

External Products Integration Guide:
PostgreSQL

rasdaman version 8.0

 raster data manager

rasdaman External Products Integration Guide: PostgreSQL

 p.2

rasdaman Version 8.0 External Products Integration Guide: PostgreSQL

Rasdaman Community is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

Rasdaman Community is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with rasdaman Community.
If not, see www.gnu.org/licenses. For more information please see www.rasdaman.org or contact Peter
Baumann via baumann@rasdaman.com.

Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 Peter Baumann / rasdaman GmbH.

All trade names referenced are service mark, trademark, or registered trademark of the respective
manufacturer.

http://www.gnu.org/licenses
http://www.rasdaman.org/
mailto:baumann@rasdaman.com

rasdaman External Products Integration Guide: PostgreSQL

 p.3

Preface

Overview

This guide provides information on how to use the rasdaman database
system (in short: rasdaman) with the PostgreSQL database management
system (DBMS) as base system to manage raster and relational data in
an integrated way. The booklet addresses exclusively issues that are
specific to the PostgreSQL configuration. Please refer to the PostgreSQL
Manual, to the Installation and Administration Guide for information about
installing rasdaman, the other rasdaman External Guides for information
specific to other base systems, and to the other rasdaman guides for
features of the rasdaman system, which are common to all platforms.

In this guide, you obtain information about the prerequisites for using
rasdaman in conjunction with the PostgreSQL DBMS, how to create the
rasdaman database in PostgreSQL and the particular configuration you
require for running rasdaman based on PostgreSQL. It is then illustrated,
with an example program, how to reference rasdaman specific instances

rasdaman External Products Integration Guide: PostgreSQL

 p.4

from conventional (non-raster) data in PostgreSQL, and thus enhance
your conventional database applications with advanced rasdaman
functionality for multidimensional arrays.

You should follow the instructions in this guide as you install your
rasdaman server for interoperation with PostgreSQL.

Audience

The information in this manual is intended primarily for database ad-
ministrators and, to some lesser extent, for application developers.

Rasdaman Documentation Set

This manual should be read in conjunction with the complete rasdaman
documentation set which this guide is part of. The documentation set in its
completeness covers all important information needed to work with the
rasdaman system, such as programming and query access to databases,
guidance to utilities such as the graphical-interactive query tool rView, and
release notes.

In particular, current restrictions, known bugs, and workarounds are listed
in the Release Notes. All documents, therefore, always have to be
considered in conjunction with the Release Notes.

The rasdaman Documentation Set consists of the following documents:

• C++ Developer's Guide

• Java Developer's Guide

• Query Language Guide

• Installation and Administration Guide

• PostgreSQL Integration Guide

• Error Messages

• rView Guide

• Release Notes

rasdaman External Products Integration Guide: PostgreSQL

 p.5

Table of Contents

1 Introduction..7

1.1 General Remarks ...7

1.2 Version and Compatibility Statement ...8

2 Technical Details ...9

2.1 Account Management and rasdaman login to PostgreSQL9

2.2 Overall Database Structure ..10

2.3 rasdaman Database Name ..10

2.4 Database Internal Organisation..10

3 Database Creation Procedure ...11

3.1 rasdaman Installation ...11

3.2 Environment Set-Up ...11

rasdaman External Products Integration Guide: PostgreSQL

 p.6

3.3 Create and Delete Databases ..12

3.4 rasdaman Object Creation and Manipulation13

4 PostgreSQL Known Issues..14

4.1 Transaction Warnings ..14

4.2 Long Transaction Open..15

4.3 Disk Space ...15

5 Linking MDD with Other Data ..16

5.1 Collection Names ...16

5.2 Object Identifiers ..17

5.3 Transaction Handling ...18

5.4 Application Example...18

rasdaman External Products Integration Guide: PostgreSQL

 p.7

1 Introduction

1.1 General Remarks

Rasdaman interoperates with the PostgreSQL database systems. There is
a clear, natural distribution of work between the two different systems
according to the data types: multidimensional data are managed by
rasdaman, whereas for the alphanumeric data applications remain
interfacing directly with the relational system1. At the bottom line, however,
all data - multidimensional or alphanumeric - end up in the same physical
database, thereby considerably easing database maintenance with
respect to consistency, backup, etc. To this end, rasdaman makes use of
the storage management facilities of the database system it is coupled to.

1 In some disciplines, multidimensional data are referred to as raw data or
processed data, depending on their status, whereas the accompanying
alphanumeric data are called meta data.

rasdaman External Products Integration Guide: PostgreSQL

 p.8

For the purpose of this documentation, we will call the conventional
database system to which rasdaman is interfaced the base DBMS,
understanding that this base DBMS is in charge of all alphanumeric data
maintained as relational tables or object-oriented semantic nets.

The interoperability strategy of rasdaman follows, as much as possible,
the concepts of the individual base system on hand. Base DBMS features
such as access rights and overall database organisation apply to
multidimensional and alphanumeric data uniformly. Consequently, rasda-
man introduces no new concepts there, but relies on the mechanisms
provided by the base DBMS.

The advantage for the application developer and database administrator is
obvious: it allows the user familiar with the base DBMS concepts to use
rasdaman in the same way, thereby minimizing learning effort.

1.2 Version and Compatibility Statement

rasdaman has been tested successfully with PostgreSQL version 8.2.5
under Linux kernel 2.6.22 and newer. Although we are not aware of any
problems using rasdaman in conjunction with other versions, it
nevertheless may lead to unforeseeable effects, including possible loss of
data.

rasdaman External Products Integration Guide: PostgreSQL

 p.9

2 Technical Details

In this section, necessary background knowledge for the set-up of
PostgreSQL for use with rasdaman is provided. The initialization
procedure itself is described in detail in Section 3.

2.1 Account Management and rasdaman login to PostgreSQL

It is strongly suggested to create a new operating system account,
rasdaman, used for administration of the rasdaman database and start-up
of the rasdaman server. PostgreSQL by default will rely on the operating
system login under which the rasdaman server runs, i.e., rasdaman. This
means that each time a rasdaman server logs in to PostgreSQL, it is
assumed to do so using the login name rasdaman.

Throughout the document on hand, this recommended configuration will
be assumed.

rasdaman External Products Integration Guide: PostgreSQL

 p.10

2.2 Overall Database Structure

PostgreSQL employs the concept of a database cluster, which is
managed by one server instance and can hold a number of databases,
distinguished by their names. Rasdaman always connects to a particular
database, not knowing about database clusters; hence, the administrator
is free to arrange databases in a database cluster as s/he sees fit. In
particular, the database creation script, create_db.sh (see below),
assumes that a database cluster already exists.

Rasdaman relies on several tables which are created, initialized, and
maintained by several shell the scripts and the rasdl utility (see Section
3).

 Warning
It is essential that the rasdaman database tables remain under the
exclusive control of rasdaman. The rasdaman tables should not be
changed in any way by external applications. In addition, the names
should not be used for other tables of the user application. Likewise, it is
not recommended to use the prefix RAS_ for tables external to rasdaman.

Undefined effects can occur if another program or person performs any
kind of change to table structures or contents, including severe data loss.

2.3 rasdaman Database Name

The database name is passed to the rasdaman server via the
rasmgr.conf configuration file, as described in the Installation Guide. For
a local database this name might be chosen as RASBASE; see, however,
30.2. “Connecting to the Database Server” of the PostgreSQL manual for
more alternatives, including accessing remote databases.

2.4 Database Internal Organisation

As PostgreSQL does not allow to control physical distribution of table sets
in different files (like, e.g., Oracle and DB2 support), there is nothing to
take into account.

 Notes
Make sure that disk space is of sufficient size when inserting or updating
data, otherwise undefined effects may occur depending on the Post-
greSQL behavior.

For the database file size, operating system limits may apply

rasdaman External Products Integration Guide: PostgreSQL

 p.11

3 Database Creation Procedure

Following successful installation of the rasdaman software (as described
in the rasdaman Installation and Administration Guide), perform the
following steps for initialization of the PostgreSQL database structures
required by rasdaman. In this Section, the steps for preparing PostgreSQL
for interoperation with rasdaman are explained in detail.

3.1 rasdaman Installation

First, perform all installation steps as described in the Installation and
Administration Guide. Upon successful completion, continue below.

3.2 Environment Set-Up

The following steps have to be performed to obtain a PostgreSQL
database which can be used by rasdaman.

rasdaman External Products Integration Guide: PostgreSQL

 p.12

A couple of environment variables have to be set. For the purpose of this
Guide, they are grouped into two sections: PostgreSQL specifics and
rasdaman specifics.

 PostgreSQL Variables
The following PostgreSQL variables have to be set for the rasdaman user.

export PGSQLDIR=/usr/local/pgsql

export PATH=$PGSQLDIR/bin:$PATH

export LD_LIBRARY_PATH=$PGSQLDIR/lib:$LD_LIBRARY_PATH

Variable PGSQLDIR must be adapted to point to the local PostgreSQL
installation directory, if this is different from the default installation location.

PostgreSQL configuration
To allow for flawless communication between rasdaman and PostgreSQL,
the following option needs to be set in the PostgreSQL configuration file
postgresql.conf:

tcpip_socket = true

 rasdaman Variables
A set of variables must be set as described in the rasdaman Installation
and Administration Guide.

 Where to Set
The above settings conveniently are stored in the resource file .rmanrc
which is delivered as part of the rasdaman distribution. Local adaptations
can be made there. Following the recommendation in the rasdaman
Installation and Administration Guide, this resource file is intended to be
read during rasdaman login, thereby making available all the settings.

3.3 Create and Delete Databases

Under PostgreSQL, creating and deleting a database / database cluster is
performed with the initdb and dropdb commands; see the pertaining
PostgreSQL manuals for details.

Following PostgreSQL recommendation, the database cluster supposed
to hold the rasdaman database should be owned by the rasdaman
operating system user, meaning that the cluster is generated under the
rasdaman login and the PostgreSQL server is running under this login.

 Script Support
In ~rasdaman/admin, a script named create_db.sh is provided which
accomplishes database initialisation.

This script assumes that a database cluster has been generated and that
the pertaining server process is accessible from user rasdaman. The script

rasdaman External Products Integration Guide: PostgreSQL

 p.13

performs creation of a PostgreSQL database named RASBASE does and
rasdaman initialization via rasdl.

Running rasdl does not require the rasdaman server to be up.

 Delete a Database
To delete a database db, use the pertaining PostgreSQL command as
operating system user rasdaman:

dropdb db

3.4 rasdaman Object Creation and Manipulation

Having created a rasdaman schema, population of the database through
rasql and the APIs will follow. See the resp. manuals of the rasdaman
Documentation Set for more information on this.

rasdaman External Products Integration Guide: PostgreSQL

 p.14

4 PostgreSQL Known Issues

4.1 Transaction Warnings

Upon committing or aborting a PostgreSQL transaction (e.g., in the course
of committing or aborting a rasdaman transaction, or upon closing a
database or a connection) a warning is issued in the rasdaman server’s
log file:

commitTA...Warning/error in TransactionIf::abort() ROLLBACK:

SQLSTATE: 25P01 SQLCODE: -604

Simultaneously, the PostgreSQL server issues one of the warnings below:

WARNING: there is already a transaction in progress

WARNING: there is no transaction in progress

Both warnings can be safely ignored.

rasdaman External Products Integration Guide: PostgreSQL

 p.15

4.2 Long Transaction Open

In very rare circumstances it has been observed that a PostgreSQL begin
transaction command sometimes can take up to several seconds.
Currently no reason is known for this phenomenon.

It is recommended to reuse transactions as much as possible to avoid
opening transactions.

4.3 Disk Space

The PostgreSQL database grows as data are inserted. Make sure that
sufficient disk space is available.

It seems that, when needed, parts of the database can be relocated to
other file systems using symbolic links with the same names (with the
DBMS server duly being shut down during this reorganization, of course);
however, this has not been verified systematically yet.

rasdaman External Products Integration Guide: PostgreSQL

 p.16

5 Linking MDD with Other Data

In order to embed MDD objects and MDD collections in PostgreSQL data-
bases, object identifiers and collection names may be used. These
constitute references to rasdaman objects, which are stored in Post-
greSQL tables.

5.1 Collection Names

MDD collections in rasdaman must be named. This name may then be
used by an application as a reference to the MDD collection. The most
typical usage of these collection names is their storage in a tuple attribute
in order to reference an MDD collection which is related to the application
entity described by the tuple.

This is illustrated in the following example:

 Example
table patient

(socialsecurityno int,

rasdaman External Products Integration Guide: PostgreSQL

 p.17

 pname varchar(20),

 birth date,

 address varchar(200),

 ...

 xrayoid varchar(200));

The OID in the attribute XRAYOID is read by an application, in order to
access the MDD collection through either the query language rasql, or the
API raslib in a C++ application (which may also used embedded SQL from
PostgreSQL, and issue rasql queries from rasdaman).

5.2 Object Identifiers

Each MDD object is uniquely identified in rasdaman by an object identifier.
Object identifiers (OIDs) are implemented by the r_OId class of RasLib.
Due to their globally (worldwide) uniqueness, object identifiers can be
used for references across different databases and even across different
systems.

A globally unique object identifier has three components describing

• the database system type (which is “postgresql” in the case of
PostgreSQL)

• the name of the rasdaman database to which it belongs (which by
default is “RASBASE”),

• the object itself within the database.

 Note
The OID structure will change in future to allow for unique identification
also in multi-server environments.

 OIDs in the API
The OID of a rasdaman object is returned by (C++ notation):

r_OId& r_Object::get_oid()

The OID may be used as a reference in a tuple of an PostgreSQL table by
storing the OID value in a tuple attribute.

 Example
table satelliteimages

(acqlocation int,

 acqdate date,

 ...

 imagerasoid varchar(200));

The value of attribute IMAGERASOID has to be translated into a rasdaman
OID. This translation is done by the C++ r_OId constructor of RasLib:

rasdaman External Products Integration Guide: PostgreSQL

 p.18

r_OId::r_OId(const char*)

The string representation for a specific OID is returned by:

const char* r_OId::get_string_representation()

5.3 Transaction Handling

As a consequence of the architectural approach of rasdaman as an
additional component on top of the base DBMS (as compared to inte-
grating rasdaman into the base DBMS engine), operations on MDD and
conventional alphanumeric data cannot be intermixed in the same trans-
action. Therefore, to work simultaneously with rasdaman and PostgreSQL
data, an application must run a rasdaman transaction for multidimensional
access and a separate PostgreSQL transaction for tabular data handling.

Both transaction types can be interleaved arbitrarily. It is not necessary to
end an PostgreSQL transaction before a rasdaman transaction starts, and
vice versa.

5.4 Application Example

In the following C++ example, the general structure of a raslib application
with PostgreSQL code is shown which uses embedded rasdaman objects.

r_Database rasDB;

r_Transaction rasTA;

... // PostgreSQL declarations

rasDB.set_servername(rasServerName);

rasDB.open(“RASBASE”);

rasTA.begin();

... // PostgreSQL initializations,

... // if needed

// work with rasdaman and PostgreSQL data interchangeably;

// queries can be issued both on MDD collections

// and on PostgreSQL tables

...

rasTA.commit();

rasDB.close();

... // PostgreSQL terminating code,

... // if needed

