the
Puppet master with:

puppet node deactivate HOSTNAME

for each host you’re using, and that you’ve removed all of the files from the brick
directories on each host.

6

https://github.com/purpleidea/puppet-gluster/tree/master/vagrant
https://ttboj.wordpress.com/2014/01/08/automatically-deploying-glusterfs-with-puppet-gluster-vagrant/
https://ttboj.wordpress.com/2013/12/09/vagrant-on-fedora-with-libvirt/
https://ttboj.wordpress.com/2013/12/21/vagrant-vsftp-and-other-tricks/
https://ttboj.wordpress.com/2014/01/02/vagrant-clustered-ssh-and-screen/

Provisioning fails with: “Can’t open /dev/sdb1 exclusively.”

If when provisioning you get an error like:

“Can’t open /dev/sdb1 exclusively. Mounted filesystem?”

It is possible that dracut might have found an existing logical volume on the
device, and device mapper has made it available. This is common if you are
re-using dirty block devices that haven’t run through a dd first. Here is an
example of the diagnosis and treatment of this problem:

[root@server mapper]# pwd
/dev/mapper
[root@server mapper]# dmesg | grep dracut
dracut: dracut-004-336.el6_5.2
dracut: rd_NO_LUKS: removing cryptoluks activation
dracut: Starting plymouth daemon
dracut: rd_NO_DM: removing DM RAID activation
dracut: rd_NO_MD: removing MD RAID activation
dracut: Scanning devices sda3 sdb for LVM logical volumes myvg/rootvol
dracut: inactive ’/dev/vg_foo/lv’ [4.35 TiB] inherit
dracut: inactive ’/dev/myvg/rootvol’ [464.00 GiB] inherit
dracut: Mounted root filesystem /dev/mapper/myvg-rootvol
dracut: Loading SELinux policy
dracut:
dracut: Switching root
[root@server mapper]# /sbin/pvcreate --dataalignment 2560K /dev/sdb1

Can’t open /dev/sdb1 exclusively. Mounted filesystem?
[root@server mapper]# ls
control myvg-rootvol vg_foo-lv
[root@server mapper]# ls -lAh
total 0
crw-rw----. 1 root root 10, 58 Mar 7 16:42 control
lrwxrwxrwx. 1 root root 7 Mar 13 09:56 myvg-rootvol -> ../dm-0
lrwxrwxrwx. 1 root root 7 Mar 13 09:56 vg_foo-lv -> ../dm-1
[root@server mapper]# dmsetup remove vg_foo-lv
[root@server mapper]# ls
control myvg-rootvol
[root@server mapper]# pvcreate --dataalignment 2560K /dev/sdb1

Physical volume "/dev/sdb1" successfully created
[root@server mapper]# HAPPY_ADMIN=’yes’

If you frequently start with “dirty” block devices, you may consider adding a dd
to your hardware provisioning step. The downside is that this can be very time
consuming, and potentially dangerous if you accidentally re-provision the wrong
machine.

7

I changed the hardware manually, and now my system won’t boot.

If you’re using Puppet-Gluster to manage storage, the filesystem will be mounted
with UUID entries in /etc/fstab. This ensures that the correct filesystem will
be mounted, even if the device order changes. If a filesystem is not available
at boot time, startup will abort and offer you the chance to go into read-only
maintenance mode. Either fix the hardware issue, or edit the /etc/fstab file.

I can’t edit /etc/fstab in the maintenance shell because it is read-only.

In the maintenance shell, your root filesystem will be mounted read-only, to
prevent changes. If you need to edit a file such as /etc/fstab, you’ll first need to
remount the root filesystem in read-write mode. You can do this with:

mount -n -o remount /

Awesome work, but it’s missing support for a feature and/or platform!

Since this is an Open Source / Free Software project that I also give away for
free (as in beer, free as in gratis, free as in libre), I’m unable to provide unlimited
support. Please consider donating funds, hardware, virtual machines, and other
resources. For specific needs, you could perhaps sponsor a feature!

You didn’t answer my question, or I have a question!

Contact me through my technical blog and I’ll do my best to help. If you have a
good question, please remind me to add my answer to this documentation!

Reference

Please note that there are a number of undocumented options. For more
information on these options, please view the source at: https://github.com/
purpleidea/puppet-gluster/. If you feel that a well used option needs documenting
here, please contact me.

Overview of classes and types

• gluster::simple: Simple Puppet-Gluster deployment.
• gluster::elastic: Under construction.
• gluster::server: Base class for server hosts.
• gluster::host: Host type for each participating host.

8

https://ttboj.wordpress.com/contact/
https://github.com/purpleidea/puppet-gluster/
https://github.com/purpleidea/puppet-gluster/

• gluster::brick: Brick type for each defined brick, per host.
• gluster::volume: Volume type for each defined volume.
• gluster::volume::property: Manages properties for each volume.
• gluster::mount: Client volume mount point management.

gluster::simple

This is gluster::simple. It should probably take care of 80% of all use cases.
It is particularly useful for deploying quick test clusters. It uses a finite-state
machine (FSM) to decide when the cluster has settled and volume creation
can begin. For more information on the FSM in Puppet-Gluster see: https:
//ttboj.wordpress.com/2013/09/28/finite-state-machines-in-puppet/

replica The replica count. Can’t be changed automatically after initial de-
ployment.

volume The volume name or list of volume names to create.

path The valid brick path for each host. Defaults to local file system. If you
need a different path per host, then Gluster::Simple will not meet your needs.

count Number of bricks to build per host. This value is used unless
brickparams_ is being used.

vip The virtual IP address to be used for the cluster distributed lock manager.
This option can be used in conjunction with the vrrp option, but it does not
require it. If you don’t want to provide a virtual ip, but you do want to enforce
that certain operations only run on one host, then you can set this option to be
the ip address of an arbitrary host in your cluster. Keep in mind that if that
host is down, certain options won’t ever occur.

vrrp Whether to automatically deploy and manage Keepalived for use as a
DLM and for use in volume mounting, etc. . . Using this option requires the vip
option.

layout Which brick layout to use. The available options are: chained, and
(default). To generate a default (symmetrical, balanced) layout, leave this option
blank. If you’d like to include an algorithm that generates a different type of
brick layout, it is easy to drop in an algorithm. Please contact me with the
details!

9

https://ttboj.wordpress.com/2013/09/28/finite-state-machines-in-puppet/
https://ttboj.wordpress.com/2013/09/28/finite-state-machines-in-puppet/

version Which version of GlusterFS do you want to install? This is especially
handy when testing new beta releases. You can read more about the technique
at: Testing GlusterFS during Glusterfest.

repo Whether or not to add the necessary software repositories to install the
needed packages. This will typically pull in GlusterFS from download.gluster.org
and should be set to false if you have your own mirrors or repositories managed
as part of your base image.

brick_params This parameter lets you specify a hash to use when creating
the individual bricks. This is especially useful because it lets you have the power
of Gluster::Simple when managing a cluster of iron (physical machines) where
you’d like to specify brick specific parameters. This sets the brick count when
the count parameter is 0. The format of this parameter might look like:

$brick_params = {
fqdn1 => [

{dev => ’/dev/disk/by-uuid/01234567-89ab-cdef-0123-456789abcdef’},
{dev => ’/dev/sdc’, partition => false},

],
fqdn2 => [{

dev => ’/dev/disk/by-path/pci-0000:02:00.0-scsi-0:1:0:0’,
raid_su => 256, raid_sw => 10,

}],
fqdnN => [...],

}

brick_param_defaults This parameter lets you specify a hash of defaults to
use when creating each brick with the brickparams_ parameter. It is useful
because it avoids the need to repeat the values that are common across all bricks
in your cluster. Since most options work this way, this is an especially nice
feature to have. The format of this parameter might look like:

$brick_param_defaults = {
lvm => false,
xfs_inode64 => true,
force => true,

}

setgroup Set a volume property group. The two most common or well-known
groups are the virt group, and the small-file-perf group. This functionality is
emulated whether you’re using the RHS version of GlusterFS or if you’re using
the upstream GlusterFS project, which doesn’t (currently) have the volume set

10

https://ttboj.wordpress.com/2014/01/16/testing-glusterfs-during-glusterfest/

group command. As package managers update the list of available groups or their
properties, Puppet-Gluster will automatically keep your set group up-to-date.
It is easy to extend Puppet-Gluster to add a custom group without needing to
patch the GlusterFS source.

ping Whether to use fping or not to help with ensuring the required hosts are
available before doing certain types of operations. Optional, but recommended.
Boolean value.

baseport Specify the base port option as used in the glusterd.vol file. This is
useful if the default port range of GlusterFS conflicts with the ports used for
virtual machine migration, or if you simply like to choose the ports that you’re
using. Integer value.

rpcauthallowinsecure This is needed in some setups in the glusterd.vol file,
particularly (I think) for some users of libgfapi. Boolean value.

shorewall Boolean to specify whether puppet-shorewall integration should be
used or not.

gluster::elastic

Under construction.

gluster::server

Main server class for the cluster. Must be included when building the Glus-
terFS cluster manually. Wrapper classes such as gluster::simple include this
automatically.

vip The virtual IP address to be used for the cluster distributed lock manager.

shorewall Boolean to specify whether puppet-shorewall integration should be
used or not.

gluster::host

Main host type for the cluster. Each host participating in the GlusterFS cluster
must define this type on itself, and on every other host. As a result, this is not
a singleton like the gluster::server class.

11

ip Specify which IP address this host is using. This defaults to the $::ipaddress
variable. Be sure to set this manually if you’re declaring this yourself on each
host without using exported resources. If each host thinks the other hosts should
have the same IP address as itself, then Puppet-Gluster and GlusterFS won’t
work correctly.

uuid Universally unique identifier (UUID) for the host. If empty, Puppet-
Gluster will generate this automatically for the host. You can generate your
own manually with uuidgen, and set them yourself. I found this particularly
useful for testing, because I would pick easy to recognize UUID’s like: aaaaaaaa-
aaaa-aaaa-aaaa-aaaaaaaaaaaa, bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb, and so on.
If you set a UUID manually, and Puppet-Gluster has a chance to run, then
it will remember your choice, and store it locally to be used again if you no
longer specify the UUID. This is particularly useful for upgrading an existing
un-managed GlusterFS installation to a Puppet-Gluster managed one, without
changing any UUID’s.

gluster::brick

Main brick type for the cluster. Each brick is an individual storage segment to
be used on a host. Each host must have at least one brick to participate in the
cluster, but usually a host will have multiple bricks. A brick can be as simple as
a file system folder, or it can be a separate file system. Please read the official
GlusterFS documentation, if you aren’t entirely comfortable with the concept of
a brick.

For most test clusters, and for experimentation, it is easiest to use a directory on
the root file system. You can even use a /tmp sub folder if you don’t care about
the persistence of your data. For more serious clusters, you might want to create
separate file systems for your data. On self-hosted iron, it is not uncommon to
create multiple RAID-6 drive pools, and to then create a separate file system
per virtual drive. Each file system can then be used as a single brick.

So that each volume in GlusterFS has the maximum ability to grow, without
having to partition storage separately, the bricks in Puppet-Gluster are actually
folders (on whatever backing store you wish) which then contain sub folders– one
for each volume. As a result, all the volumes on a given GlusterFS cluster can
share the total available storage space. If you wish to limit the storage used by
each volume, you can setup quotas. Alternatively, you can buy more hardware,
and elastically grow your GlusterFS volumes, since the price per GB will be
significantly less than any proprietary storage system. The one downside to this
brick sharing, is that if you have chosen the brick per host count specifically to
match your performance requirements, and each GlusterFS volume on the same
cluster has drastically different brick per host performance requirements, then
this won’t suit your needs. I doubt that anyone actually has such requirements,

12

but if you do insist on needing this compartmentalization, then you can probably
use the Puppet-Gluster grouping feature to accomplish this goal. Please let me
know about your use-case, and be warned that the grouping feature hasn’t been
extensively tested.

To prove to you that I care about automation, this type offers the ability to
automatically partition and format your file systems. This means you can
plug in new iron, boot, provision and configure the entire system automatically.
Regrettably, I don’t have a lot of test hardware to routinely use this feature. If
you’d like to donate some, I’d be happy to test this thoroughly. Having said
that, I have used this feature, I consider it to be extremely safe, and it has never
caused me to lose data. If you’re uncertain, feel free to look at the code, or avoid
using this feature entirely. If you think there’s a way to make it even safer, then
feel free to let me know.

dev Block device, such as /dev/sdc or /dev/disk/by-id/scsi-0123456789abcdef.
By default, Puppet-Gluster will assume you’re using a folder to store the brick
data, if you don’t specify this parameter.

raid_su Get this information from your RAID device. This is used to do
automatic calculations for alignment, so that the:

dev -> part -> lvm -> fs

stack is aligned properly. Future work is possible to manage your RAID devices,
and to read these values automatically. Specify this value as an integer number
of kilobytes (k).

raid_sw Get this information from your RAID device. This is used to do
automatic calculations for alignment, so that the:

dev -> part -> lvm -> fs

stack is aligned properly. Future work is possible to manage your RAID devices,
and to read these values automatically. Specify this value as an integer.

partition Do you want to partition the device and build the next layer on
that partition, or do you want to build on the block device directly? The “next
layer” will typically be lvm if you’re using lvm, or your file system (such as xfs)
if you’re skipping the lvm layer.

labeltype Only gpt is supported. Other options include msdos, but this has
never been used because of it’s size limitations.

13

lvm Do you want to use lvm on the lower level device (typically a partition, or
the device itself), or not. Using lvm might be required when using a commercially
supported GlusterFS solution.

fsuuid File system UUID. This ensures we can distinctly identify a file system.
You can set this to be used with automatic file system creation, or you can
specify the file system UUID that you’d like to use. If you leave this blank, then
Puppet-Gluster can automatically pick an fs UUID for you. This is especially
useful if you are automatically deploying a large cluster on physical iron.

fstype This should be xfs or ext4. Using xfs is recommended, but ext4 is also
quite common. This only affects a file system that is getting created by this
module. If you provision a new machine, with a root file system of ext4, and the
brick you create is a root file system path, then this option does nothing.

xfs_inode64 Set inode64 mount option when using the xfs fstype. Choose
true to set.

xfs_nobarrier Set nobarrier mount option when using the xfs fstype. Choose
true to set.

ro Whether the file system should be mounted read only. For emergencies only.

force If true, this will overwrite any xfs file system it sees. This is useful for
rebuilding GlusterFS repeatedly and wiping data. There are other safeties in
place to stop this. In general, you probably don’t ever want to touch this.

areyousure Do you want to allow Puppet-Gluster to do dangerous things?
You have to set this to true to allow Puppet-Gluster to fdisk and mkfs your file
system.

comment Add any comment you want. This is also occasionally used internally
to do magic things.

gluster::volume

Main volume type for the cluster. This is where a lot of the magic happens.
Remember that changing some of these parameters after the volume has been
created won’t work, and you’ll experience undefined behaviour. There could be
FSM based error checking to verify that no changes occur, but it has been left

14

out so that this code base can eventually support such changes, and so that the
user can manually change a parameter if they know that it is safe to do so.

bricks List of bricks to use for this volume. If this is left at the default value
of true, then this list is built automatically. The algorithm that determines
this order does not support all possible situations, and most likely can’t handle
certain corner cases. It is possible to examine the FSM to view the selected
brick order before it has a chance to create the volume. The volume creation
script won’t run until there is a stable brick list as seen by the FSM running on
the host that has the DLM. If you specify this list of bricks manually, you must
choose the order to match your desired volume layout. If you aren’t sure about
how to order the bricks, you should review the GlusterFS documentation first.

transport Only tcp is supported. Possible values can include rdma, but this
won’t get any testing if I don’t have access to infiniband hardware. Donations
welcome.

replica Replica count. Usually you’ll want to set this to 2. Some users choose
3. Other values are seldom seen. A value of 1 can be used for simply testing a
distributed setup, when you don’t care about your data or high availability. A
value greater than 4 is probably wasteful and unnecessary. It might even cause
performance issues if a synchronous write is waiting on a slow fourth server.

stripe Stripe count. Thoroughly unsupported and untested option. Not
recommended for use by GlusterFS.

layout Which brick layout to use. The available options are: chained, and
(default). To generate a default (symmetrical, balanced) layout, leave this option
blank. If you’d like to include an algorithm that generates a different type of
brick layout, it is easy to drop in an algorithm. Please contact me with the
details!

ping Do we want to include ping checks with fping?

settle Do we want to run settle checks?

start Requested state for the volume. Valid values include: true (start), false
(stop), or undef (un-managed start/stop state).

15

gluster::volume::property

Main volume property type for the cluster. This allows you to manage GlusterFS
volume specific properties. There are a wide range of properties that volumes
support. For the full list of properties, you should consult the GlusterFS
documentation, or run the gluster volume set help command. To set a property
you must use the special name pattern of: volume#key. The value argument is
used to set the associated value. It is smart enough to accept values in the most
logical format for that specific property. Some properties aren’t yet supported,
so please report any problems you have with this functionality. Because this
feature is an awesome way to document as code the volume specific optimizations
that you’ve made, make sure you use this feature even if you don’t use all the
others.

value The value to be used for this volume property.

gluster::mount

Main type to use to mount GlusterFS volumes. This type offers special features,
like shorewall integration, and repo support.

server Server specification to use when mounting. Format is :/volume. You
may use an FQDN or an IP address to specify the server.

rw Mount read-write or read-only. Defaults to read-only. Specify true for
read-write.

mounted Mounted argument from standard mount type. Defaults to true
(mounted).

repo Boolean to select if you want automatic repository (package) management
or not.

version Specify which GlusterFS version you’d like to use.

ip IP address of this client. This is usually auto-detected, but you can choose
your own value manually in case there are multiple options available.

shorewall Boolean to specify whether puppet-shorewall integration should be
used or not.

16

Examples

For example configurations, please consult the examples/ directory in the git
source repository. It is available from:

https://github.com/purpleidea/puppet-gluster/tree/master/examples

It is also available from:

https://forge.gluster.org/puppet-gluster/puppet-gluster/trees/master/examples

Limitations

This module has been tested against open source Puppet 3.2.4 and higher.

The module has been tested on:

• CentOS 6.4/6.5

It will probably work without incident or without major modification on:

• CentOS 5.x/6.x
• RHEL 5.x/6.x

It will most likely work with other Puppet versions and on other platforms, but
testing under other conditions has been light due to lack of resources. It will
most likely not work on Debian/Ubuntu systems without modification. I would
really love to add support for these operating systems, but I do not have any
test resources to do so. Please sponsor this if you’d like to see it happen.

Development

This is my personal project that I work on in my free time. Donations of funding,
hardware, virtual machines, and other resources are appreciated. Please contact
me if you’d like to sponsor a feature, invite me to talk/teach or for consulting.

You can follow along on my technical blog.

Author

Copyright (C) 2010-2013+ James Shubin

• github
• [@purpleidea](https://twitter.com/#!/purpleidea)
• https://ttboj.wordpress.com/

17

https://github.com/purpleidea/puppet-gluster/tree/master/examples
https://github.com/purpleidea/puppet-gluster/tree/master/examples
https://forge.gluster.org/puppet-gluster/puppet-gluster/trees/master/examples/
https://ttboj.wordpress.com/
https://github.com/purpleidea/
https://ttboj.wordpress.com/

	Puppet-Gluster
	A GlusterFS Puppet module by James
	Overview
	Module Description
	Setup
	What can Puppet-Gluster manage?
	Simple setup
	Elastic setup
	Advanced setup
	Client setup

	Usage and frequently asked questions
	How do I change the replica count?
	Do I need to use a virtual IP?
	Is it possible to have Puppet-Gluster complete in a single run?
	Can you integrate this with vagrant?
	Puppet runs fail with ``Invalid relationship'' errors.
	Provisioning fails with: ``Can't open /dev/sdb1 exclusively.''
	I changed the hardware manually, and now my system won't boot.
	I can't edit /etc/fstab in the maintenance shell because it is read-only.
	Awesome work, but it's missing support for a feature and/or platform!
	You didn't answer my question, or I have a question!

	Reference
	Overview of classes and types
	gluster::simple
	gluster::elastic
	gluster::server
	gluster::host
	gluster::brick
	gluster::volume
	gluster::volume::property
	gluster::mount

	Examples
	Limitations
	Development
	Author

