

Java Developers Guide

rasdaman version 8.0

 raster data manager

rasdaman Java Developers Guide

 p.2

rasdaman Version 8.0 Java Developers Guide

Rasdaman Community is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

Rasdaman Community is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with rasdaman Community.
If not, see www.gnu.org/licenses. For more information please see www.rasdaman.org or contact Peter
Baumann via baumann@rasdaman.com.

Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 Peter Baumann / rasdaman GmbH.

All trade names referenced are service mark, trademark, or registered trademark of the respective
manufacturer.

http://www.gnu.org/licenses
http://www.rasdaman.org/
mailto:baumann@rasdaman.com

rasdaman Java Developers Guide

 p.3

Preface

Overview

This guide provides information about how to use the rasdaman database
management system. The booklet explains usage of rasj, the rasdaman
Java API.

Follow the instructions in this guide as you develop your application which
makes use of rasdaman services. Explanations detail how, from within a
Java program, to create databases, collections, and instances; how to
retrieve from databases; how to manipulate and delete instances within
databases; how to influence physical storage parameters; how to do
transaction handling and other administrative tasks.

rasdaman Java Developers Guide

 p.4

Audience

The information in this manual is intended for application developers.

Rasdaman Documentation Set

This manual should be read in conjunction with the complete rasdaman
documentation set which this guide is part of. The documentation set in its
completeness covers all important information needed to work with the
rasdaman system, such as programming and query access to databases,
guidance to utilities such as the graphical-interactive query tool rView, and
release notes.

In particular, current restrictions, known bugs, and workarounds are listed
in the Release Notes. All documents, therefore, always have to be
considered in conjunction with the Release Notes.

The rasdaman Documentation Set consists of the following documents:

• C++ Developer's Guide

• Java Developer's Guide

• Query Language Guide

• Installation and Administration Guide

• PostgreSQL Integration Guide

• Error Messages

• rView Guide

• Release Notes

rasdaman Java Developers Guide

 p.5

Table of Contents

1 Introduction..8

1.1 Multidimensional Data ..8

1.2 rasdaman Overall Architecture ...9

1.3 Further Reading ...9

2 Terminology ...11

2.1 An Intuitive Definition..11

2.2 A Technical Definition...12

3 Application Examples ..14

3.1 Overview ..14

3.2 Application Program Example Code...15

4 rasj ...17

rasdaman Java Developers Guide

 p.6

4.1 Overview ..17

4.2 Class Hierarchy ..18

4.3 Interface Hierarchy ...19

5 ODMG ...20

5.1 Overview ..20

5.2 Class Hierarchy ..21

5.3 Interface Hierarchy ...22

5.4 How To Use..22

6 Points and Intervals ...25

6.1 Overview ..25

6.2 Class Hierarchy ..26

6.3 How To Use..26

7 Multidimensional Arrays...28

7.1 Overview ..28

7.2 How To Use..29

7.3 rasdaman Cell Types ...31

7.4 rasdaman Types vs. Java Types..32

8 Storage Layout ..33

8.1 Overview ..33

8.2 Class Hierarchy ..34

8.3 How To Use..34

9 Collections and Queries...36

9.1 Overview ..36

9.2 Class Hierarchy ..37

9.3 How To Use..37

9.4 Query Result Type ...38

10 OIDs ..39

10.1 Overview ..39

10.2 Class Hierarchy ..39

10.3 How To Use..40

11 Type Management...41

rasdaman Java Developers Guide

 p.7

11.1 Overview ..41

11.2 Class Hierarchy ..42

11.3 How To Use..42

12 Exceptions ...43

12.1 Overview ..43

12.2 Class Hierarchy (pruned)..44

12.3 Handling Exceptions in the Client...44
12.4 Exceptions in the Class rasj.RasException45

12.5 Exceptions in the Class
org.odmg.QueryInvalidException.......................................46

12.6 Exceptions in the Class
org.odmg.ODMGRuntimeException ...46

12.7 Exceptions in the Class rasj.RasRuntimeException46

13 Compilation and Execution of Client Programs47

13.1 Compiling Code Using rasj ...47

13.2 Java Version Compatibility Statement....................................48

13.3 HTTP communication...48

13.4 Copyright Note ...48

13.5 Legal Note ..48

14 HTML Documentation..50

rasdaman Java Developers Guide

 p.8

1 Introduction

1.1 Multidimensional Data

In principle, any natural phenomenon becomes spatio-temporal array data
of some specific dimensionality once it is sampled and quantised for
storage and manipulation in a computer system; additionally, a variety of
artificial sources such as simulators, image renderers, and data
warehouse population tools generate array data. The common charac-
teristic they all share is that a large set of large multidimensional arrays
has to be maintained. We call such arrays multidimensional discrete data
(or short: MDD), expressing the variety of dimensions and separating
them from the conceptually different multidimensional vectorial data
appearing in geo databases.

rasdaman is a domain-independent database management system
(DBMS) which supports multidimensional arrays of any size and
dimension and over freely definable cell types. Versatile interfaces allow
rapid application deployment while a set of cutting-edge intelligent

rasdaman Java Developers Guide

 p.9

optimization techniques in the rasdaman server ensures fast, efficient
access to large data sets, particularly in networked environments.

1.2 rasdaman Overall Architecture

The rasdaman client/server DBMS has been designed using inter-
nationally approved standards wherever possible. The system follows a
two-tier client/server architecture with query processing completely done
in the server. Internally and invisible to the application, arrays are
decomposed into smaller units which are maintained in a conventional
DBMS, for our purposes called the base DBMS.

On the other hand, the base DBMS usually will hold alphanumeric data
(such as metadata) besides the array data. rasdaman offers means to
establish references between arrays and alphanumeric data in both
directions.

Hence, all multidimensional data go into the same physical database as
the alphanumeric data, thereby considerably easing database
maintenance (consistency, backup, etc.).

Figure 1 Embedding of rasdaman in IT infrastructure

Further information on this topic is available in the other components of
the rasdaman documentation set.

1.3 Further Reading

n.n.: rasdaman Query Language Guide, rasdaman GmbH.

S.J. Cannan: SQL The Standard Handbook, McGraw-Hill Book Company,
London, 1993.

rasdaman Java Developers Guide

 p.10

R.G.G. Cattell, Douglas K. Barry: The Object Data Standard: ODMG 3.0,
Morgan Kaufmann Publishers, California, 1999.

rasdaman Java Developers Guide

 p.11

2 Terminology

This section gives an overview of the concepts underlying rasdaman and
raster databases. For details on the operational semantics of the model
the reader is strongly encouraged to study the rasdaman Query Language
Guide.

2.1 An Intuitive Definition

An array is a set of elements which are ordered in space. The space
considered here is discretized, i.e., only integer coordinates are admitted.
The number of integers needed to identify a particular position in this
space is called the dimension (sometimes also referred to as
dimensionality). Each array element, which is referred to as cell, is
positioned in space through its coordinates.

A cell can contain a single value (such as an intensity value in case of
grayscale images) or a composite value (such as integer triples for the
red, green, and blue component of a color image). All cells share the

rasdaman Java Developers Guide

 p.12

same structure which is referred to as the array cell type or array base
type.

Implicitly a neighborhood is defined among cells through their coordinates:
incrementing or decrementing any component of a coordinate will lead to
another point in space. However, not all points of this (infinite) space will
actually house a cell. For each dimension, there is a lower and upper
bound, and only within these limits array cells are allowed; we call this
area the spatial domain of an array. In the end, arrays look like
multidimensional rectangles with limits parallel to the coordinate axes. The
database developer defines both spatial domain and cell type in the array
type definition. Not all bounds have to be fixed during type definition time,
though: It is possible to leave bounds open so that the array can
dynamically grow and shrink over its lifetime.

Figure 2 Constituents of an array

Synonyms for the term array are multidimensional arrays, multidimen-
sional data, MDD. They are used interchangeably in the rasdaman
documentation.

In rasdaman databases, arrays are grouped into collections. All elements
of a collection share the same array type definition Collections form the
basis for array handling, just as tables do in relational database
technology.

2.2 A Technical Definition

Programmers who are familiar with the concept of arrays in programming
languages maybe prefer this more technical definition:

7 85 64

25
3023

22

spatial domaindimension

24

21
lower bound

upper bound

42
cell value

cell

rasdaman Java Developers Guide

 p.13

An array is a mapping from integer coordinates, the spatial domain, to
some data type, the cell type. An array's spatial domain, which is always
finite, is described by a pair of lower bounds and upper bounds for each
dimension, resp. Arrays, therefore, always cover a finite, axis-parallel
subset of Euclidean space.

Cell types can be any of the base types and composite types defined in
the ODMG standard.

In rasdaman, arrays are strictly typed wrt. spatial domain and cell type.
Type checking is done at query evaluation time. Type checking can be
disabled selectively for an arbitrary number of lower and upper bounds of
an array, thereby allowing for arrays whose spatial domains vary over the
array lifetime.

rasdaman Java Developers Guide

 p.14

3 Application Examples

3.1 Overview

This section contains an example of using the rasdaman Java API. The
intention is, for the advanced programmer, to quickly get an overview on
the programming style to be observed.

The source code can be found (slightly extended) in subdirectory
examples/java of the rasdaman distribution directory.

For details on the operational semantics of the rasdaman data model the
reader is strongly encouraged to study the rasdaman Query Language
Guide.

rasdaman Java Developers Guide

 p.15

3.2 Application Program Example Code

// import all packages needed; the first two come with rasj

import rasj.*;

import org.odmg.*;

import java.util.*;

public class AvgCell

{

 public static void main(String[] args)

 {

 string server, base, coll;

 for (int i=args.length-1; i>=0; i--)

 { // evaluate command line arguments

 if (args[i].equals("-s"))

 server = args[i+1]; // set server:port

 if (args[i].equals("-d"))

 base = args[i+1]; // set database name

 if (args[i].equals("-c"))

 coll = args[i+1]; // set collection name

 }

 try // watch out for possible exceptions thrown by rasj

 { // instantiate ODMG implementation

 Implementation myApp = new RasImplementation(

 "http://"+ server);

 // create database object, open database

 Database myDb = myApp.newDatabase();

 myDb.open(base, Database.OPEN_READ_ONLY);

 // create transaction object, begin transaction

 Transaction myTa = myApp.newTransaction();

 myTa.begin();

 // instantiate query object, submit it to server

 OQLQuery myQu = myApp.newOQLQuery();

 myQu.create("select mr from mr");

 DBag resultSet = (DBag) myQu.execute();

 // process query result returned from server

 if (resultSet != null)

 { // define iterator over result set

 Iterator iter = resultSet.iterator();

 while (iter.hasNext())

 { // process next element in line

 RasGMArray result = (RasGMArray) iter.next();

 // access the array, sum up its values

 byte[] pixelfield = result.getArray();

 double sum = 0.0;

 for(int i=0; i<result.getArraySize(); i++)

 sum += pixelfield[i];

rasdaman Java Developers Guide

 p.16

 System.out.println("Average over " + size +

 " pixels is " +

 ((sum / result.getArraySize()) + 128));

 }

 }

 // all done, so commit transaction and close database

 myTa.commit();

 myDb.close();

 }

 catch (org.odmg.ODMGException e)

 { // on error, print message and try forced detaching

 System.out.println(e.getMessage());

 if(myTa != null)

 myTa.abort();

 if(myDb != null)

 myDb.close();

 }

 System.out.println("Done.");

 }

}

 Note

This sample program makes use of the mr collection provided with the
rasdaman distribution package. See the rasdaman Installation and
Administration Guide to learn on how to create this collection as part of
the demonstration database.

rasdaman Java Developers Guide

 p.17

4 rasj

4.1 Overview

The rasj package contains the API for Java-based access to the
rasdaman database system. It relies on the ODMG standard (see Section
1.3) which it implements to the extent that is necessary for raster data
management.

The overall rasj package is subdivided into two packages, rasj and
org.odmg. The org.odmg sub-package (see Section 5) implements the
general ODMG specifications while the rasj sub-package (see Section
Fehler! Verweisquelle konnte nicht gefunden werden.) implements
rasdaman specific features.

rasdaman Java Developers Guide

 p.18

4.2 Class Hierarchy

The rasj class hierarchy has the following structure.
class java.lang.Object
 |
 +--class rasj.RasImplementation
 | | (implements org.odmg.Implementation)
 | |
 | +--class rasj.RasODMGInterface
 |
 +--class RasPoint
 |
 +--class RasSInterval
 |
 +--class RasMInterval
 |
 +--class rasj.odmg.RasObject
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasGMArray
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasMArrayByte
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasMArrayDouble
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasMArrayFloat
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasMArrayInteger
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasMArrayLong
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasMArrayShort
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasStorageLayout
 |
 +--class rasj.RasType
 | | (implements rasj.RasGlobalDefs)
 | |
 | +--class rasj.RasBaseType
 | | |
 | | +--class rasj.RasPrimitiveType
 | | |
 | | +--class rasj.RasStructureType
 | |
 | +--class rasj.RasCollectionType
 | |
 | +--class rasj.RasMArrayType
 | |
 | +--class rasj.RasMIntervalType
 | |
 | +--class rasj.RasOIDType
 | |
 | +--class rasj.RasPointType
 | |
 | +--class rasj.RasSIntervalType

rasdaman Java Developers Guide

 p.19

 |
 +--class java.lang.Throwable
 | (implements java.io.Serializable)
 |
 +--class java.lang.Exception
 | |
 | +--class org.odmg.ODMGException
 | | |
 | | +--class org.odmg.QueryException
 | | |
 | | +--class org.odmg.QueryInvalid-
 | | | Exception
 | | +--class rasj.RasQueryExecution-
 | | FailedException
 | |
 | +--class rasj.RasException
 | | (implements rasj.RasGlobalExceptionDefs)
 | |
 | +--class rasj.RasDimensionMismatchException
 | | (implements rasj.RasGlobalExceptionDefs)
 | |
 | +--class rasj.RasIndexOutOfBoundsException
 | | (implements rasj.RasGlobalExceptionDefs)
 | |
 | +--class rasj.RasResultIsNoCellException
 | | (implements rasj.RasGlobalExceptionDefs)
 | |
 | +--class rasj.RasResultIsNoInterval-
 | | Exception
 | | (implements rasj.RasGlobalExceptionDefs)
 | |
 | +--class rasj.RasStreamInputOverflow-
 | | Exception
 | | (implements rasj.RasGlobalExceptionDefs)
 | |
 | +--class rasj.RasTypeInvalidException
 | (implements rasj.RasGlobalExceptionDefs)
 |
 +--class java.lang.RuntimeException
 |
 +--class org.odmg.ODMGRuntimeException
 | |
 | +--class rasj.RasConnectionFailedException
 |
 +--class rasj.RasRuntimeException
 |
 +--class rasj.RasClientInternalException
 |
 +--class rasj.RasTypeNotSupportedException
 |
 +--class rasj.RasTypeUnknownException

4.3 Interface Hierarchy

The complete rasj interface hierarchy has the following structure.
interface rasj.RasGlobalDefs
interface rasj.RasGlobalExceptionDefs

rasdaman Java Developers Guide

 p.20

5 ODMG

5.1 Overview

The ODMG classes implement classes defined in the ODMG standard
providing functionality such as database open and close, transactions,
querying, and unique identifiers, i.e., OIDs.

 Don’t Use DArray !
ODMG defines an interface DArray which also is part of the ODMG sub-
package provided with the rasdaman distribution. These implement only
1-D arrays; most important, however, DArray is not compatible with
rasdaman arrays. Therefore, do not use class DArray as a rasdaman
array, but use class RasGMArray (and its subclasses) instead.

 …But Do Use Dbag !
Queries return multi-sets as results. A bag or multi-set contains an
arbitrary number of elements; like a set (and unlike a list), no particular
sequence is defined, and like a list (and unlike a set), the same elements

rasdaman Java Developers Guide

 p.21

can occur multiply. The query result type, therefore, is DBag. See also
Section 8.

5.2 Class Hierarchy

The complete org.odmg class hierarchy has the following structure.
class java.lang.Exception
 |
 +--class org.odmg.ODMGException
 | |
 | +--class org.odmg.DatabaseNotFoundException
 | |
 | +--class org.odmg.DatabaseOpenException
 | |
 | +--class org.odmg.ObjectNameNotFoundException
 | |
 | +--class org.odmg.ObjectNameNotUniqueException
 | |
 | +--class org.odmg.QueryException
 | |
 | +-- class org.odmg.QueryInvalidException
 | |
 | +--class org.odmg.QueryParameterCountInvalid-
 | | Exception
 | |
 | +--class org.odmg.QueryParameterTypeInvalid-
 | Exception
 |
 +--class java.lang.RuntimeException
 |
 +--class org.odmg.ODMGRuntimeException
 |
 +--class org.odmg.ClassNotPersistenceCapable-
 | Exception
 |
 +--class org.odmg.DatabaseClosedException
 |
 +--class org.odmg.DatabaseIsReadOnlyException
 |
 +--class org.odmg.LockNotGrantedException
 |
 +--class org.odmg.NotImplementedException
 |
 +--class org.odmg.ObjectDeletedException
 |
 +--class org.odmg.ObjectNotPersistentException
 |
 +--class org.odmg.TransactionAbortedException
 |
 +--class org.odmg.TransactionInProgressException
 |
 +--class org.odmg.TransactionNotIn-
 ProgressException

rasdaman Java Developers Guide

 p.22

5.3 Interface Hierarchy

This is the org.odmg interface hierarchy:
interface java.util.Collection
 |
 +--interface org.odmg.DCollection
 | |
 | +--interface org.odmg.Darray
 | | (also extends java.util.List)
 | |
 | +--interface org.odmg.DBag
 | |
 | +--interface org.odmg.DList
 | | (also extends java.util.List)
 | |
 | +--interface org.odmg.DSet
 | (also extends java.util.Set)
 |
 +--interface java.util.List
 | |
 | +--interface org.odmg.DArray
 | | (also extends org.odmg.DCollection)
 | |
 | +--interface org.odmg.DList
 | (also extends org.odmg.DCollection)
 |
 +--interface java.util.Set
 | |
 | +--interface org.odmg.DSet
 | (also extends org.odmg.DCollection)
 |
 +--interface org.odmg.Database
 |
 +--interface org.odmg.Implementation
 |
 +--interface java.util.Map
 | |
 | +--interface org.odmg.Dmap
 |
 +--interface org.odmg.OQLQuery
 |
 +--interface org.odmg.Transaction

5.4 How To Use

The following code piece demonstrates a typical retrieval situation: a
database is opened, a transaction is started, and then a query is executed
against that database.

Transaction myTa = null;

Database myDb = null;

OQLQuery myQu = null;

DBag resultSet = null;

RasGMArray result = null;

Implementation myApp = new RasImplementation(

 "http://" + server + port);

rasdaman Java Developers Guide

 p.23

myDb = myApp.newDatabase();

myDb.open(database, Database.OPEN_READ_ONLY);

myTa = myApp.newTransaction();

myTa.begin();

myQu = myApp.newOQLQuery();

myQu.create("select mr from mr");

resultSet = (DBag) myQu.execute();

// ...result set processing...

myTa.commit();

myDb.close();

Database Login
The database name and the address of a running server manager must
be indicated. Further optional parameters and their defaults are:

• login (default: “rasguest”)

• password (default: “rasguest”)

Multiple ODMG Implementations
It is well possible to use several implementations – for example, from
different vendors – of the ODMG classes simultaneously. Like rasj, other
ODMG packages will provide an Implementation class in their org.odmg
package. Instantiating one Implementation for each package is the only
prerequisite to be done. The resulting code might look like the following
(incomplete) example fragment where two different implementation
classes are assumed, RasImplementation and Implementation2; note
that transactions for different implementations are independent from each
other.

Transaction myTa1 = null;

Database myDb1 = null;

Transaction myTa2 = null;

Database myDb2 = null;

Implementation rasApp1 = new RasImplementation(

 "http://" + server1 + “:” + port1);

myDb1 = myApp1.newDatabase();

myDb1.open(rasbase, Database.OPEN_READ_ONLY);

MyTa1 = myApp1.newTransaction();

myTa1.begin();

Implementation2 myApp2 = new Implementation2(

 "http://" + server2 + “:” + port2);

myDb2 = myApp2.newDatabase();

myDb2.open(database2, Database.OPEN_READ_ONLY);

MyTa2 = myApp2.newTransaction();

myTa2.begin();

// ...now access both databases...

rasdaman Java Developers Guide

 p.24

myTa1.commit();

myDb1.close();

myTa2.commit();

myDb2.close();

ODMG Functions Available
rasj does not implement ODMG fully (this would go beyond its purpose),
rather it contains those functions necessary for rasdaman database
access. When using the HTML hypertext documentation, clicking through
the org.odmg package ultimately gets you to the rasdaman classes which
implement the corresponding ODMG class. There, methods not available
are marked as such.

 Further Information
Details on how to process the query result can be found in Section 8. The
example code makes use of the demonstration database whose set-up
routines are part of the distribution package; find more on this topic in the
rasdaman Installation and Administration Guide.

rasdaman Java Developers Guide

 p.25

6 Points and Intervals

6.1 Overview

Point and interval handling is needed for indexing arrays, such as in-
dication of array boundaries. To this end, classes RasPoint, RasS-
Interval, and RasMInterval for n-dimensional points, 1-D (“single-”)
intervals, and n-dimensional (“multi-“) intervals resp. are provided.

 Value Ranges and
Consistency Constraints

All points, 1-D and n-D intervals can span negative values as well.
Furthermore, intervals can have any integer value as lower bound. This is
in contrast to most programming languages where usually the lower
bound is fixed to 0.

However, intervals obviously need to match some consistency criteria to
be valid. Foremostly, in a 1-D interval (class RasSInterval) as well as in

rasdaman Java Developers Guide

 p.26

an n-D interval (class RasMInterval) the lower bound must not be higher
than the upper bound.

Further, operations between intervals of any type must yield a valid
interval again. Consider the union of two 1-D intervals s1 and s2,

s1.unionWith(s2)

Intervals s1 and s2 must be overlap or at least be adjacent, otherwise the
resulting interval would contain a hole (mathematically speaking, it would
not be simply connected). As such situations are not allowed for intervals
in rasdaman, corresponding exceptions will be thrown by rasj.

If nevertheless two intervals should be merged which are apart from each
other, then operation closureWith() can be used. It will “fill” the gap
between the intervals so that a valid result interval comes out.

The HTML manual lists each possible situation. It is recommended to
study this for getting an understanding of all valid and invalid interval
combinations.

6.2 Class Hierarchy

 class java.lang.Object
 |
 +--class RasPoint
 |
 +--class RasSInterval
 |
 +--class RasMInterval

 Note
Class java.lang.Object obviously has further subclasses, not just the
one shown here.

6.3 How To Use

Here are some sample code fragments showing usage of the point and
interval classes:

rasdaman Java Developers Guide

 p.27

 RasPoint

// (1) point instantiation using string constructor:

RasPoint p1 = new RasPoint("[3, 7]");

// (2) point instantiation using numerical constructor:

RasPoint p2 = new RasPoint(5, 0);

// get point dimension:

int d = p2.dimension();

// test if points are equal:

boolean b = p1.equals(p2);

 RasSInterval

// create a 1-D intervals (100,200) and (-150,400), resp.:

RasSInterval s1 = new RasSInterval(100, 200);

RasSInterval s2 = new RasSInterval("-150:400");

 // no “[” and “]” !

// get upper bound of interval:

long hiBound = s2.high();

// get lower bound of interval:

long loBound = s2.low();

// get number of cells:

long noOfCells = m1.cellCount();

// test if interval intersects with another interval

// (the return value shows the kind of intersection)

int j = s1.intersectsWith(s2);

 RasMInterval

// create new 2-D interval, set bounds to (-1,1) and (3,7):

RasMInterval m1 = new RasMInterval("[-1:1, 3:7]");

// create a 4-D interval, leaving open array bounds for now:

RasMInterval m2 = new RasMInterval(4);

rasdaman Java Developers Guide

 p.28

7 Multidimensional Arrays

7.1 Overview

Instances of RasGMArray and its subclasses represent multidimensional
arrays. To handle arrays with different base types and geometries, the
“implements” relation of Java is used. With this approach, greyscale
images, RGB images etc. can all be treated as subclasses of the general
array class RasGMArray.

Currently supported are types for integer arrays (e.g., grayscale images)
of various cell size, as well as types for floating-point arrays with single
and double precision. All of them allow arrays of any dimension and extent
per dimension.

 Class Hierarchy
 class rasj.odmg.RasObject
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasGMArray

rasdaman Java Developers Guide

 p.29

 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasMArrayByte
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasMArrayDouble
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasMArrayFloat
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasMArrayInteger
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasMArrayLong
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasMArrayShort
 (implements rasj.RasGlobalDefs)

7.2 How To Use

A few code fragments will show appropriate usage of the array classes.
To keep it brief and to the spot, we omit declarations and other standard
steps; these can be looked up in the previous, complete coding examples.

Note: Current restriction
Queries can contain formal parameters, denoted by $1, $2, etc. (see
Query Language Guide for details). In the current rasj implementation,
only one MDD object can be bound per query (however, it is possible to
bind several scalar values). This limitation will be overcome in future
releases.

 Example 1:
 compute summary data
 from array

The following code example retrieves all MDD objects from a sample
collection and, fore each object, computes the average cell value. As a
safeguard, averaging is carried out only in case of integer cells (i.e.,
greyscale pixels).

myQu = myApp.newOQLQuery();

myQu.create("select mr from mr");

DBag resultSet = (DBag) myQu.execute();

if (resultSet != null)

{

 Iterator iter = resultSet.iterator();

 while (iter.hasNext())

 {

 result = (RasGMArray) iter.next();

 if(result.getTypeLength() != 1)

 System.out.println(

rasdaman Java Developers Guide

 p.30

 "skipping image because of non-int cell type");

 else

 {

 byte[] pixelfield = result.getArray();

 double sum = 0.0;

 long size = result.getArraySize();

 for(int i=0; i<size; i++)

 sum += pixelfield[i];

 System.out.println("Average over " + size +

 " pixels is " +

 ((sum/size)+128));

 }

 }

 Example 2:
 set up array object
 in main memory

The following code fragment instantiates a RasGMArray object as a 2-D
greyscale image and fills it with values using the normal Java means:

// create 2-D MDD with cell length 1, i.e., type “byte”:

RasGMArray myMDD = new RasGMArray(

 new RasMInterval("[1:400,1:400]"), 1);

// byte container for array data, matching in size:

byte[] mydata = new byte[160000];

// initialize array as all-black with two grey stripes:

for(int y=0; y<400; y++)

{

 for(int x=0; x<400; x++)

 {

 if((x>99 && x<151) || (x>299 && x<351))

 mydata[y*399+x]=100;

 else

 mydata[y*399+x]=0;

 }

}

// now insert byte array into MDD object

// (sets only the pointer, no copying takes place!):

myMDD.setArray(mydata);

As for the last line containing the import of array data into the MDD object,
please observe the following: There are specific get/set functions for the
various supported array types, e.g., getIntArray(). While the
setArray() and getArray() methods always will work, they will require
data type conversion if the actual array cell type is not “byte”. Therefore, it
is most efficient to always use that operation which respects the actual
array data type.

The following code fragment instantiates a RasGMArray object as a 2-D
greyscale image and fills it with values using the normal Java means:

rasdaman Java Developers Guide

 p.31

 Example 3:
 insert new array object
 into database

This example generates a new greyscale image collection named test in
the database and inserts an image into this database collection.

Note that a new query object has to be generated for each query. It is not
sufficient to just change the query string in the query object!

// set up query object for collection creation:

myQu.create(“create collection test GreySet”);

// set the object type name (used for server type checking):

myMDD.setObjectTypeName(“GreyImage”);

// finally, execute “create collection” statement:

myQu.execute();

// now create the insert statement:

myQu.create(“insert into test values $1”);

// let the server generate a new OID for the object to be

// inserted, and remember this OID locally:

myNewOID = myApp.getObjectId(myMDD);

// bind the MDD value which substitutes formal parameter $1:

myQu.bind(myMDD);

// …and ship the complete statement to the server:

myQu.execute();

7.3 rasdaman Cell Types

The set of cell base types known to rasdaman encompasses the usual
numeric types. Below find the table of types known, and the necessary
information to map them to Java types.

Null values, i.e., values of cells which have not been assigned a value yet,
always are the numerical zero value of the corresponding type. This
extends in the obvious way to composite cells.

RasDL Length Description

octet 8 bit signed integer

char 8 bit unsigned integer

short 16 bit signed integer

unsigned short 16 bit unsigned integer

long 32 bit signed integer

unsigned long 32 bit unsigned integer

float 32 bit single precision floating point

rasdaman Java Developers Guide

 p.32

double 64 bit double precision floating point

boolean 1 bit1 true (nonzero value)
false (zero value)

7.4 rasdaman Types vs. Java Types

Java types do not 1:1 correspond to rasdaman types. This is due to the
fact that the Java type system in some aspects is different from what the
ODMG Standard prescribes. Below find the most important caveats.

 Long Integer
Long integer values in rasdaman always have 4 bytes, in accordance with
the ODMG standard. The corresponding rasdaman types are Ras_Long
and Ras_ULong.

In rasj, the array type to be used for 4-byte integers is RasMArrayInteger
which matches with the Java int type occupying 4 bytes.

Mind that the Java type long represents 8 byte quantities. If an MDD
object is passed to the database through rasj, a overflow test takes place
on each integer value. An exception is thrown on overflow.

 Unsigned Integers
Special care should be taken with unsigned integers, as Java does not
support this. For example, for cells of type Ras_UShort (2 bytes) the array
type RasMArrayInteger (4 bytes) must be used to collate values,
according to the ODMG standard.

1 memory usage is one byte per pixel

rasdaman Java Developers Guide

 p.33

8 Storage Layout

8.1 Overview

At insertion time of an MDD object, several database-internal storage
parameters can be set to affect the way the object is stored in the
database. A RasStorageLayout object, attached to a RasGMArray MDD
object, will guide storage of this MDD object when passed to the server
through RasOQLQuery.execute().

rasdaman Java Developers Guide

 p.34

8.2 Class Hierarchy

 class java.lang.Object
 |
 +--class rasj.odmg.RasStorageLayout

8.3 How To Use

The following code fragment shows how to associate a storage layout
object with an MDD object; the storage layout will be evaluated at
insertion time of the MDD into the database.

// create 2-D MDD with cell length 1, i.e., type byte:

RasGMArray myMDD =

 new RasGMArray(new RasMInterval("[1:400,1:400]"), 1);

// assume that there is some byte array prepared, insert it:

myMDD.setArray(mydata);

// set image type name

// (see distribution file examples/rasdl/basictypes.dl):

myMDD.setObjectTypeName("GreyImage");

// add storage layout object:

RasStorageLayout myLayout = new RasStorageLayout();

// now you can set either TileSize or TileDomain; to this

// end, continue with Alternative 1 or 2, as described below

 Alternative 1:
 set tile size

Having prepared the object as described above, now the tiling strategy
can be set. Experience tells that a good size for tiles is between 128 and
256 kB, but bear in mind that the optimal size for tiles depends on the
actual user behaviour as well as various system parameters.

// define size of tiles as 128,000 bytes:

myLayout.setTileSize(128000);

myMDD.setStorageLayout(myLayout);

 Alternative 2:
 set domain shape

As an alternative to setting the overall tile size, the domain can be
prescribed. This is more exact, as it allows to define not only size, but also
the extent per dimension. For example, if it is known from the user access
patterns there are ten times as much vertical slices requested than are
horizontal ones, then it may be a good strategy to define tiles with a
vertical:horizontal ratio of 10:1.

rasdaman Java Developers Guide

 p.35

// define tiles with spatial extent [1:1000,1:100]:

myLayout.setTileDomain("[1:1000,1:100]");

myMDD.setStorageLayout(myLayout);

 Note
rasdaman also allows to set the storage and compression format, as well
as client/server transfer format. However, currently the interface
controlling these parameters is only available via the C++ interface, not
yet via Java. In future versions format and compression control will be
available via Java, too.

rasdaman Java Developers Guide

 p.36

9 Collections and Queries

9.1 Overview

 Bag versus Set
Queries return multi-sets as results. The corresponding query result type
is DBag.

A bag or multi-set is a collection of elements similar to sets an lists; like a
set (and unlike a list), no particular sequence is defined, and like a list
(and unlike a set), the same elements can occur multiply. While {1,2,3}
is an example for a set, [1,2,2,3] is a bag example; [1,2,3] denotes
the same bag as [3,2,1], because sequence is irrelevant in a bag.

Let us clarify the difference with an example. A query which returns the
object identifiers (OIDs) of some database objects, such as

rasdaman Java Developers Guide

 p.37

select oid(a)

from a

never will contain duplicates, as OIDs are unique by definition On the
other hand, requesting summary information on MDD objects may well
lead to duplicates; for example, in a query like this:

select avg_cells(a)

from a

several objects may share the same maximum or average cell value. In
the latter case, it obviously is crucial to obtain duplicates also. Therefore,
the query result always is DBag, which forms a particular subclass of the
general class DCollection.

Nevertheless, we will use the term result set sometimes, as it is just
common database speak.

 Important Hint
Use org.odmg.DBag, do not use rasj.odmg.RasBag!

9.2 Class Hierarchy

 class java.util.AbstractCollection
 | (implements java.util.Collection)
 |
 +--class rasj.odmg.RasCollection
 | (implements org.odmg.DCollection)
 |
 +--class rasj.odmg.RasBag
 | (implements org.odmg.DBag)
 |
 +--class rasj.odmg.RasSet
 (implements org.odmg.DSet)

9.3 How To Use

The following code piece demonstrates how to use object sets in the
typical case of querying the database and piecewise processing the result
set:

OQLQuery myQu = myApp.newOQLQuery();

myQu.create("select mr from mr");

DBag resultSet = (DBag) myQu.execute();

if (resultSet != null)

{

 Iterator iter = resultSet.iterator();

 while (iter.hasNext())

 {

 RasGMArray result = (RasGMArray) iter.next();

 // ...here now process result...

rasdaman Java Developers Guide

 p.38

 }

}

Synchronous query execution

When a query is sent to the rasdaman server it will be executed in
completeness – a running query cannot be aborted2. Care should be
taken therefore not to start queries requiring resources beyond the
capability of the server hardware and software environment, as the
rasdaman service may be blocked for an indefinite time period.

9.4 Query Result Type

Database collections satisfy some criterion of homogeneity; this common
property is expressed through the underlying type definition. Likewise, a
collection returned as a query result has such an underlying common type
definition. However, as queries dynamically describe and instantiate
structures, this may not always adhere to some type existing in the
database – sometimes the structure is new, so a type structure has to be
generated “on the fly”. While such a type does not have a name, its
structure is well defined through the query itself.

This dynamic typing is predefined in the ODMG standard to which rasj
adheres, so further information can be obtained there. See Section 1.3 for
more information on ODMG, and the rasj HTML documentation of class
OQLQuery for details on query return objects.

To access cells from arrays in query result bags, accessor functions are
provided, such as getObject(), getInteger(). These functions are
supervised by the type checking mechanism, hence using a function on
an in appropriate type will cause an exception of type ClassCast-
Exception.

Generally speaking, it is up to the application to know the result type
structure of the query it has sent to the server.

2 This has nothing to do with transactions – after each completion of a
query, the embracing transaction can be aborted indeed.

rasdaman Java Developers Guide

 p.39

10 OIDs

10.1 Overview

The class RasOID manages object identifiers (OIDs) for persistent MDD
and collections.

10.2 Class Hierarchy

 java.lang.Object
 |
 +--rasj.odmg.RasOID

 Note
Class java.lang.Object obviously has further subclasses, not just the
one shown here.

rasdaman Java Developers Guide

 p.40

10.3 How To Use

The following code fragment prints the OID for each object in a query
result set.

myQu = myApp.newOQLQuery();

myQu.create("select mr from mr");

DBag resultSet = (DBag) myQu.execute();

if (resultSet != null)

{

 Iterator iter = resultSet.iterator();

 while (iter.hasNext())

 {

 RasGMArray result = (RasGMArray) iter.next();

 System.out.println("<"

 + result.getOID().getSystemName()

 + "|"

 + result.getOID().getBaseName()

 + "|"

 + result.getOID().getLocalOID()

 + " >");

 // last statement is equivalent to:

 // System.out.println(getObjectId(result));

 }

}

 Get a fresh OID
The following code fragment prints the OID for each object in a query
result set.

rasdaman Java Developers Guide

 p.41

11 Type Management

11.1 Overview

rasdaman allows to define new types during runtime of the system. This is
in contrast to programming languages where type structures are fixed at
compilation time. rasdaman, therefore, offers separate mechanisms to
maintain database types; these are provided through the RasType class
and its subclasses. For each structure relevant in dealing with persistent
(i.e., database stored) entities, a corresponding type class is provided.

 Note
Right now, rasj does not allow to create and manipulate persistent types in
the database; methods provided mainly serve to inquire the result type of
a query for a maximum of code flexibility. The rasdl utility has to be used
for that. In a future release, the APIs will also allow to create and
manipulate persistent types in the database.

rasdaman Java Developers Guide

 p.42

11.2 Class Hierarchy

class rasj.RasType
 | (implements rasj.RasGlobalDefs)
 |
 +--class rasj.RasBaseType
 | |
 | +--class rasj.RasPrimitiveType
 | |
 | +--class rasj.RasStructureType
 |
 +--class rasj.RasCollectionType
 |
 +--class rasj.RasMArrayType
 |
 +--class rasj.RasMIntervalType
 |
 +--class rasj.RasOIDType
 |
 +--class rasj.RasPointType
 |
 +--class rasj.RasSIntervalType

11.3 How To Use

The following code piece demonstrates how the type structure given by
some RasType object can be evaluated and printed in a user-friendly form.

// instantiate a sample MDD type object:

RasType rType = RasType.getAnyType("marray <char, 1>");

// Now let’s forget again that we know rType, let’s analyse.

// Check if the type object is some MDD type:

if (rType.getClass().getName().equals("rasj.RasMArrayType"))

{ // yes, it is an MDD; is it structured or simple?

 if (rType.isStructType())

 { // yes, structured:

 System.out.println(“Structured base type is: “ +

 rType.getBaseType());

 }

 else

 { // no, atomic:

 System.out.println(“Atomic base type is: “ +

 rType.getBaseType());

 }

}

else

{ // no, not an MDD at all.

 System.out.println(

 "type object doesn’t describe an MArray.");

}

rasdaman Java Developers Guide

 p.43

12 Exceptions

12.1 Overview

Exceptions serve to handle deviations from the desired flow of operation.
Several exceptions can be thrown by rasj classes; as a general rule, all
exceptions are subclassed from the general Java exception class
java.lang.Exception. Exceptions are further grouped into four main
classes

• org.odmg.Exception

• java.lang.RuntimeException

• rasj.RasException

• rasj.RasRuntimeException.

See the HTML documentation for details on the exception class hierarchy.

rasdaman Java Developers Guide

 p.44

12.2 Class Hierarchy (pruned)

Class java.lang.Exception
 |
 +--class org.odmg.Exception
 |
 +--class java.lang.RuntimeException
 |
 +--class rasj.RasException
 |
 +--class rasj.RasRuntimeException

 Note
All classes have further subclasses See Sections 4.2 and 5.2 for more
information.

12.3 Handling Exceptions in the Client

Catching an exception can be done, for example, as shown below.
Obviously there are several ways doing this – however, a few rules should
be obeyed:

• Granularity of exception catching depends on the overall program
structure and purpose. For example, for data insertion one may want to
build not just one large transaction, but several smaller units which, in
case of failure, can be rerun with less time expenditure.

• Don’t forget to clean up program state during exception recovery –
think of closing (aborting? committing?) transactions, closing the
database, etc.

Sample exception handling code
The following code piece demonstrates simple exception handling. The
whole database access code is wrapped into a try statement. In case of
an exception, the corresponding catch statement attempts to abort the
transaction (if any is open) and to close the database. If in the course of
these actions another exception occurs (for example, because the
communication line has broken down), an error message is generated and
the program terminates.

try

{

 Implementation myApp = new RasImplementation(

 "http://" + server + port);

 myDb = myApp.newDatabase();

 myDb.open(base, Database.OPEN_READ_ONLY);

 myTa = myApp.newTransaction();

 myTa.begin();

 // here do some work with the database

 myTa.commit();

 myDb.close();

rasdaman Java Developers Guide

 p.45

}

catch (java.lang.Exception e) // catch any error

{

 System.out.println(e.getMessage());

 try

 {

 if(myTa != null)

 myTa.abort();

 if(myDb != null)

 myDb.close();

 }

 catch (org.odmg.ODMGException exp) // catch an abort

 // or close error

 {

 System.err.println("Cannot commit/close: "

 + exp.getMessage());

 }

}

12.4 Exceptions in the Class rasj.RasException

The following exceptions are rasj specific:

RasDimensionMismatchException
The dimensions of the two operand objects do not match.

RasIndexOutOfBoundsException
The specified index is not within the bounds of the array indexed.

RasResultIsNoCellException
The operation result is no cell, but an array cell is expected at this
position. This happens, e.g., if the cast operator for casting to the base
type of class RasGMarray is invoked on an object which is not 'zero-
dimensional'.

RasResultIsNoIntervalException
The result is no interval, but an interval is expected at this position.

RasStreamInputOverflowException
An initialization overflow occured. This happens, e.g., if the stream input
operator is invoked more often than the object has dimensions.

RasTypeInvalidException
Access method does not fit base type.

rasdaman Java Developers Guide

 p.46

12.5 Exceptions in the Class org.odmg.QueryInvalidException

RasQueryExecutionFailedException
This exception extends ODMGQueryInvalidException by offering direct
access to the rasdaman error number and the line, column and token in
the query string that produced the error.

12.6 Exceptions in the Class org.odmg.ODMGRuntimeException

RasConnectionFailedException
This exception is raised when the connection to the server fails.

12.7 Exceptions in the Class rasj.RasRuntimeException

RasClientInternalException
This runtime exception indicates an internal error on client side which
cannot be solved by the user. In case of such an event, please send a
report to your dealer containing the complete error message and a precise
description of the actions that lead to this exception.

RasTypeNotSupportedException
This exception is raised when the base type of a query result is not
supported by the current version of the rasj package.

RasTypeUnknownException
This exception is raised when the base type of a query result is unknown
on client-side..

rasdaman Java Developers Guide

 p.47

13 Compilation and Execution of Client Programs

13.1 Compiling Code Using rasj

 Environment Variables
The CLASSPATH variable – which is used by the Java compiler to locate
packages used – must be extended with the path for the rasj directory of
the rasdaman distribution. This can be done, e.g., with the following
command:

export CLASSPATH=$RMANHOME/jlib/rasj.jar;$CLASSPATH

Alternatively, the –classpath option of javac can be used to explicitly
make known the package locations to the Java compiler.

Further, the JDK class directory must be contained in CLASSPATH, and the
JDK binaries directory must be contained in the PATH variable.

Java sources making use of the rasj package are compiled and run as
usual. For example, some source file Lookup.java containing class
Lookup would be compiled as

rasdaman Java Developers Guide

 p.48

javac Lookup.java

Running it as an application would be done through this command line
statement:

java Lookup

 Sample Programs
Several sample Java programs are provided as part of the rasdaman
distribution; they are located in the examples/java directory of the
distribution.

Applets and Applications
rasj allows to build applications written in Java which can be applets as
well as applications.

 Notes
Remember the uppercase/lowercase distinction of Java!

For all classes with package definitions – such as rasj.RasGMArray – the
package name must be prefixed.

13.2 Java Version Compatibility Statement

rasj has been successfully tested with JDK versions up to 1.6.

13.3 HTTP communication

rasj internally uses HTTP to communicate with the rasdaman server. By
selecting individual URLs and ports in the database open statement (see
Section 5), safe database access across firewalls is possible.

13.4 Copyright Note

rasj contains code for password encoding based on MD5.

Provision of this code is done in accordance with the GNU Library General
Public License (see www.gnu.org).

13.5 Legal Note

Note that under some legislations usage and/or distribution of crypto-
graphy code may be prohibited by law. If you have obtained the above-
mentioned library in or from a region under such a legislation, whatever

rasdaman Java Developers Guide

 p.49

you do with it is fully under your own responsibility. Please inform
rasdaman GmbH about the source where you have it obtained from so
that we can take action against any violator.

rasdaman Java Developers Guide

 p.50

14 HTML Documentation

The implementation is described in extensive documentation integrated
with the source code from which a set of HTML files. This documentation
can be used with any Web browser. The entry point for the complete
documentation pages, including the rasj part, is doc/index.html in the
rasdaman distribution directory (see Installation and Administration Guide,
Section 3).

ODMG Class Availability
Note that the org.odmg package is taken verbatim from the ODMG
standard. rasdaman interface classes are derived as implementations of
the standard classes. However, only those classes have been
implemented which are necessary for rasdaman. If in doubt, the
Implementation section should be consulted where unavailable items
are marked (due to copyright restrictions, the ODMG text must remain
unchanged).

