

Query Language Guide

rasdaman version 8.0

 raster data manager

 rasdaman Query Language Guide

 p. 2

rasdaman Version 8.0 Query Language Guide

Rasdaman Community is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

Rasdaman Community is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with rasdaman Community.
If not, see www.gnu.org/licenses. For more information please see www.rasdaman.org or contact Peter
Baumann via baumann@rasdaman.com.

Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 Peter Baumann / rasdaman GmbH.

All trade names referenced are service mark, trademark, or registered trademark of the respective
manufacturer.

http://www.gnu.org/licenses
http://www.rasdaman.org/
mailto:baumann@rasdaman.com

 rasdaman Query Language Guide

 p. 3

 rasdaman Query Language Guide

 p. 4

Preface

Overview

This guide provides information about how to use the rasdaman database
management system (in short: rasdaman). The document explains usage
of the following interfaces and tools:

• rasql: the rasdaman Query Language, consisting of

• rasdl: the rasdaman Data Definition Language

• rasml: the rasdaman Data Manipulation Language

Follow the instructions in this guide as you develop your application which
makes use of rasdaman services. Explanations detail how to create type
definitions and instances; how to retrieve information from databases; how
to insert, manipulate, and delete instances within databases.

 rasdaman Query Language Guide

 p. 5

Audience

The information in this manual is intended primarily for application
developers; additionally, it can be useful for advanced users of rasdaman
applications and for database administrators.

Rasdaman Documentation Set

This manual should be read in conjunction with the complete rasdaman
documentation set which this guide is part of. The documentation set in its
completeness covers all important information needed to work with the
rasdaman system, such as programming and query access to databases,
guidance to utilities such as the graphical-interactive query tool rView, and
release notes.

In particular, current restrictions, known bugs, and workarounds are listed
in the Release Notes. All documents, therefore, always have to be
considered in conjunction with the Release Notes.

The rasdaman Documentation Set consists of the following documents:

• C++ Developer's Guide

• Java Developer's Guide

• Query Language Guide

• Installation and Administration Guide

• PostgreSQL Integration Guide

• Error Messages

• rView Guide

• Release Notes

 rasdaman Query Language Guide

 p. 6

Table of Contents

1 Introduction..9

1.1 Multidimensional Data ..9

1.2 rasdaman Overall Architecture ...10

1.3 Interfaces..11

1.4 rasql and Standard SQL...11

1.5 Notational Conventions ..11

1.6 Further Reading ...12

2 Terminology ...13

2.1 An Intuitive Definition..13

2.2 A Technical Definition...14

3 Sample Database ..16

3.1 Collection mr ..16

 rasdaman Query Language Guide

 p. 7

3.2 Collection mr2 ..17

3.3 Collection rgb ...17

4 Type Definition with rasdl...18

4.1 Overview ..18

4.2 Application Development Workflow..19

4.3 Type Definition ...21

4.4 Sample Database Type Definitions ..24

4.5 Deleting Types and Databases ..24

4.6 rasdl Invocation ..25

4.7 Examples..26

5 Query Execution with rasql ..27

5.1 Examples..28

5.2 Rasql Invocation...28

6 Overview: General Query Format..31

6.1 Basic Query Mechanism ..31

6.2 Select Clause: Result Preparation..32

6.3 From Clause: Collection Specification......................................32

6.4 Where Clause: Conditions..33

6.5 Comments in Queries...34

7 Constants ..35

7.1 Atomic Constants ...35

7.2 Composite Constants ...36

7.3 Array Constants..37

7.4 Object Identifier (OID) Constants ...38

7.5 Collection Names ...38

8 Spatial Domain Operations..39

8.1 One-Dimensional Intervals ...39

8.2 Multidimensional Intervals ..40

9 Array Operations..41

9.1 Spatial Domain ...42

9.2 Geometric Operations ..42

 rasdaman Query Language Guide

 p. 8

9.3 Induced Operations ..46

9.4 Scaling..52

9.5 Condensers ..53

9.6 General Array Condenser...54

9.7 General Array Constructor..56

9.8 Data Exchange Format Conversion ...59

9.9 Object Identifiers ..62

9.10 Expressions..63

10 Null Value Handling ...64

11 Arithmetic Errors and Other Exception Situations................................66

11.1 Overflow ...66

11.2 Illegal operands ..67

11.3 Access Rights Clash ..68

12 Database Retrieval and Manipulation..69

12.1 Collection Handling ..69

12.2 Select ...70

12.3 Insert ..71

12.4 Update..71

12.5 Delete ...73

13 Linking MDD with Other Data ..74

13.1 Purpose of OIDs...74

13.2 Collection Names ...75

13.3 Array Object Identifiers ...75

14 Appendix A: rasdl Grammar ..76

15 Appendix B: rasml Grammar ...78

 rasdaman Query Language Guide

 p. 9

1 Introduction

1.1 Multidimensional Data

In principle, any natural phenomenon becomes spatio-temporal array data
of some specific dimensionality once it is sampled and quantised for
storage and manipulation in a computer system; additionally, a variety of
artificial sources such as simulators, image renderers, and data
warehouse population tools generate array data. The common charac-
teristic they all share is that a large set of large multidimensional arrays
has to be maintained. We call such arrays multidimensional discrete data
(or short: MDD) expressing the variety of dimensions and separating them
from the conceptually different multidimensional vectorial data appearing
in geo databases.

rasdaman is a domain-independent database management system
(DBMS) which supports multidimensional arrays of any size and
dimension and over freely definable cell types. Versatile interfaces allow
rapid application deployment while a set of cutting-edge intelligent

 rasdaman Query Language Guide

 p. 10

optimization techniques in the rasdaman server ensures fast, efficient
access to large data sets, particularly in networked environments.

1.2 rasdaman Overall Architecture

The rasdaman client/server DBMS has been designed using inter-
nationally approved standards wherever possible. The system follows a
two-tier client/server architecture with query processing completely done
in the server. Internally and invisible to the application, arrays are
decomposed into smaller units which are maintained in a conventional
DBMS, for our purposes called the base DBMS.

On the other hand, the base DBMS usually will hold alphanumeric data
(such as metadata) besides the array data. rasdaman offers means to
establish references between arrays and alphanumeric data in both
directions.

Hence, all multidimensional data go into the same physical database as
the alphanumeric data, thereby considerably easing database
maintenance (consistency, backup, etc.).

Figure 1 Embedding of rasdaman in IT infrastructure

Further information on application program interfacing, administration, and
related topics is available in the other components of the rasdaman
documentation set.

 rasdaman Query Language Guide

 p. 11

1.3 Interfaces

The syntactical elements explained in this document comprise the rasql
language interface to rasdaman. There are several ways to actually enter
such statements into the rasdaman system:

• By using the rView utility to interactively type in queries and visualize
the results.

• By developing an application program which uses the RasLib function
oql_execute() to forward query strings to the rasdaman server and
get back the results.

• By using the rasdl processor to manipulate and inspect the type
definitions contained in the dictionary of a rasdaman database.

RasLib and rView are not the subject of this document. Please refer to the
rView Guide and C++ Developer's Guide of the rasdaman documentation
set for further information.

1.4 rasql and Standard SQL

The declarative interface to the rasdaman system, the rasdaman Query
Language, rasql, consists of the rasdaman Definition Language, rasdl,
and the rasdaman Manipulation Language, rasml. The reader may notice
the close resemblance of the traditional separation of SQL into a DDL
(Data Definition Language) and DML (Data Manipulation Language). The
similarity to traditional query concepts tentatively is kept wherever
possible.

Figure 2 Correspondence between rasql and SQL

Moreover, the rasdaman query language, rasql, is very similar - and in fact
relies on - standard SQL. Hence, if you are familiar with SQL, you will
quickly be able to use rasql. Otherwise you may want to consult the intro-
ductory literature referenced at the end of this chapter.

1.5 Notational Conventions

The following notational conventions are used in this manual:

SQL

DDL DML

rasql

rasdl rasml

 rasdaman Query Language Guide

 p. 12

Program text (under this we also subsume queries in the document on
hand) is printed in a monotype font. Such text is further differentiated
into keywords and syntactic variables. Keywords like struct are printed in
boldface; they have to be typed in as is. On the contrary, syntactic
variables like structName are typeset in italics; they have to be replaced
by a name or an expression which evaluates to an entity of the
appropriate type.

An optional clause is enclosed in italic brackets; an arbitrary repetition is
indicated through italic brackets and an ellipsis:

select resultList

from collName [as collIterator]

 [, collName [as collIterator]] ...

[where booleanExpr]

It is important not to mix the regular brackets [and] denoting array
access, trimming, etc., with the italic brackets [and] denoting optional
clauses and repetition.

Italics are also used in the text to draw attention to the first instance of a
defined term in the text. In this case, the font is the same as in the running
text, not Courier as in code pieces.

1.6 Further Reading

S.J. Cannan: SQL The Standard Handbook, McGraw-Hill Book Company,
London, 1993

R.G.G. Cattell et al.: The Object Database Standard: ODMG 3.0, Morgan
Kaufmann Publishers, California.

 rasdaman Query Language Guide

 p. 13

2 Terminology

2.1 An Intuitive Definition

An array is a set of elements which are ordered in space. The space
considered here is discretized, i.e., only integer coordinates are admitted.
The number of integers needed to identify a particular position in this
space is called the dimension (sometimes also referred to as
dimensionality). Each array element, which is referred to as cell, is
positioned in space through its coordinates.

A cell can contain a single value (such as an intensity value in case of
grayscale images) or a composite value (such as integer triples for the
red, green, and blue component of a color image). All cells share the
same structure which is referred to as the array cell type or array base
type.

Implicitly a neighborhood is defined among cells through their coordinates:
incrementing or decrementing any component of a coordinate will lead to
another point in space. However, not all points of this (infinite) space will

 rasdaman Query Language Guide

 p. 14

actually house a cell. For each dimension, there is a lower and upper
bound, and only within these limits array cells are allowed; we call this
area the spatial domain of an array. In the end, arrays look like
multidimensional rectangles with limits parallel to the coordinate axes. The
database developer defines both spatial domain and cell type in the array
type definition. Not all bounds have to be fixed during type definition time,
though: It is possible to leave bounds open so that the array can
dynamically grow and shrink over its lifetime.

Figure 3 Constituents of an array

Synonyms for the term array are multidimensional arrays, multidimen-
sional data, MDD. They are used interchangeably in the rasdaman
documentation.

In rasdaman databases, arrays are grouped into collections. All elements
of a collection share the same array type definition (for the remaining
degrees of freedom see Section 4.3.2). Collections form the basis for
array handling, just as tables do in relational database technology.

2.2 A Technical Definition

Programmers who are familiar with the concept of arrays in programming
languages maybe prefer this more technical definition:

An array is a mapping from integer coordinates, the spatial domain, to
some data type, the cell type. An array's spatial domain, which is always
finite, is described by a pair of lower bounds and upper bounds for each
dimension, resp. Arrays, therefore, always cover a finite, axis-parallel
subset of Euclidean space.

7 85 64

23

22

spatial domaindimension

24

21
lower bound

upper bound

42
cell value

cell

 rasdaman Query Language Guide

 p. 15

Cell types can be any of the base types and composite types defined in
the ODMG standard and known, for example from C/C++. In fact, every
admissible C/C++ type is admissible in the rasdaman type system, too.

In rasdaman, arrays are strictly typed wrt. spatial domain and cell type.
Type checking is done at query evaluation time. Type checking can be
disabled selectively for an arbitrary number of lower and upper bounds of
an array, thereby allowing for arrays whose spatial domains vary over the
array lifetime.

 rasdaman Query Language Guide

 p. 16

3 Sample Database

3.1 Collection mr

This section introduces sample collections used later in this manual. The
sample database which is shipped together with the system contains the
schema and the instances outlined in the sequel.

Collection mr consists of three images (see Figure 4) taken from the same
patient using magnetic resonance tomography. Images are 8 bit grayscale
with pixel values between 0 and 255 and a size of 256x211.

 rasdaman Query Language Guide

 p. 17

Figure 4 Sample collection mr

3.2 Collection mr2

Collection mr2 consists of only one image, namely the first image of
collection mr. Hence, it is also 8 bit grayscale with size 256x211.

Figure 5 Sample collection mr2

3.3 Collection rgb

The last example collection, rgb, contains one item, a picture of the anthur
flower. It is an RGB image of size 400x344 where each pixel is composed
of three 8 bit integer components for the red, green, and blue component,
resp.

Figure 6 The collection rgb

 rasdaman Query Language Guide

 p. 18

4 Type Definition with rasdl

4.1 Overview

Every instance within a database is described by its data type (i.e., there
is exactly one data type to which an instance belongs; conversely, one
data type can serve to describe an arbitrary number of instances). Each
database contains a self-contained set of such type definitions; no other
type information, external to a database, is needed for database access.

A rasdaman schema contains three categories of data types:

• Cell type definitions; these can be base types (such as float) or
composite ("struct") types such as red/green/blue color pixels.

• MDD type definitions; these define arrays over some base type and
with some spatial domain.

• Collection type definitions; they describe sets over some MDD type;
collections of a given type can only contain MDD instances of the MDD
type used in the definition.

 rasdaman Query Language Guide

 p. 19

Types are identified by their name which must be unique within a
database; upper and lower case are distinguished. The same names are
used in the C++ header files generated by the rasdl processor.

Type handling is done using the rasdl processor which allows to add types
to a database schema, to delete types, to display schema information, and
to generate C++ header files from database types. rasdl, therefore, is the
central tool for maintaining database schemata.

Dynamic Type Definition
New types can be defined dynamically while the rasdaman server is
running. This means that new types introduced via rasdl are immediately
available to all other applications after rasdl’s transaction commit.

Only in some rare cases base DBMSs don't support this. For details
consult the corresponding rasdaman External Products Integration Guide.

 Examples
In Section 4.7 examples are given for the most common rasdl tasks.

 Important Note
Extreme care must be exercised on database and type maintenance. For
example, deleting a database cannot be undone, and deleting a type still
used in the database (i.e., which is needed to describe existing MDD
objects) may make it impossible to access these database objects any
more.

In general, database administration should be reserved to few persons, all
of which should have high familiarity with the operating system, the
relational database system, and the rasdaman system.

4.2 Application Development Workflow

The usual proceeding of setting up a database and an application
operating this database consists of three major steps.

• First, a rasdl definition is established (best through a file, but also
possible via typing in commands interactively) which is fed into the
rasdl processor. The output generated from this source consists of
C++ header and source files; in parallel, the type information is fed into
the target database.

• In the second step, the program source code written by the application
developer is compiled using the respective C++ compiler of the target
platform. To this end, the header file generated in the first step as well
as the RasLib header files are read by the compiler. The output is
relocatable object code.

• In the third step, the so created rasdaman application executable can
operate on a database with a structure as defined in the rasdl source
used.

 rasdaman Query Language Guide

 p. 20

Figure 7 shows this application development workflow, including all the
preprocess, compile and link steps necessary to generate an executable
application.

Figure 7 Application development workflow

 rasdaman Query Language Guide

 p. 21

4.3 Type Definition

rasdl syntax closely follows C/C++ data type definition syntax1. In fact,
there is only one syntactic extension to ODMG/C++ which allows to
conveniently specify spatial domains. The complete syntax specification of
rasdl can be found in the appendix.

4.3.1 Base Types
The set of standard data types, which is generated during creation of a
database, materializes the base types defined in the ODMG standard
(cf.Table 1).

rasdl name size description

octet 8 bit signed integer

char 8 bit unsigned integer

short 16 bit signed integer

unsigned short 16 bit unsigned integer

long 32 bit signed integer

unsigned long 32 bit unsigned integer

float 32 bit single precision floating point

double 64 bit double precision floating point

complex 64 bit single precision complex

complexd 128 bit double precision complex

boolean 1 bit2 true (nonzero value), false (zero value)

Table 1 rasdl base types

Further cell types can be defined arbitrarily in rasdaman, based on the
system-defined base types or other user-defined types. In particular,
composite user-defined base types corresponding to structs in C/C++
are supported. As a rule, every C/C++ type is admissible as array base
type in rasdl with the exception of pointers (these are handled through
OIDs, see Section 13), nested arrays, and classes.

The keyword struct allows to define complex pixel types, typedef is
used for the definition of MDD and set types in the same way as in C++.
The typeName indicating the cell type of the array must be defined within
the database schema using it.

1 Actually, rasdl is a subset of ODMG's Object Definition Language (ODL)
with the only extension for spatial domain specification within the array
template.
2 memory usage is one byte per pixel

 rasdaman Query Language Guide

 p. 22

 Syntax
struct structName

{ attrType_1 attrName_1;

 ...

 attrType_n attrName_n;

};

4.3.2 Array Type Definition
A spatial domain can be defined with variable degree of freedom. The
most concise way is to explicitly specify a lower and upper bound for each
dimension. Such bounds are integer numbers whereby, in each
dimension, the lower bound must be less or equal to the upper bound.
Negative numbers are allowed, and the lower bound does not have to be
0.

Array ranges defined this way are checked by the server during every
access. An attempt to access a cell outside the specified spatial domain
will lead to a runtime error.

 Syntax
typedef marray

< typeName, [lo_1 : hi_1, ..., lo_n : hi_n] >

marrayName;

 Example
The following definition establishes a 5x5 integer array sitting in the center
of the coordinate system. Such matrices can be used, for example, to hold
convolution kernels.

typedef marray < int, [-2:2, -2:2] > kernel5;

Note that the symmetry in the boundaries grounds in the way kernels are
defined; there is no constraint on the bounds in rasdl.

A higher degree of freedom in the array boundaries can be specified by
indicating an asterisk "*" instead of a lower or upper bound at any position.
In this case, range checking is disabled for that particular bound, and
dynamic extending and shrinking is possible in that dimension.

 Examples
A fax has a fixed width, but an arbitrary length. Modelling this requires to
leave open the upper bound of the second dimension:

typedef marray <char, [1:1728, 1:*]> G3Fax;

An array can have an arbitrary number of variable bounds:

typedef marray <char, [*:*, *:*]> GreyImage;

This extreme case - that all bounds are free - can be abbreviated by
indicating, instead of the spatial domain in brackets, only the number of
dimensions:

 rasdaman Query Language Guide

 p. 23

 Syntax
typedef marray

< typeName, dimension >

marrayName;

 Example
typedef marray <char, 2> GreyImage;

To leave open even the dimensionality of an array, even the dimension
number can be omitted:

 Syntax
typedef marray

< typeName >

marrayName;

 Example
typedef set <GreyImage> GreySet;

It is recommended to use unbounded arrays with extreme care - all range
checking is disabled, and structures may be created in the database
which your (or your colleagues’) applications don’t expect.

4.3.3 Collection Type Definition
An array collection type is defined with the array type as parameter. A
collection of such a type can contain an arbitrary number of arrays
whereby each of these must conform with the array type indicated.

 Syntax
typedef set < marrayName > setName;

4.3.4 Comments in Type Definitions
Comments are texts which are not evaluated by rasdaman in any way.
However, they are useful - and should be used freely - for documentation
purposes so that the defined type's meaning will be unambiguously clear
to later readers.

 Syntax
// any text, delimited by end of line

 Example
typedef struct

{ char red, // red channel of color image

 green, // green channel of color image

 blue; // blue channel of color image

} RGBPixel; // 3 x 8bit color pixels

 rasdaman Query Language Guide

 p. 24

4.4 Sample Database Type Definitions

The following definitions describe the three sample collections introduced
earlier.

Collections mr and mr2 share the same structure definition, namely
256x211 8-bit grayscale images. As we don't want to restrict ourselves to
a particular image size, we just define the image type as being 2-
dimensional. The following fragment accomplishes this.

typedef marray <char, 2> GreyImage;

typedef set <GreyImage> GreySet;

Equivalently, but more verbosely, we could have specified the image type
as

typedef marray <char,[*:*, *:*]> GreyImage;

The last example defines sets of RGB images. The first line defines the
cell type as a struct containing three single-byte components. The next
line defines an RGBImage as a 2-dimensional array of size 800x600 over
base type RGBPixel. The last line defines a set of RGB images.

struct RGBPixel { char red, green, blue; };

typedef marray <RGBPixel,[0:799, 0:599]> RGBImage;

typedef set <RGBImage> RGBSet;

4.5 Deleting Types and Databases

For deleting a type or a whole database the rasdl –delX command family
is provided where X is one of database, basetype, mddtype, or settype:

--deldatabase db delete database db3

--delbasetype type delete base type type from database

--delmddtype type delete MDD type type from database

--delsettype type delete set (collection) type type

 Important Note
Extreme care must be exercised on database and type maintenance.
Deleting a database cannot be undone, and deleting a type still used in
the database (i.e., which is needed to describe existing MDD objects) may
make it impossible to access these database objects any more.

In general, database administration should be reserved to few persons, all
of which should have high familiarity with the operating system, the
relational database system, and the rasdaman system.

3 dependent on the relational base DBMS used; please consult the
External Products Integration Guide for your environment.

 rasdaman Query Language Guide

 p. 25

 Example
The following Unix command line will delete the definition of set type
MyCollectionType from database RASBASE; it is the responsibility of the
rasdl user (i.e., the database administrator) to ensure that no instances
of this set definition exist in the database.

rasdl --database RASBASE -–delsettype MyCollectionType

4.6 rasdl Invocation

As outlined, the rasdl processor reads the specified rasdl source file,
imports the schema information into the database, and generates a
corresponding C++ header file. A rasdl source file has to be self-
contained, i.e., only types which are defined in the same file are allowed to
be used for definitions. Types must be defined before use.

Usage:

rasdl [options]

Options:

--database db name of database
 (default: RASBASE)

--connect c connect string for base DBMS connection
 (default: /)

-c, --createdatabase dbname

 create database with name dbname and
 initialize it with the standard schema

--deldatabase db

 delete database db

--delbasetype type

 delete base type type from database

--delmddtype type

 delete MDD type type from database

--delsettype type

 delete set (collection) type type
 from database

-h, --help help: display invocation syntax

--connect connectstr

 connect string for underlying database
 (e.g. test/test@julep)
 default: /

-p, --print db print all data type definitions in database db

-r, --read file read rasdl commands from file file

 rasdaman Query Language Guide

 p. 26

-i, --insert insert types into database
 (-r required)

--hh file generate C++ header file file
 (-r required)

 Notes
Right now, rasdl is a server-based utility, which means it must be
invoced on the machine where the rasdaman server runs. This limitation
will be overcome in future versions.

The –c option for database creation is dependent on the base DBMS used
– some systems do, a very few don’t allow database creation through
rasdl. Please refer to the External Product Integration Guide for
limitations due to the respective base DBMS.

4.7 Examples

Default database name is RASBASE. It depends upon the base DBMS
whether upper and lower case are distinguished (usually they are not).

 Create Database
A new database is created through

rasdl -c

An error message is issued and the operation is aborted if the database
exists already.

 Delete Database
An existing database is deleted through

rasdl --deldatabase

All contents will be lost irretrievably. All space in the base DBMS is
released, all tables (including rasdaman system tables) are removed.

Read Type Definition File
A type definition file named myfile are read into the database through

rasdl –r myfile –i

In particular, the standard types must be read in as part of the database
creation process:

rasdl –r ~rasdaman/examples/rasdl/basictypes.dl –i

 Print All Types
An overview on all rasdaman types defined is printed through

rasdl -p

 rasdaman Query Language Guide

 p. 27

5 Query Execution with rasql

The rasdaman toolkit offers essentially three ways to communicate with a
database through queries:

• By writing a C++ or Java application that uses the rasdaman APIs,
raslib or rasj, resp. (see the rasdaman API guides).

• By writing queries using the GUI-based rview tool which allows to
visualize results in a large variety of display modes (see the rasdaman
rview Guide).

• By submitting queries via command line using rasql; this tool is
covered in this section.

The rasql tool accepts a query string (which can be parametrised as
explained in the API guides), sends it to the server for evaluation, and
receives the result set. Results can be displayed in alphanumeric mode,
or they can be stored in files.

 rasdaman Query Language Guide

 p. 28

5.1 Examples

For the user who is familiar with command line tools in general and the
rasql query language, we give a brief introduction by way of examples.
They outline the basic principles through common tasks.

• Create a collection test of type GreySet (note the explicit setting of
user rasadmin; rasql’s default user rasguest by default cannot write):

rasql –q “create collection test GreySet” \

 --user rasadmin --passwd rasadamin

• Print the names of all existing collections:

rasql –q “select r from RAS_COLLECTIONNAMES as r” \

 --out string

• Export demo collection mr into TIFF files rasql_1.tif, rasql_2.tif,
rasql_3.tif:

rasql –q “select tiff(m) from mr as m” --out file

• Import TIFF file myfile into collection mr as new image (note the
different query string delimiters to preserve the $ character!):

rasql –q ‘insert into mr values $1’ –f myfile \

 --user rasadmin --passwd rasadamin

• Put a grey square into every mr image:

rasql –q “update mr as m set m[0:10,0:10] \

 assign marray x in [0:10,0:10] values 127c” \

 --user rasadmin --passwd rasadamin

• Verify result of update query by displaying pixel values as hex
numbers:

rasql –q “select m[0:10,0:10] from mr as m” --out hex

5.2 Rasql Invocation

Rasql is invoked as a command with the query string as parameter.
Additional parameters guide detailed behavior, such as authentication and
result display.

Any errors or other diagnostic output encountered are printed;
transactions are aborted upon errors.

Usage:

rasql [--query q|-q q] [options]

Options:

-h, --help show command line switches

-q, --query q query string to be sent to the rasdaman server
for execution

 rasdaman Query Language Guide

 p. 29

-f, --file f file name for upload through $i parameters within
queries; each $i needs its own file parameter, in
proper sequence4. Requires --mdddomain and --
mddtype

--content display result, if any (see also --out and --type for
output formatting)

--out t use display method t for cell values of result MDDs
where t is one of

none do not display result item contents

file write each result MDD into a
separate file

string print result MDD contents as char
string (only for 1D arrays of type char)

hex print result MDD cells as a sequence
of space-separated hex values

formatted reserved, not yet supported

Option --out implies --content; default: none

--outfile of file name template for storing result images (ignored
for scalar results). Use '%d' to indicate auto numbering
position, like with printf(1). For well-known file types, a
proper suffix is appended to the resulting file name.
Implies --out file. (default: rasql_%d)

--mdddomain d MDD domain, format: '[x0:x1,y0:y1]'; required
only if --file specified and file is in data format
r_Array; if input file format is some standard data
exchange format and the query uses a convertor, such
as inv_tiff($1), then domain information can be
obtained from the file header.

--mddtype t input MDD type (must be a type defined in the
database); required only if --file specified and file is
in data format r_Array; if input file format is some
standard data exchange format and the query uses a
convertor, such as inv_tiff($1), then type
information can be obtained from the file header.

--type display type information for results

-s, --server h rasdaman server name or address

(default: localhost)

-p, --port p rasdaman port number (default: 7001)

-d, --database db

4 Currently only one –f argument is supported (i.e., only $1).

 rasdaman Query Language Guide

 p. 30

 name of database (default: RASBASE)

--user u name of user (default: rasguest)

--passwd p password of user (default: rasguest)

 rasdaman Query Language Guide

 p. 31

6 Overview: General Query Format

6.1 Basic Query Mechanism

rasml provides declarative query functionality on collections (i.e., sets) of
MDD stored in a rasdaman database. The query language is based on the
SQL-92 standard and extends the language with high-level
multidimensional operators.

The general query structure is best explained by means of an example.
Consider the following query:

select mr[100:150,40:80] / 2

from mr

where some_cells(mr[120:160, 55:75] > 250)

In the from clause, mr is specified as the working collection on which all
evaluation will take place. This name, which serves as an “iterator
variable” over this collection, can be used in other parts of the query for
referencing the particular collection element under inspection.

 rasdaman Query Language Guide

 p. 32

Optionally, an alias name can be given to the collection (see syntax
below) – however, in most cases this is not necessary.

In the where clause, a condition is phrased. Each collection element in
turn is probed, and upon fulfillment of the condition the item is added to
the query result set. In the example query, part of the image is tested
against a threshold value.

Elements in the query result set, finally, can be "post-processed" in the
select clause by applying further operations. In the case on hand, a
spatial extraction is done combined with an intensity reduction on the
extracted image part.

In summary, a rasql query returns a set fulfilling some search condition
just as is the case with conventional SQL and OQL. The difference lies in
the operations which are available in the select and where clause: SQL
does not support expressions containing multidimensional operators,
whereas rasql does.

 Syntax
select resultList

from collName [as collIterator]

 [, collName [as collIterator]] ...

[where booleanExpr]

Further information on rasql statements is provided in Section 10. The
complete query syntax can be found in the Appendix.

6.2 Select Clause: Result Preparation

Type and format of the query result are specified in the select part of the
query. The query result type can be multidimensional, a struct, or atomic
(i.e., scalar). The select clause can reference the collection iteration
variable defined in the from clause; each array in the collection will be
assigned to this iteration variable successively.

 Example
Images from collection mr, with pixel intensity reduced by a factor 2:

select mr / 2

from mr

6.3 From Clause: Collection Specification

In the from clause, the list of collections to be inspected is specified,
optionally together with a variable name which is associated to each
collection. For query evaluation the cross product between all participating
collections is built which means that every possible combination of

 rasdaman Query Language Guide

 p. 33

elements from all collections is evaluated. For instance in case of two
collections, each MDD of the first collection is combined with each MDD of
the second collection. Hence, combining a collection with n elements with
a collection containing m elements results in n*m combinations. This is
important for estimating query response time.

 Example
The following example subtracts each MDD of collection mr2 from each
MDD of collection mr (the binary induced operation used in this example is
explained in Section 9.3.2).

select mr – mr2

from mr, mr2

Using alias variables a and b bound to collections mr and mr2, resp., the
same query looks as follows:

select a – b

from mr as a, mr2 as b

 Cross products
As in SQL, multiple collections in a from clause such as

from c1, c2, …, ck

are evaluated to a cross product. This means that the select clause is
evaluated for a virtual collection that has n1 * n2 * … * nk elements if c1
contains n1 elements, c2 contains n2 elements, and so forth.

Warning:
This holds regardless of the select expression – even if you mention
only say c1 in the select clause, the number of result elements will be
the product of all collection sizes!

6.4 Where Clause: Conditions

In the where clause, conditions are specified which members of the query
result set must fulfil. Like in SQL, predicates are built as boolean
expressions using comparison, parenthesis, functions, etc. Unlike SQL,
however, rasql offers mechanisms to express selection criteria on
multidimensional items.

 Example
We want to restrict the previous result to those images where at least one
difference pixel value is greater than 50 (see Section 9.3.2):

 rasdaman Query Language Guide

 p. 34

select mr – mr2

from mr, mr2

where some_cells(mr – mr2 > 50)

6.5 Comments in Queries

Comments are texts which are not evaluated by the rasdaman server in
any way. However, they are useful - and should be used freely - for
documentation purposes; in particular for stored queries it is important that
its meaning will be unambiguously clear to later readers.

 Syntax
-- any text, delimited by end of line

 Example
select mr -- this comment text is ignored by rasdaman

from mr -- for comments spanning several lines,

 -- every line needs a separate '--' starter

 rasdaman Query Language Guide

 p. 35

7 Constants

7.1 Atomic Constants

Atomic constants are written in standard C/C++ style. If necessary con-
stants are augmented with a one or two letter postfix to unambiguously
determine its data type.

The default for integer constants is 'L', for floats it is 'F'. Specifiers are
case insensitive.

 Example
25c

-1700L

.4e-5D

 Note
Boolean constants true and false are unique, so they do not need a
length specifier.

 rasdaman Query Language Guide

 p. 36

postfix char type

c char

o octet

s short

us unsigned short

l long

ul unsigned long

f float

d double

Table 2 Data type specifiers

7.2 Composite Constants

Composite constants resemble records ("structs") over atomic constants
or other records. Notation is as follows.

 Syntax
struct

{ const_0,

 ...

 const_n

}

where const_i can be atomic or a struct again.

 Example
struct{ struct{ 1l, 2l, 3l }, true }

 Complex numbers
Special built-in structs are complex and complexd for single and double
precision complex numbers, resp. The constructor is defined by

 Syntax
complex(re, im)

where re and im are floating point expressions. The resulting complex
constant is of type complexd if at least one of the constituent expressions
is double precision, otherwise the result is of type complex.

 rasdaman Query Language Guide

 p. 37

 Example
complex(.35, 16.0d)

 Component access
See Section 9.2.5 for details on how to extract the constituents from a
composite value.

7.3 Array Constants

Small array constants can be indicated literally (see Section 7.3 for a way
to describe large array constants). An array constant consists of the
spatial domain specification (see Section 9.1) followed by the cell values
whereby value sequencing is as follow. The array is linearised in a way
that the lowest dimension5 is the "outermost" dimension and the highest
dimension6 is the "innermost" one. Within each dimension, elements are
listed sequentially, starting with the lower bound and proceeding until the
upper bound. List elements for the innermost dimension are separated by
comma ",", all others by semicolon ";".

The exact number of values as specified in the leading spatial domain
expression must be provided. All constants must have the same type; this
will be the result array's base type.

 Syntax
< mintervalExpr

 scalarList_0 ;

 ... ;

 scalarList_n ;

>

where scalarList is defined as a comma separated list of literals:

scalar_0, scalar_1,... ;

 Example
< [-1:1,-2:2] 0, 1, 2, 3, 4; 1, 2, 3, 4, 5; 2, 3, 4, 5, 6 >

The constant defines the following matrix with cell type long:

5 the dimension which is the leftmost in the spatial domain specification
6 the dimension which is the rightmost in the spatial domain specification

















65432
54321
43210

 rasdaman Query Language Guide

 p. 38

7.4 Object Identifier (OID) Constants

OIDs serve to uniquely identify arrays (see Section 13). Within a
database, the OID of an array is an integer number. To use an OID
outside the context of a particular database, it must be fully qualified with
the system name where the database resides, the name of the database
containing the array, and the local array OID.

The worldwide unique array identifiers, i.e., OIDs, consist of three
components:

• A string containing the system where the database resides (system
name),

• A string containing the database (base name), and

• A string containing the local object id within the database.

The full OID is enclosed in '<' and '>' characters, the three name com-
ponents are separated by a vertical bar '|'. System and database names
obey the naming rules of the underlying operating system and base
DBMS, i.e., usually they are made up of lower and upper case characters,
underscores, and digits. Any additional white space (space, tab, or
newline characters) inbetween is assumed to be part of the name, so this
should be avoided. The local OID is an integer number.

 Syntax
< systemName | baseName | objectID >

integerExpr

where systemName and baseName are string literals and objectID is an
integerExpr.

 Example
< mySun | Demobase | 2305 >

42

7.5 Collection Names

Collections are named containers for sets of MDD objects (see Section
13). A collection name is made up of lower and upper case characters,
underscores, and digits. Depending on the underlying base DBMS, names
may be limited in length, and some systems (rare though) may not
distinguish upper and lower case letters. Please refer to the rasdaman
External Products Integration Guide for details on your particular platform.

Operations available on name constants are string equality "=" and
inequality "=!".

 rasdaman Query Language Guide

 p. 39

8 Spatial Domain Operations

8.1 One-Dimensional Intervals

One-dimensional (1D) intervals describe non-empty, consecutive sets of
integer numbers, described by integer-valued lower and upper bound,
resp.; negative values are admissible for both bounds. Intervals are
specified by indicating lower and upper bound through integer-valued
expressions according to the following syntax:

The lower and upper bounds of an interval can be extracted using the
functions .lo and .hi.

 Syntax
integerExpr_1 : integerExpr_2

intervalExpr.lo

intervalExpr.hi

A one-dimensional interval with integerExpr_1 as lower bound and
integerExpr_2 as upper bound is constructed. The lower bound must be

 rasdaman Query Language Guide

 p. 40

less or equal to the upper bound. Lower and upper bound extractors
return the integer-valued bounds.

 Examples
An interval ranging from -17 up to 245 is written as

-17 : 245

Conversely, the following expression evaluates to 245; note the
parenthesis to enforce the desired evaluation sequence:

(-17 : 245).hi

8.2 Multidimensional Intervals

Multidimensional intervals (m-intervals) describe areas in space, or better
said: point sets. These point sets form rectangular and axis-parallel
"cubes" of some dimension. An m-interval's dimension is given by the
number of 1D intervals it needs to be described; the bounds of the "cube"
are indicated by the lower and upper bound of the respective 1D interval
in each dimension.

From an m-interval, the intervals describing a particular dimension can be
extracted by indexing the m-interval with the number of the desired
dimension using the operator [].

Dimension counting in an m-interval expression runs from left to
right, starting with lowest dimension number 0.

 Syntax
[intervalExpr_0, ..., intervalExpr_n]

[intervalExpr_0, ..., intervalExpr_n] [integerExpr]

An n-dimensional m-interval with the specified intervalExpr_i is built
where the first dimension is described by intervalExpr_0, etc., until the
last dimension described by intervalExpr_n.

 Example
A 2-dimensional m-interval ranging from -17 to 245 in dimension 1 and
from 42 to 227 in dimension 2 can be denoted as

[-17 : 245, 42 : 227]

The expression below evaluates to [42:227].

[-17 : 245, 42 : 227] [1]

...whereas here the result is 42:

[-17 : 245, 42 : 227] [1].lo

 rasdaman Query Language Guide

 p. 41

9 Array Operations

As we have seen in the last Section, intervals and m-intervals describe n-
dimensional regions in space.

Next, we are going to place information into the regular grid established by
the m-intervals so that, at the position of every integer-valued coordinate,
a value can be stored. Each such value container addressed by an n-
dimensional coordinate will be referred to as a cell. The set of all the cells
described by a particular m-interval and with cells over a particular base
type, then, forms the array.

As before with intervals, we introduce means to describe arrays through
expressions, i.e., to derive new arrays from existing ones. Such
operations can change an arrays shape and dimension (sometimes called
geometric operations), or the cell values (referred to as value-changing
operations), or both. In extreme cases, both array dimension, size, and
base type can change completely, for example in the case of a histogram
computation.

First, we describe the means to query and manipulate an array's spatial
domain (so-called geometric operations), then we introduce the means to
query and manipulate an array's cell values (value-changing operations).

 rasdaman Query Language Guide

 p. 42

Note that some operations are restricted in the operand domains they
accept, as is common in arithmetics in programming languages; division
by zero is a common example. Section 10 contains information about
possible error conditions, how to deal with them, and how to prevent them.

9.1 Spatial Domain

The m-interval covered by an array is called the array's spatial domain.
Function sdom() allows to retrieve an array's current spatial domain. The
current domain of an array is the minimal axis-parallel bounding box
containing all currently defined cells.

As arrays can have variable bounds according to their type definition (see
Section 4.3.2), their spatial domain cannot always be determined from the
schema information, but must be recorded individually by the database
system. In case of a fixed-size array, this will coincide with the schema
information, in case of a variable-size array it delivers the spatial domain
to which the array has been set. The operators presented below and in
Section 12.4 allow to change an array's spatial domain. Notably, a
collection defined over variable-size arrays can hold arrays which, at a
given moment in time, may differ in the lower and/or upper bounds of their
variable dimensions.

 Syntax
sdom(mddExpr)

Function sdom() evaluates to the current spatial domain of mddExpr.

 Examples
Consider an image a of collection mr. Elements from this collection are
defined as having free bounds, but in practice our collection elements all
have spatial domain [0:255, 0:210]. Then, the following equivalences
hold:

sdom(a) = [0:255,0:210]

sdom(a)[0] = [0:255]

sdom(a)[0].lo = 0

sdom(a)[0].hi = 255

9.2 Geometric Operations

9.2.1 Trimming
Reducing the spatial domain of an array while leaving the cell values
unchanged is called trimming. Array dimension remains unchanged.

 rasdaman Query Language Guide

 p. 43

Figure 8 Spatial domain modification through trimming (2-D
example)

The generalized trim operator allows restriction, extension, and a
combination of both operations in a shorthand syntax. This operator does
not check for proper subsetting or supersetting of the domain modifier.

 Syntax
mddExpr[mintervalExpr]

 Examples
The following query returns cutouts from the area [120:160,55:75] of all
images in collection mr. (see Figure 9).

select mr[120:160, 55:75]

from mr

Figure 9 Trimming result

9.2.2 Section
A section allows to extract lower-dimensional layers ("slices") from an
array.

Figure 10 Single and double section through
3-D array, yielding 2-D and 1-D sections.

A section is accomplished through a trim expression by indicating the
slicing position rather than a selection interval. A section can be made in
any dimension within a trim expression. Each section reduces the
dimension by one.

 Syntax

original domain

modified domain

 rasdaman Query Language Guide

 p. 44

mddExpr [integerExpr_0, ..., integerExpr_n]

This makes sections through mddExpr at positions integerExpr_i for
each dimension i.

 Example
The following query produces a 2-D section in the 2nd dimension of a 3-D
cube:

select Images3D[0:256, 10, 0:256]

from Images3D

 Note
If a section is done in every dimension of an array, the result is one single
cell. This special case resembles array element access in programming
languages, e.g., C/C++. However, in rasql the result still is an array,
namely one with zero dimensions and exactly one element.

 Example
The following query delivers a set of 0-D arrays containing single pixels,
namely the ones with coordinate [100,150]:

select mr[100, 150]

from mr

9.2.3 The Array Bound Wildcard Operator "*"
An asterisk "*" can be used as a shorthand for an sdom() invocation in a
trim expression; the following phrases all are equivalent:

a[*:*, *:*] = a[sdom(a)[0], sdom(a)[1]]

 = a[sdom(a)[0].lo : sdom(a)[0].hi,

 sdom(a)[1].lo : sdom(a)[1].hi]

An asterisk "*" can appear at any lower or upper bound position within a
trim expression denoting the current spatial domain boundary. A trim
expression can contain an arbitrary number of such wildcards. Note,
however, that an asterisk cannot be used for specifying a section.

 Example
The following are valid applications of the asterisk operator:

select mr[50:*, *:200]

from mr

select mr[*:*, 10:150]

from mr

The next is illegal because it attempts to use an asterisk in a section:

 rasdaman Query Language Guide

 p. 45

select mr[*, 100:200] -- illegal "*" usage in dimension 0

from mr

 Note
It is well possible (and often recommended) to use an array's spatial
domain or part of it for query formulation; this makes the query more
general and, hence, allows to establish query libraries. The following
query cuts away the rightmost pixel line from the images:

select mr[*:*, *:sdom(a)[1].hi - 1] -– good, portable

from mr

In the next example, conversely, trim bounds are written explicitly; this
query's trim expression, therefore, cannot be used with any other array
type.

select mr[0:767, 0:1023] -- bad because not portable

from mr

One might get the idea that the last query evaluates faster. This, however,
is not the case; the server's intelligent query engine makes the first
version execute at just the same speed.

9.2.4 Shifting a Spatial Domain
Built-in function shift() transposes an array: its spatial domain remains
unchanged in shape, but all cell contents simultaneously are moved to
another location in n-dimensional space. Cell values themselves remain
unchanged.

 Syntax
shift(mddExpr, pointExpr)

The function accepts an mddExpr and a pointExpr and returns an array
whose spatial domain is shifted by vector pointExpr.

 Example
The following expression evaluates to an array with spatial domain
[3:13,4:24]. Containing the same values as the original array a.

shift(a[0:10, 0:20], [3, 4])

9.2.5 Extending a Spatial Domain
Function extend() enlarges a given MDD with the domain specified. The
domain for extending must, for every boundary element, be at least as
large as the MDD’s domain boundary. The new MDD contains null values
in the extended part of its domain and the MDD’s original cell values
within the MDD’s domain.

 Syntax

 rasdaman Query Language Guide

 p. 46

extend(mddExpr, mintervalExpr)

The function accepts an mddExpr and a mintervalExpr and returns an
array whose spatial domain is extended to the new domain specified by
mintervalExpr, with mddExpr‘s values in its domain and null values
elsewhere. The result MDD has the same cell type as the input MDD.

Precondition:

sdom(mddExpr) contained in mintervalExpr

 Example
Assuming that MDD a has a spatial domain of [0:50,0:25], the following
expression evaluates to an array with spatial domain [-100:100,-
50:50], a’s values in the subdomain [0:50,0:25], and null values at the
remaining cell positions.

extend(a, [-100:100,-50:50])

9.3 Induced Operations

Induced operations allow to simultaneously apply a function originally
working on a single cell value to all cells of an MDD. The result MDD has
the same spatial domain, but can change its base type.

 Examples
img.green + 5 c

This expression selects component named “green” from an RGB image
and adds 5 (of type char, i.e., 8 bit) to every pixel.

img1 + img2

This performs pixelwise addition of two images (which must be of equal
spatial domain).

 Induction and structs
Whenever induced operations are applied to a composite cell structure
(“structs” in C/C++), then the induced operation is executed on every
structure component. If some cell structure component turns out to be of
an incompatible type, then the operation as a whole aborts with an error.

For example, a constant can be added simultaneously to all components
of an RGB image:

select rgb + 5

from rgb

 Induction and complex
Complex numbers, which actually form a composite type supported as a
base type, can be accessed with the record component names re and im
for the real and the imaginary part, resp.

 rasdaman Query Language Guide

 p. 47

 Example
The first expression below extracts the real component, the second one
the imaginary part from a complex number c:

c.re

c.im

9.3.1 Unary Induction
Unary induction means that only one array operand is involved in the
expression. Two situations can occur: Either the operation is unary by
nature (such as boolean not); then, this operation is applied to each array
cell. Or the induce operation combines a single value (scalar) with the
array; then, the contents of each cell is combined with the scalar value.

In any case, sequence of iteration through the array for cell inspection is
chosen by the database server (which heavily uses reordering for query
optimisation) and not known to the user.

 Syntax
mddExpr binaryOp scalarExpr

scalarExpr binaryOp mddExpr

unaryOp mddExpr

 Example
The red images of collection rgb with all pixel values multiplied by 2:

select rgb.red * 2c

from rgb

Note that the constant is marked as being of type char so that the result of
the two char types again will yield a char result (8 bit per pixel). Omitting
the "c" would lead to an addition of long integer and char, the result being
long integer with 32 bit per pixel. Although pixel values obviously are the
same in both cases, the second alternative requires four times the
memory space.

9.3.2 Binary Induction
Binary induction means that two arrays are combined.

 Syntax
mddExpr binaryOp mddExpr

The difference between the images in the mr collection and the image in
the mr2 collection:

select mr – mr2

from mr, mr2

 Note
As in the previous Section, two cases have to be distinguished:

 rasdaman Query Language Guide

 p. 48

• Both left hand array expression and right hand array expression
operate on the same array, for example:

select rgb.red - rgb.green

from rgb

In this case, the expression is evaluated by combining, for each
coordinate position, the respective cell values from the left hand and
right hand side.

• Left hand array expression and right hand array expression operate on
different arrays, for example:

select mr – mr2

from mr, mr2

This situation specifies a cross product between the two collections
involved. During evaluation, each array from the first collection is
combined with each member of the second collection. Every such pair
of arrays then is processed as described above.

Obviously the second case can become computationally very
expensive, depending on the size of the collections involved - if the two
collections contain n and m members, resp., then n*m combinations
have to be evaluated.

9.3.3 Struct Component Selection
Component selection from a composite value is done with the dot operator
well-known from programming languages. The argument can either be a
number (starting with 0) or the struct element name. Both statements of
the following example would select the green plane of the sample RGB
image.

 Syntax
mddExpr . attrName

mddExpr . intExpr

 Examples
select rgb.green

from rgb

select rgb.1

from rgb

 rasdaman Query Language Guide

 p. 49

Figure 11 RGB image and green component

 Note
Aside of operations involving base types such as integer and boolean,
combination of complex base types (structs) with scalar values are
supported. In this case, the operation is applied to each element of the
structure in turn. Both operands then have to be of exactly the same type,
which further must be the same for all components of the struct.

 Examples
The following expression reduces contrast of a color image in its red,
green, and blue channel simultaneously:

select rgb / 2c

from rgb

An advanced example is to use image properties for masking areas in this
image. In the query below, this is done by searching pixels which are
"sufficiently green" by imposing a lower bound on the green intensity and
upper bounds on the red and blue intensity. The resulting boolean matrix
is multiplied with the original image (i.e., componentwise with the red,
green, and blue pixel component); the final image, then, shows the
original pixel value where green prevails and is {0,0,0} (i.e., black)
otherwise (Figure 12)

select rgb * ((rgb.green > 130c) and

 (rgb.red < 110c) and

 (rgb.blue < 140c))

from rgb

 Note
This mixing of boolean and integer is possible because the usual C/C++
interpretation of true as 1 and false as 0 is supported by rasql.

 rasdaman Query Language Guide

 p. 50

Figure 12 Suppressing "non-green" areas

9.3.4 Induction: All Operations
Below is a complete listing of all cell level operations that can be induced,
both unary and binary.

If two different data types are involved, the result will be of the more
general type; e.g., float and integer addition will yield a float result.

is, and, or, xor, not

For each cell within some Boolean MDD (or evaluated MDD expression),
combine it with the second MDD argument using the logical operation and,
or, or xor. The is operation is equivalent to == (see below). The
signature of the binary induced operation is

is, and, or, xor: mddExpr, intExpr -> mddExpr

Unary function not negates each cell value in the MDD.

 +, -, *, /

For each cell within some MDD value (or evaluated MDD expression), add
it with the corresponding cell of the second MDD parameter. For example,
this code adds two (equally sized) images:

img1 + img2

As usual, these arithmetic operations are overloaded to expect mddExpr
as well as numExpr, integer as well as float numbers, and single precision
as well as double precision values.

 ==, <, >, <=; >=, !=
For two MDD values (or evaluated MDD expressions), compare for each
coordinate the corresponding cells to obtain the Boolean result indicated
by the operation.

Note that comparison works on all atomic cell types. On composite types,
only == and != make sense with the meaning that, for two cells with
identical structure, all components undergo a pairwise comparison.

 bit(mdd,pos)

For each cell within MDD value (or evaluated MDD expression) mdd, take
the bit with nonnegative position number pos and put it as a Boolean

 rasdaman Query Language Guide

 p. 51

value into a byte. Position counting starts with 0 and runs from least to
most significant bit. The bit operation signature is

bit: mddExpr, intExpr -> mddExpr

In C/C++ style,

 bit(mdd,pos)

is equivalent to

 mdd >> pos & 1

 Overlay
The overlay operator allows to combine two equally sized MDDs by
placing the second one “on top” of the first one, informally speaking.
Formally, overlaying is done in the following way:

• wherever the second operand’s cell value is non-zero7, the result value
will be this value.

• wherever the second operand’s cell value is zero, the first argument’s
cell value will be taken.

This way stacking of layers can be accomplished, e.g., in geographic
applications. Consider the following example:

ortho overlay tk.water overlay tk.streets

When displayed the resulting image will have streets on top, followed by
water, and at the bottom there is the ortho photo.

Strictly speaking, the overlay operator is not atomic. Expression

 a overlay b

is equivalent to

 (b != 0) * b + (b == 0) * a

However, on the server the overlay operator is executed more efficiently
than the above expression.

 Trigonometric and
 exponential functions

The following advanced arithmetic functions are available, with the
obvious meaning:

7 Null means a numerical value of 0 (zero).

 rasdaman Query Language Guide

 p. 52

sqrt()

abs()

exp() log() ln()

sin() cos() tan()

sinh() cosh() tanh()

arcsin() arccos() arctan()

 cast

Sometimes the desired ultimate scalar type or MDD cell type is different
from what the MDD expression would suggest. To this end, the result type
can be enforced explicitly through the cast operator.

The syntax is:

(newType) generalExpr

where newType is the desired result type of expression generalExpr.

Like in programming languages, the cast operator converts the result to
the desired type if this is possible at all. For example, the following scalar
expression, without cast, would return a double precision float value; the
cast makes it a single precision value:

(float) avg_cells(mr)

Both scalar values and MDD can be cast; in the latter case, the cast
operator is applied to each cell of the MDD yielding an array over the
indicated type.

The cast operator also works properly on recursively nested cell
structures. In such a case, the cast type is applied to every component of
the cell. For example, the following expression converts the pixel type of
an (3x8 bit) RGB image to an image where each cell is a structure with
three long components:

(long) rgb

Obviously in the result structure all components will bear the same type.

 Restrictions
Currently only base types are permitted as cast result types, it is not
possible to cast to a struct or complex type, e.g.

(RGBPixel) rgb -- illegal

On base type complex, only the following operations are available right
now:

+ - * /

9.4 Scaling

Shorthand functions are available to scale multidimensional objects. They
receive an array as parameter, plus a scale factor. In the most common

 rasdaman Query Language Guide

 p. 53

case, the scaling factor is an integer or float number. This factor then is
applied to all dimensions homogeneously. For a scaling with individual
factors for each dimension, a scaling vector can be supplied which, for
each dimension, contains the resp. scale factor.

 Syntax
scale(mddExpr, intExpr)

scale(mddExpr, floatExpr)

scale(mddExpr, intVector)

 Examples
The following example returns all images of collection mr where each
image has been scaled down by a factor of 2.

select scale(mr, 0.5)

from mr

Next, mr images are enlarged by 4 in the first dimension and 3 in the
second dimension:

select scale(mr, [4, 3])

from mr

 Note
Function scale() breaks tile streaming, it needs to load all tiles affected
into server main memory. In other words, the source argument of the
function must fit into server main memory. Consequently, it is not
advisable to use this function on very large items.

9.5 Condensers

Frequently summary information of some kind is required about some
array, such as sum or average of cell values. To accomplish this, rasql
provides the concept of condensers.

A condense operation (or short: condenser) takes an array and
summarizes its values using a summarization function.

A number of condensers is provided as rasql built-in function. For numeric
arrays, add_cells() delivers the sum and avg_cells() the average of
all cell values. Operators min_cells() and max_cells() return the
minimum and maximum, resp., of all cell values in the argument array. For
boolean arrays, the condenser count_cells() counts the cells
containing true. Finally, the some_cells() operation returns true if at
least one cell of the boolean MDD is true, all_cells() returns true if all
of the MDD cells contain true as value.

Please keep in mind that, depending on their nature, operations take a
boolean, numeric, or arbitrary mddExpr as argument.

 rasdaman Query Language Guide

 p. 54

 Syntax
count_cells(mddExpr)

add_cells(mddExpr)

avg_cells(mddExpr)

min_cells(mddExpr)

max_cells(mddExpr)

some_cells(mddExpr)

all_cells(mddExpr)

 Examples
The following example returns all images of collection mr where all pixel
values are greater than 20. Note that the induction ">20" generates a
boolean array which, then, can be collapsed into a single boolean value
by the condenser.

select mr

from mr

where all_cells(mr > 20)

The next example selects all images of collection mr with at least one pixel
value greater than 250 in the specified region [120:160, 55:75] (Figure
13).

select mr

from mr

where some_cells(mr[120:160, 55:75] > 250)

Figure 13 Query result of specific selection

9.6 General Array Condenser

All the condensers introduced above are special cases of a general
principle which is represented by the general condenser statement.

The general condense operation consolidates cell values of a
multidimensional array to a scalar value based on the condensing
operation indicated. It iterates over a spatial domain while combining the
result values of the cellExprs through the condenserFunction
indicated.

Condensers are heavily used in two situations:

 rasdaman Query Language Guide

 p. 55

• To collapse boolean arrays into scalar boolean values so that they can
be used in the where clause.

• In conjunction with the marray constructor (see next section) to phrase
high-level signal processing and statistical operations.

 Syntax
condense condenserOp

over var in mintervalExpr

using cellExpr

condense condenserOp

over var in mintervalExpr

where booleanExpr

using cellExpr

The mintervalExpr terms together span a multidimensional spatial
domain over which the condenser iterates. It visits each point in this space
exactly once, assigns the point's respective coordinates to the var
variables and evaluates cellExpr for the current point. The result values
are combined using condensing function condenserOp. Optionally, points
used for the aggregate can be filtered through a booleanExpr; in this
case, cellExpr will be evaluated only for those points where
booleanExpr is true, all others will not be regarded. Both booleanExpr
and cellExpr can contain occurrences of variables pointVar.

 Examples
condense +

over x in sdom(a)

using x[0] * a[x]

 Note
Definition of the specialized condensers in terms of the general condenser
statement is as follows:

Restriction
Currently condensers of any kind over cells of type complex are not
supported.

Array aggregate definition Meaning

add_cells(a) =

 condense +

 over x in sdom(a)

 using a[x]

sum over all cells in a

avg_cells(a) =

 sum_cells(a) / card(sdom(a))

Average of all cells in a

 rasdaman Query Language Guide

 p. 56

min_cells(a) =

 condense min

 over x in sdom(a)

 using a[x]

Minimum of all cells in a

max_cells(a) =

 condense max

 over x in sdom(a)

 using a[x]

Maximum of all cells in a

count_cells(b) =

 condense +

 over x in sdom(b)

 where b[x]

 using 1

Number of cells in b

some_cells(b) =

 condense or

 over x in sdom(b)

 using b[x]

is there any cell in b
with value true?

all_cells(b) =

 condense and

 over x in sdom(b)

 using b[x]

do all cells of b
have value true?

Table 3 Specialized condensers; a is a numeric, b a boolean array.

9.7 General Array Constructor

The marray constructor allows to create n-dimensional arrays with their
content defined by a general expression. This is useful

• whenever the array is too large to be described as a constant (see
Section 7.3) or

• when the array's cell values are derived from some other source, e.g.,
for a histogram computation (see examples below).

 Syntax
The basic shape of the marray construct is as follows.

marray var in mintervalExpr [, var in mintervalExpr]

values cellExpr

Iterator Variable Declaration
First, the constructor allocates an array in the server with the spatial
domain defined by the cross product of all mintervalExpr. For example,
the following defines a 2-D 5x10 matrix:

 rasdaman Query Language Guide

 p. 57

marray x in [1:5], y in [1:10]

values ...

The base type of the array is determined by the type of cellExpr.
Variable var can be of any number of dimensions.

 Iteration Expression
In the second step, the constructor iterates over the spatial domain
defined as described, successively evaluating cellExpr for each variable
combination; the result value is assigned to the cell with the coordinate
currently under evaluation. To this end, cellExpr can contain arbitrary
occurrences of var. The syntax for using a variable is:

• for a one-dimensional variable:

var

• for a higher-dimensional variable

var[index-expr]

where index-expr is a constant expression (no sdom() etc.!)
evaluating to a non-negative integer; this number indicates the variable
dimension to be used.

Figure 14 2-D array with values derived from first coordinate

 Examples
The following creates an array with spatial domain [1:100,-50:200] over
cell type char, each cell being initialized to 1.

marray x in [1:100, -50:200]

values 1c

In the next expression, cell values are dependent on the first coordinate
component (cf. Figure 14)

marray x in [0:255, 0:511]

values x[0]

The final two examples comprise a typical marray/condenser combination.
The first one takes a sales table and consolidates it from days to week per
product. Table structure is as given in Figure 15.

 rasdaman Query Language Guide

 p. 58

Figure 15 Sales table consolidation

select marray tab in [0:sdom(s)[0].hi/7, sdom(s)[1]]

 values condense +

 over day in [0:6]

 using s[day[0] + tab]*7, tab[1]]

from salestable as s

The last example computes histograms for the mr images. The query
creates a 1-D array ranging from 0 to 9 where each cell contains the
number of pixels in the image having the respective intensity value.

select marray v in [0: 9]

 values condense +

 over x in sdom(a)

 where mr[x] = v[0]

 using 1

from mr

 Shorthand
As a shorthand, variable var can be used without indexing; this is equi-
valent to var[0]:

marray x in [1:5]

values a[x] -- equivalent to a[x[0]]

 Many vs. One Variable
Obviously an expression containing several 1-D variables, such as:

marray x in [1:5], y in [1:10]

values a[x[0], y[0]]

can always be rewritten to an equivalent expression using one higher-
dimensional variable, for example:

Sales days

pr
od

uc
ts

Sales' weeks

pr
od

uc
ts

 rasdaman Query Language Guide

 p. 59

marray xy in [1:5, 1:10]

values a[xy[0], xy[1]]

Iteration Sequence Undefined
The sequence in which the array cells defined by an marray construct are
inspected is not defined. In fact, server optimisation will heavily make use
of reordering traversal sequence to achieve best performance.

A Note on Expressiveness and Performance
The general condenser and the array constructor together allow to
express a very broad range of signal processing and statistical operations.
In fact, all other rasql array operations can be expressed through them, for
example:

Specialized
operation

Specialized
constructor

Phrasing with marray

Trimming a[*:*, 50:100] marray x in sdom(a)

values a[x]

Section a[50, *:*] marray x in sdom(a)[1]

values a[50, x]

Induction a + b marray x in sdom(a)

values a[x] + b[x]

Table 4 Phrasing of Induction, Trimming, and Section via marray

Nevertheless, it is advisable to use the specialized operations whenever
possible; not only are they more handy and easier to read, but also
internally their processing has been optimized so that they execute
considerably faster than the general phrasing.

9.8 Data Exchange Format Conversion

Normally arrays are accepted and delivered in the client's main memory
format, regardless of the server architecture. Sometimes, however, it is
desirable to use some data exchange format - be it because some device
provides a data stream to be inserted in to the database in a particular
format, or be it a Web application where particular output formats have to
be used to conform with the respective standards.

To this end, rasql provides a series of data format converters (Table 5).
They are invoked as pairs of built-in functions X() and inv_X() which
convert to and from format X and the corresponding MDD.

 rasdaman Query Language Guide

 p. 60

Image format rasql conversion function Dimension

JPEG jpeg(), inv_jpeg() 2

PNG png(), inv_png() 2

TIFF tiff(), inv_tiff() 2

BMP bmp(), inv_bmp() 2

VFF vff(), inv_vff() 3

HDF 4 hdf(), inv_hdf() 2,3

DEM8 dem(), inv_dem() 2

TOR tor(), inv_tor() 2

Table 5 Data formats supported by rasql

 Syntax
dataFormatIdentifier(mddExpr)

dataFormatIdentifier(mddExpr, optionString)

inv_dataFormatIdentifier(tiffExpr)

Matching Dimensions and Data Types
For converting an MDD into a data format, the MDD type must match the
dimension and data type the image format can handle - it is mandatory
that the array to be transformed or generated conforms to the overall
structure supported by the particular data exchange format. For example,
TIFF can only handle 2-D arrays with a particular subset of supported cell
types.

Format Conversion Options
Additional header information (“tags” in TIFF, “chunks” in PNG, etc.) is set
to default values; some settings can be done via an optional parameter
string containing comma-separated “key=value” pairs. Table 6 lists the
options currently implemented.

8 Digital Elevation Model, i.e., an ASCII file containing lines with white-
space-separated x/y/z values per pixel; for 2-D data only.

 rasdaman Query Language Guide

 p. 61

Image format rasql conversion function9

JPEG quality=%i (default: 80)

PNG tRNS=%i

tRNS=(%i;%i;%i)

TIFF comptype=[none|ccittrle|ccittfax3|ccittfa
x4|lzw|ojpeg|jpeg|next|ccittrlew|packbits
|thunderscan|pixarfilm|pixarlog|deflate|d
cs|jbig]

quality=%i (default:80)

VFF dorder=[xy|yzx]

dimorder=[xy|yzx]

vffendian=[0|1]

HDF 4 comptype=[none|rle|huffman|deflate]

quality=%i (default: 80)

skiphuff=%i (default:0)

DEM10 flipx[0|1] (default: 0)

flipy=[0|1] (default: 1)

startx=%f

endx=%f

resx=%f

start=%f

endy=%f

resy=%f

TOR swapendianness=[0|1] (default: 0)

rescale=[0|1] (default: 0)

domain=[%i:%i,%i:%i]

Table 6 Data format options recognized by rasql
(see resp. data format specifications for details on their meaning)

9 Standard C/C++ notation is used to indicate parameter types: %i for
integer (decimal/octal/hex notation), %f for float numbers
10 Digital Elevation Model, i.e., an ASCII file containing lines with
whitespace-separated x/y/z values per pixel; for 2-D data only.

 rasdaman Query Language Guide

 p. 62

 Example
As an example, TIFF conversion is described here. rasql provides the
function tiff() which to generate TIFF encoding from 2-D arrays. The
inverse function is inv_tiff(). It takes an MDD in TIFF format as
argument and delivers an MDD.

The following query delivers the image contained in the rgb collection as a
PNG-encoded byte stream, with transparency set to color (0x77;0xd0;
0xf8):

select png(a, “tRNS=(0x77;0xd0;0xf8)”)

from rgb as a

Insertion of a PNG encoded image into this collection is done as follows
($1 represents the input byte stream, see Section 12.4):

insert into rgb

values inv_png($1)

9.9 Object Identifiers

The function oid() gives access to an array's object identifier (OID). It
returns the local OID of the database array. The input parameter must be
a variable associated with a collection, it cannot be an array expression.
The reason is that oid() can be applied to only to persistent arrays which
are stored in the database; it cannot be applied to query result arrays -
these are not stored in the database, hence do not have an OID.

 Syntax
oid(variable)

 Example
The following example retrieves the MDD object with local OID 10 of set
mr:

select mr

from mr

where oid(mr) == 10

The following example is incorrect as it tries to get an OID from a non-
persistent result array:

select oid(mr * 2) -- illegal example: no expressions

from mr

Fully specified external OIDs are inserted as strings surrounded by
brackets:

 rasdaman Query Language Guide

 p. 63

select mr

from mr

where oid(mr) == < mySun | DemoBase | 10 >

In that case, the specified system (system name where the database
server runs) and database must match the one used at query execution
time, otherwise query execution will result in an error.

9.10 Expressions

 Parentheses
All operators, constructors, and functions can be nested arbitrarily,
provided that each sub-expression's result type matches the required type
at the position where the sub-expression occurs. This holds without
limitation for all arithmetic, Boolean, and array-valued expressions.
Parentheses can (and should) be used freely if a particular desired
evaluation precedence is needed which does not follow the normal left-to-
right precedence.

 Example
select (rgb.red + rgb.green + rgb.blue) / 3c

from rgb

Operator Precedence Rules
Sometimes the evaluation sequence of expressions is ambiguous, and the
different evaluation alternatives have differing results. To resolve this, a
set of precedence rules is defined. You will find out that whenever
operators have their counterpart in programming languages, the
rasdaman precedence rules follow the same rules as are usual there.

Here the list of operators in descending strength of binding:

• dot ".", trimming, section

• unary –

• sqrt, sin, cos, and other unary arithmetic functions

• *, /

• +, -

• <, <=, >, >=, !=, =

• and

• or, xor

• ":" (interval constructor), condense, marray

• overlay

• In all remaining cases evaluation is done left to right.

 rasdaman Query Language Guide

 p. 64

10 Null Value Handling

Null values can mean many different things – for example, no value given
or value not known. For example, during piecewise import of satellite
images into a large map, there will be areas which are not written yet.
Actually, also after completely creating the map of, say, a country there
will be untouched areas, as normally no country has a rectangular shape
with axis-parallel boundaries.

rasdaman does not have a notion of distinct null values – every bit pattern
in the range of a numeric type can appear in the database, so no bit
pattern is left to represent “null”. If such a thing is desired, then the
database designer must provide a separate bit map indicating the status
for each cell.

To have a clear semantics, the following rule holds:

Uninitialized value handling
A cell value not yet addressed, but within the current domain of an MDD
has a value of zero by definition; this extends in the obvious manner to
composite cells.

 rasdaman Query Language Guide

 p. 65

 Remark
Note the limitation to the current domain of an MDD. While in the case of
an MDD with fixed boundaries this does not matter because always
definition domain = current domain, an MDD with variable boundaries can
grow and hence will have a varying current domain. Only cells inside the
current domain can be addressed, be they uninitialized/null or not;
addressing a cell outside the current domain will result in the
corresponding exception.

 rasdaman Query Language Guide

 p. 66

11 Arithmetic Errors and Other Exception Situations

During query execution, a number of situations can arise which prohibit to
deliver the desired query result or database update effect. If the server
detects such a situation, query execution is aborted, and an error
exception is thrown. In this Section, we classify the errors that occur and
describe each class.

However, we do not go into the details of handling such an exception –
this is the task of the application program, so we refer to the resp. API
Guides. For a complete list of all rasdaman error messages, see the Error
Messages Guide.

11.1 Overflow

 Candidates
Add_cells, induced operation such as +

 rasdaman Query Language Guide

 p. 67

 System Reaction
The overflow will be silently ignored, producing a result represented by the
bit pattern pruned to the available size. This is in coherence with overflow
handling in programming languages.

 Remedy
Query coding should avoid potential overflow situations by applying
numerical knowledge - simply said, the same care should be applied as
always when dealing with numerics.

 Example
Obtaining an 8-bit grey image from a 3*8-bit colour image through

(a.red + a.green + a.blue) / 3c

most likely will result in an overflow situation after the additions, and
scaling back by the division cannot remedy that. Better is to scale before
adding up:

a.red / 3c + a.green / 3c + a.blue / 3c

However, this may result in accuracy loss in the last bits. So the final
suggestion is to use a larger data type for the interim computation and
push back the result into an 8-bit integer:

(char) ((long)a.red + (long)a.green + (long)a.blue) / 3)

Obviously, this will be paid with some performance penalty due to the
more expensive long arithmetics. It is up to the application developer to
weight and decide.

11.2 Illegal operands

 Candidates
Division by zero, non-positive argument to logarithm, negative arguments
to the square root operator, etc. are the well-known candidates for
arithmetic exceptions.

 System Reaction
As specified in the C++ standard, the result of such an illegal operation is
nan (not a number) according to the IEEE floating point standard. Query
evaluation will continue, and a result will be returned to the client.

If nan values are sort of a problem for the application, then either operand
MDD objects have to be checked before applying the operation, or the
result MDD objects have to be looped through to replace each nan value
by some other application-chosen value.

 rasdaman Query Language Guide

 p. 68

 Remedy
Make sure that the operation receives valid input across all cells of the
MDD objects touched.

11.3 Access Rights Clash

If a database has been opened in read-only mode, a write operation will
be refused by the server; “write operation” meaning an insert, update, or
delete statement.

 rasdaman Query Language Guide

 p. 69

12 Database Retrieval and Manipulation

12.1 Collection Handling

12.1.1 Create A Collection
The create collection statement is used to create a new, empty MDD
collection by specifying its name and type. The type must exist in the
database schema. There must not be another collection in this database
bearing the name indicated.

 Syntax
create collection collName typeName

 Example
create collection mr GreySet

 rasdaman Query Language Guide

 p. 70

12.1.2 Drop A Collection
A database collection can be deleted using the drop collection
statement.

 Syntax
drop collection collName

 Example
drop collection mr1

12.1.3 Retrieve All Collection Names
With the following rasql statement, a list of the names of all collections
currently existing in the database is retrieved; both versions below are
equivalent:

select RAS_COLLECTIONNAMES

from RAS_COLLECTIONNAMES

select r

from RAS_COLLECTIONNAMES as r

Note that the meta collection name, RAS_COLLNAMES, must be written in
upper case only. No operation in the select clause is permitted. The
result is a set of one-dimensional char arrays, each one holding the name
of a database collection. Each such char array, i.e., string is terminated
by a zero value (‘\0’).

12.2 Select

The select statement allows for the retrieval from array collections. The
result is a set (collection) of items whose structure is defined in the select
clause. Result items can be arrays, atomic values, or structs. In the where
clause, a condition can be expressed which acts as a filter for the result
set. A single query can address several collections.

 Syntax
select resultList

from collName [as collIterator]

 [, collName [as collIterator]] ...

select resultList

from collName [as collIterator]

 [, collName [as collIterator]] ...

where booleanExpr

 Examples
This query delivers a set of grayscale images:

 rasdaman Query Language Guide

 p. 71

select mr[100:150,40:80] / 2

from mr

where some_cells(mr[120:160, 55:75] > 250)

This query, on the other hand, delivers a set of integers:

select count_cells(mr[120:160, 55:75] > 250)

from mr

12.3 Insert

MDD objects can be inserted into database collections using the insert
statement. The array to be inserted must conform with the collection's type
definition concerning both cell type and spatial domain. One or more
variable bounds in the collection's array type definition allow degrees of
freedom for the array to be inserted. Hence, the resulting collection in this
case can contain arrays with different spatial domain.

 Syntax
insert into collName

values mddExpr

collName specifies the name of the target set, mddExpr describes the
array to be inserted.

 Example
Add a black image to collection mr1.

insert into mr1

values marray x in [0:255, 0:210]

 values 0c

See the rView Guide and the programming interfaces described in the
rasdaman Developer's Guides on how to ship external array data to the
server using insert and update statements.

12.4 Update

The update statement allows to manipulate arrays of a collection. Which
elements of the collection are affected can be determined with the where
clause; by indicating a particular OID, single arrays can be updated.

An update can be complete in that the whole array is replaced or partial,
i.e., only part of the database array is changed. Only those array cells are
affected the spatial domain of the replacement expression on the right-
hand side of the set clause. Pixel locations are matched pairwise
according to the arrays' spatial domains. Therefore, to appropriately
position the replacement array, application of the shift() function (see
Section 9.2.4) can be necessary.

 rasdaman Query Language Guide

 p. 72

As a rule, the spatial domain of the righthand side expression must be
equal to or a subset of the database array's spatial domain.

See the rView manual and the programming interfaces described in the
rasdaman Developer's Guides on how to ship external array data to the
server using insert and update statements.

 Syntax
update collName as collIterator

set updateSpec assign mddExpr

update collName as collIterator

set updateSpec assign mddExpr

where booleanExpr

where updateSpec can optionally contain a restricting minterval (see
examples further below):

var

var [mintervalExpr]

Each element of the set named collName which fulfils the selection
predicate booleanEpxr gets assigned the result of mddExpr. The right-
hand side mddExpr overwrites the corresponding area in the collection
element; note that no automatic shifting takes place: the spatial domain of
mddExpr determines the very place where to put it.

 Example
An arrow marker is put into the image in collection mr2. The appropriate
part of a is selected and added to the arrow image which, for simplicity, is
assumed to have the appropriate spatial domain.

Figure 16 original image of collection mr2

update mr2 as a

set a assign a[0:179, 0:54] + $1/2c

The argument $1 is the arrow image (Figure 16) which has to be shipped
to the server along with the query. It is an image showing a white arrow on
a black background. For more information on the use of $ variables you
may want to consult the language binding guides of the rasdaman
Documentation Set.

 rasdaman Query Language Guide

 p. 73

Figure 17 arrow used for updating

Looking up the mr2 collection after executing the update yields the
following result:

Figure 18: updated collection mr2

 Note
The replacement expression and the MDD to be updated (i.e., left and
right-hand side of the assign clause) in the above example must have the
same dimensionality. Updating a (lower-dimensional) section of an MDDs
can be achieved through a section operator indicating the "slice" to be
modified. The following query appends one line to a fax (which is
assumed to be extensible in the second dimension):

update fax as f

set f[*:*, sdom(f)[1].hi+1] assign $1

12.5 Delete

Arrays are deleted from a database collection using the delete
statement. The arrays to be removed from a collection can be further
characterized in an optional where clause. If the condition is omitted, all
elements will be deleted so that the collection will be empty afterwards.

 Syntax
delete from collName [as collIterator]

[where booleanExpr]

 Example
delete from mr1 as a

where all_cells(a < 30)

This will delete all "very dark" images of collection mr1 with all pixel values
lower than 30.

 rasdaman Query Language Guide

 p. 74

13 Linking MDD with Other Data

13.1 Purpose of OIDs

Each array instance and each collection in a rasdaman database has a
identifier which is unique within a database. In the case of a collection this
is the collection name and an object identifier (OID), whereas for an array
this is only the OID. OIDs are generated by the system upon creation of
an array instance, they do not change over an array's lifetime, and OIDs of
deleted arrays will never be reassigned to other arrays. This way, OIDs
form the means to unambiguously identifiy a particular array. OIDs can be
used several ways:

• In rasml, OIDs of arrays can be retrieved and displayed, and they can
be used as selection conditions in the condition part.

• OIDs form the means to establish references from objects or tuples
residing in other databases systems to rasdaman arrays. Please refer
for further information to the language-specific rasdaman Developer's

 rasdaman Query Language Guide

 p. 75

Guides and the rasdaman External Products Integration Guide
available for each database system to which rasdaman interfaces.

Due to the very different referencing mechanisms used in current
database technology, there cannot be one single mechanism. Instead,
rasdaman employs its own identification scheme which, then, is combined
with the target DBMS way of referencing. See Section 7.4 of this
document as well as the rasdaman External Products Integration Guide
for further information.

13.2 Collection Names

MDD collections are named. The name is indicated by the user or the
application program upon creation of the collection; it must be unique
within the given database. The most typical usage forms of collection
names are

• as a reference in the from clause of a rasml query

• their storage in an attribute of a base DBMS object or tuple, thereby
establishing a reference (also called foreign key or pointer).

13.3 Array Object Identifiers

Each MDD array is world-wide uniquely identified by its object identifier
(OID). An OID consists of three components:

• A string containing the system where the database resides (system
name),

• A string containing the database (base name), and

• A number containing the local object id within the database.

The main purposes of OIDs are

• to establish references from the outside world to arrays and

• to identify a particular array by indicating one OID or an OID list in the
search condition of a query.

 rasdaman Query Language Guide

 p. 76

14 Appendix A: rasdl Grammar

This appendix presents a simplified list of the main rasdl grammar rules
used in the rasdaman system. The grammar is described as a set of
production rules. Each rule consists of a non-terminal on the left-hand side
of the colon operator and a list of symbol names on the right-hand side.
The vertical bar "|" introduces a rule with the same left-hand side as the
previous one. It is usually read as or. Symbol names can either be non-
terminals or terminals, the latter ones written in bold face. Terminals either
represent keywords, or identifiers, or number literals.

 rasdaman Query Language Guide

 p. 77

typeDef : structDef

 | marrayDef

 | setDef

structDef : struct structName { attrList } ;

structName : ident

attrList : attrType attrName ; attrList

 | attrType attrName ;

attrType : ident

attrName : ident

marrayDef : typedef marray < typeName >

 | typedef marray

 < typeName, spatialDomain > marrayName ;

typeName : ident

spatialDomain : [spatialExprList]

spatialExprList :

 spatialExprList , spatialExpr

 | spatialExpr

spatialExpr : integerExpr | intervalExpr

intervalExpr : boundSpec : boundSpec

boundSpec : integer | *

setDef : typedef set < marrayName > setName ;

setName : ident

 rasdaman Query Language Guide

 p. 78

15 Appendix B: rasml Grammar

This appendix presents a simplified list of the main rasml grammar rules
used in the rasdaman system. The grammar is described as a set of
production rules. Each rule consists of a non-terminal on the left-hand side
of the colon operator and a list of symbol names on the right-hand side.
The vertical bar "|" introduces a rule with the same left-hand side as the
previous one. It is usually read as or. Symbol names can either be non-
terminals or terminals (the latter ones printed in bold face). Terminals
represent keywords of the language, or identifiers, or number literals.

query : createExp

 | dropExp

 | selectExp

 | updateExp

 | insertExp

 | deleteExp

createExp : create collection namedCollection typeName

dropExp : drop collection namedCollection

selectExp : select resultList

 from collectionList

 rasdaman Query Language Guide

 p. 79

 where generalExp

 | select resultList

 from collectionList

updateExp : update iteratedCollection set updateSpec

 assign generalExp

 where generalExp

 | update iteratedCollection set updateSpec

 assign generalExp

insertExp : insert into namedCollection values generalExp

deleteExp : delete from iteratedCollection

 where generalExp

updateSpec : variable

 | variable mintervalExp

resultList : resultList , generalExp

 | generalExp

generalExp : mddExp

 | trimExp

 | reduceExp

 | inductionExp

 | functionExp

 | integerExp

 | condenseExp

 | variable

 | mintervalExp

 | intervalExp

 | generalLit

integerExp : generalExp . lo

 | generalExp . hi

mintervalExp : [spatialOpList]

 | sdom (collectionIterator)

spatialOpList : /* empty */

 | spatialOpList2

spatialOpList2 : spatialOpList2 , spatialOp

 | spatialOp

spatialOp : generalExp

intervalExp : generalExp : generalExp

 | * : generalExp

 | generalExp : *

 | * : *

condenseExp : condense condenseOpLit

 over condenseVariable in generalExp

 where generalExp using generalExp

 | condense condenseOpLit

 rasdaman Query Language Guide

 p. 80

 over condenseVariable in generalExp

 using generalExp

condenseOpLit : +

 | -

 | *

 | /

 | and

 | or

functionExp : oid (collectionIterator)

 | shift (generalExp , generalExp)

 | scale (generalExp , generalExp)

 | bit (generalExp , generalExp)

 | tiff (generalExp , StringLit)

 | tiff (generalExp)

 | bmp (generalExp , StringLit)

 | bmp (generalExp)

 | hdf (generalExp , StringLit)

 | hdf (generalExp)

 | jpeg (generalExp , StringLit)

 | jpeg (generalExp)

 | png (generalExp , StringLit)

 | png (generalExp)

 | vff (generalExp , StringLit)

 | vff (generalExp)

 | tor (generalExp , StringLit)

 | tor (generalExp)

 | dem (generalExp , StringLit)

 | dem (generalExp)

 | csv (generalExp)

 | inv_tiff (generalExp , StringLit)

 | inv_tiff (generalExp)

 | inv_bmp (generalExp , StringLit)

 | inv_bmp (generalExp)

 | inv_hdf (generalExp , StringLit)

 | inv_hdf (generalExp)

 | inv_jpeg (generalExp , StringLit)

 | inv_jpeg (generalExp)

 | inv_png (generalExp , StringLit)

 | inv_png (generalExp)

 | inv_vff (generalExp , StringLit)

 | inv_vff (generalExp)

 | inv_tor (generalExp , StringLit)

 | inv_tor (generalExp)

 | inv_dem (generalExp , StringLit)

 | inv_dem (generalExp)

 | inv_csv (generalExp)

 rasdaman Query Language Guide

 p. 81

structSelection :

 . attributeIdent

 | . intLitExp

inductionExp : sqrt (generalExp)

 | abs (generalExp)

 | exp (generalExp)

 | log (generalExp)

 | ln (generalExp)

 | sin (generalExp)

 | cos (generalExp)

 | tan (generalExp)

 | sinh (generalExp)

 | cosh (generalExp)

 | tanh (generalExp)

 | arcsin (generalExp)

 | arccos (generalExp)

 | arctan (generalExp)

 | generalExp . re

 | generalExp . im

 | not generalExp

 | generalExp overlay generalExp

 | generalExp is generalExp

 | generalExp and generalExp

 | generalExp or generalExp

 | generalExp xor generalExp

 | generalExp plus generalExp

 | generalExp minus generalExp

 | generalExp mult generalExp

 | generalExp div generalExp

 | generalExp equal generalExp

 | generalExp < generalExp

 | generalExp > generalExp

 | generalExp <= generalExp

 | generalExp >= generalExp

 | generalExp != generalExp

 | + generalExp

 | - generalExp

 | (castType) generalExp

 | (generalExp)

 | generalExp structSelection

castType : bool

 | char

 | octet

 | short

 | ushort

 | long

 | ulong

 | float

 | double

 rasdaman Query Language Guide

 p. 82

 | unsigned short

 | unsigned long

collectionList :

 collectionList , iteratedCollection

 | iteratedCollection

iteratedCollection :

 namedCollection as collectionIterator

 | namedCollection collectionIterator

 | namedCollection

reduceExp : reduceIdent (generalExp)

reduceIdent : all

 | some

 | count_cells

 | add_cells

 | avg_cells

 | min_cells

 | max_cells

trimExp : generalExp mintervalExp

mddExp : marray ivList

 values generalExp

ivList : ivList , marrayVariable in generalExp

 | marrayVariable in generalExp

intLitExp : IntegerLit

generalLit : scalarLit

 | mddLit

 | StringLit

 | oidLit

oidLit : < StringLit >

mddLit : < mintervalExp dimensionLitList >

 | $ IntLit

dimensionLitList :

 dimensionLitList ; scalarLitList

 | scalarLitList

scalarLitList : scalarLitList , scalarLit

 | scalarLit

scalarLit : complexLit

 | atomicLit

complexLit : { scalarLitList }

 | struct { scalarLitList }

atomicLit : BooleanLit

 | IntegerLit

 | FloatLit

 | complex (FloatLit , FloatLit)

 rasdaman Query Language Guide

 p. 83

variable : Identifier

namedCollection :

 Identifier

collectionIterator :

 Identifier

attributeIdent :

 Identifier

typeName : Identifier

marrayVariable :

 Identifier

condenseVariable :

 Identifier

