

C++ Developers Guide

rasdaman version 8.0

 raster data manager

rasdaman C++ Developers Guide

© p.2

rasdaman Version 8.0 C++ Developers Guide

Rasdaman Community is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

Rasdaman Community is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with rasdaman Community.
If not, see www.gnu.org/licenses. For more information please see www.rasdaman.org or contact Peter
Baumann via baumann@rasdaman.com.

Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 Peter Baumann / rasdaman GmbH.

All trade names referenced are service mark, trademark, or registered trademark of the respective
manufacturer.

http://www.gnu.org/licenses
http://www.rasdaman.org/
mailto:baumann@rasdaman.com

rasdaman C++ Developers Guide

© p.3

Preface

Overview

This guide provides information about how to use the rasdaman database
system (in short: rasdaman). The booklet explains usage of raslib, the
rasdaman API, through its C++ binding.

Follow the instructions in this guide as you develop your application which
makes use of rasdaman services. Explanations detail how, from within a
C++ program, to create databases, collections, and instances; how to
retrieve from databases; how to manipulate and delete instances within
databases; how to influence physical storage parameters; how to do
transaction handling and other administrative tasks.

The rasdaman interfaces are available on different operating system
platforms. Although there are some differences in the way rasdaman
appears in these different versions, the functionality is the same.

rasdaman C++ Developers Guide

© p.4

Audience

The information in this manual is intended primarily for application
developers and for database administrators.

Rasdaman Documentation Set

This manual should be read in conjunction with the complete rasdaman
documentation set which this guide is part of. The documentation set in its
completeness covers all important information needed to work with the
rasdaman system, such as programming and query access to databases,
guidance to utilities such as the graphical-interactive query tool rView, and
release notes.

In particular, current restrictions, known bugs, and workarounds are listed
in the Release Notes. All documents, therefore, always have to be
considered in conjunction with the Release Notes.

The rasdaman Documentation Set consists of the following documents:

• C++ Developer's Guide

• Java Developer's Guide

• Query Language Guide

• Installation and Administration Guide

• PostgreSQL Integration Guide

• Error Messages

• rView Guide

• Release Notes

rasdaman C++ Developers Guide

© p.5

Table of Contents

1 Introduction..7

1.1 Multidimensional Data ..7

1.2 rasdaman Overall Architecture ...8

1.3 Further Reading ...9

2 Terminology ...10

2.1 An Intuitive Definition..10

2.2 A Technical Definition...11

3 Application Examples ..13

3.1 Basic Application Program Structure..14

3.2 Insertion of MDD ..15

3.3 Lookup of an MDD set by its name ..17

rasdaman C++ Developers Guide

© p.6

3.4 Invocation of RasML statements ..18

4 raslib Classes ..20

4.1 Overview ..20

4.2 Type Classes..21

4.3 Object Classes ...22

4.4 System Classes..25

4.5 Schema Access Classes..28

4.6 Storage Layout Classes ...31

4.7 Error Classes..39

5 Linking MDD with Other Data ..42

5.1 Sessions...42

5.2 Collection Names ...43

5.3 Object Identifiers ..43

6 Compilation and Linkage of Client Programs ..45

6.1 Compilation ..45

6.2 Linkage...46

6.3 Client Environment Parameters..47

6.4 The Example Programs..47

6.5 Copyright Note ...48

6.6 Legal Note ..48

7 HTML Documentation..49

8 Class Index ..51

rasdaman C++ Developers Guide

© p.7

1 Introduction

1.1 Multidimensional Data

In principle, any natural phenomenon becomes spatio-temporal array data
of some specific dimensionality once it is sampled and quantised for
storage and manipulation in a computer system; additionally, a variety of
artificial sources such as simulators, image renderers, and data
warehouse population tools generate array data. The common charac-
teristic they all share is that a large set of large multidimensional arrays
has to be maintained. We call such arrays multidimensional discrete data
(or short: MDD), expressing the variety of dimensions and separating
them from the conceptually different multidimensional vectorial data
appearing in geo databases.

rasdaman is a domain-independent database management system
(DBMS) which supports multidimensional arrays of any size and di-
mension and over freely definable cell types. Versatile interfaces allow
rapid application deployment while a set of cutting-edge intelligent op-

rasdaman C++ Developers Guide

© p.8

timization techniques in the rasdaman server ensures fast, efficient
access to large data sets, particularly in networked environments.

1.2 rasdaman Overall Architecture

The rasdaman client/server DBMS has been designed using interna-
tionally approved standards wherever possible. The system follows a two-
tier client/server architecture with query processing completely done in the
server. Internally and invisible to the application, arrays are decomposed
into smaller units which are maintained in a conventional DBMS, for our
purposes called the base DBMS.

On the other hand, the base DBMS usually will hold alphanumeric data
(such as metadata) besides the array data. rasdaman offers means to
establish references between arrays and alphanumeric data in both di-
rections.

Hence, all multidimensional data go into the same physical database as
the alphanumeric data, thereby considerably easing database main-
tenance (consistency, backup, etc.).

Figure 1 Embedding of rasdaman in IT infrastructure

Further information on this topic is available in the other components of
the rasdaman documentation set.

rasdaman C++ Developers Guide

© p.9

1.3 Further Reading

n.n.: rasdaman Query Language Guide, rasdaman GmbH.

S.J. Cannan: SQL The Standard Handbook, McGraw-Hill Book Company,
London, 1993.

R.G.G. Cattell: The Object Database Standard: ODMG 2.0, Morgan
Kaufmann Publishers, California, 1997.

B. Stroustrup: C++ Programming Language, Addison-Wesley, 1997.

rasdaman C++ Developers Guide

© p.10

2 Terminology

This section gives an overview of the concepts underlying rasdaman and
raster databases. For details on the operational semantics of the model
the reader is strongly encouraged to study the rasdaman Query Language
Guide.

2.1 An Intuitive Definition

An array is a set of elements which are ordered in space. The space
considered here is discretized, i.e., only integer coordinates are admitted.
The number of integers needed to identify a particular position in this
space is called the dimension (sometimes also referred to as di-
mensionality). Each array element, which is referred to as cell, is posi-
tioned in space through its coordinates.

A cell can contain a single value (such as an intensity value in case of
grayscale images) or a composite value (such as integer triples for the
red, green, and blue component of a color image). All cells share the

rasdaman C++ Developers Guide

© p.11

same structure which is referred to as the array cell type or array base
type.

Implicitly a neighbourhood is defined among cells through their coordi-
nates: incrementing or decrementing any component of a coordinate will
lead to another point in space. However, not all points of this (infinite)
space will actually house a cell. For each dimension, there is a lower and
upper bound, and only within these limits array cells are allowed; we call
this area the spatial domain of an array. In the end, arrays look like
multidimensional rectangles with limits parallel to the coordinate axes. The
database developer defines both spatial domain and cell type in the array
type definition. Not all bounds have to be fixed during type definition time,
though: It is possible to leave bounds open so that the array can
dynamically grow and shrink over its lifetime.

Figure 2 Constituents of an array

Synonyms for the term array are multidimensional arrays, multidimen-
sional data, MDD. They are used interchangeably in the rasdaman
documentation.

In rasdaman databases, arrays are grouped into collections. All elements
of a collection share the same array type definition Collections form the
basis for array handling, just as tables do in relational database
technology.

2.2 A Technical Definition

Programmers who are familiar with the concept of arrays in programming
languages maybe prefer this more technical definition:

An array is a mapping from integer coordinates, the spatial domain, to
some data type, the cell type. An array's spatial domain, which is always
finite, is described by a pair of lower bounds and upper bounds for each

7 85 64

25
3023

22

spatial domaindimension

24

21
lower bound

upper bound

42
cell value

cell

rasdaman C++ Developers Guide

© p.12

dimension, resp. Arrays, therefore, always cover a finite, axis-parallel
subset of Euclidean space.

Cell types can be any of the base types and composite types defined in
the ODMG standard and known, for example from C/C++. In fact, every
admissible C/C++ type is admissible in the rasdaman type system, too.

In rasdaman, arrays are strictly typed wrt. spatial domain and cell type.
Type checking is done at query evaluation time; it can be disabled
selectively for any lower and upper bound of an array, thereby allowing for
arrays whose spatial domain varies over the array lifetime.

rasdaman C++ Developers Guide

© p.13

3 Application Examples

The following sections contain three examples of using the rasdaman API.
Every example contains a code fragment including variable declarations
and definitions, database open/close and transaction begin/commit
statements. The numbers at the beginning of the code lines are used as
references in the explaining text. Code segments which are in more than
one example are explained where they occur first. For more clarity, error
handling was omitted.

As raslib heavily makes use of templates, some platform specifics have to
be considered when compiling and linking application programs. These
are collected in Section 6.

For details on the operational semantics of the rasdaman data model the
reader is strongly encouraged to study the rasdaman Query Language
Guide.

rasdaman C++ Developers Guide

© p.14

3.1 Basic Application Program Structure

 Operation sequence
In order to access data in a database, variables have to be first defined
and initialized, the database has to be opened and a transaction started.
In the end, the transaction has to be committed and the database closed.
Hence, an application basically consists of the following components
(sample C++ code interspersed as far as rasdaman access is concerned):

• Declaration and definition of database and transaction variables and
other data like images or image sets

r_Database database;

r_Transaction transaction;

• Set the server name using the default port 7001.

 database.set_servername("ServerName");

• Set user identification.

 database.set_useridentification("me", "myPassword");

• Open the database.

 database.open("DatabaseName");

• Begin the transaction.

 transaction.begin();

• Work with the database.

• Commit the transaction.

 transaction.commit();

• Close the database.

 database.close();

Synchronous query execution

When a query is sent to the rasdaman server it will be executed in
completeness – a running query cannot be aborted1. Care should be
taken therefore not to start queries requiring resources beyond the
capability of the server hardware and software environment, as the
rasdaman service may be blocked for an indefinite time period.

1 This has nothing to do with transactions – after each completion of a
query, the embracing transaction can be aborted indeed.

rasdaman C++ Developers Guide

© p.15

3.2 Insertion of MDD

The first example creates a new MDD set with the name MDDSet and
inserts two images into this set. The first image is initialized with zero and
the pixels of the second one carry a combination of their coordinates (x +
10*y) as values.

(1) r_Database database;

r_Transaction transaction;

r_Minterval domain;

r_Ref< r_Marray<r_ULong> > image;

r_Ref< r_Set< r_Ref< r_Marray<r_ULong> > > > image_set;

(2) database.set_servername("ServerName");

database.set_useridentification("me", "myPassword");

(3) database.open("DatabaseName");

(4) transaction.begin();

(5) image_set = new(&database, “ULongSet”)

 r_Set< r_Ref< r_Marray<r_ULong> > >;

(6) database.set_object_name(*image_set, "CollectionName");

(7) domain = r_Minterval(2) << r_Sinterval(0l, 9l)

 << r_Sinterval(0l, 9l);

 image = new(&database, “ULongImage”)

 r_Marray<r_ULong>(domain, 0ul);

(8) image_set->insert_element(image);

(9) image = new(&database, “ULongImage”)

 r_Marray<r_ULong>(domain, &initWithCoordinates);

(10) image_set->insert_element(image);

(11) transaction.commit();

(12) database.close();

 Explanations

(1) The variable declaration part includes one instance of type
r_Database to represent the database and one instance of type
r_Transaction to serve for the transaction handling. The domain
of type r_Minterval is used for specifying the spatial domain of the
images. In order to hold a persistent image, image has to be
declared as an r_Ref pointer on the r_Marray structure. The same
applies for image_set which is an r_Ref to the set of images.

(2) The server name is set (see Section 4.4.1) and the spatial domain
domain is initialized with [0:9,0:9]. Therefore, a temporary two-
dimensional object of type r_Minterval, which is filled with
r_Sintervals specifying lower and upper bounds for each
dimension, is assigned to domain.

rasdaman C++ Developers Guide

© p.16

(3) An open message with the database name is sent to the database
object.

(4) The transaction is opened using the transaction object.

(5) Memory for the image set is allocated using the new operator of
class r_Object. As additional arguments, the new operator gets
the database object in which it is to be inserted and the type name
which was created in the database using the RasDL processor (see
Query Language Guide, Section 4).

(6) To give a name to the set for later retrieval, a set_object_name
message is sent to the database object.

(7) Memory for a persistent object of type r_Marray is allocated using
the new operator of r_Ref. Again, the new operator gets the current
database and the type name of the MDD object (insertion of types
is described in the Query Language Guide, Section 4). The
constructor of r_Marray gets the value zero which is used for
initializing the whole MDD.

(8) The image created in (7) is now inserted into the set. From now on,
the persistent object is accessible via the collection.

(9) The second image is created with a function pointer as second ar-
gument for the r_Marray constructor. The function must be of type
r_ULong (*initFunction)(const r_Point& pt). The function is
invoked for each cell of the MDD with the current coordinates of the
cell passed as the pt argument. The result value of type r_ULong is
taken for the initial value of the cell.

(10) The image created in (9) is inserted into the set.

(11) The transaction is committed. At this time, the image set is created
in the database and the images are inserted. The data is made
persistent and becomes visible to other transactions. The transient
memory used to store the image on client side is freed and pointers
to these objects (image_set and image) become invalid.

(12) The last statement closes the database.

For completeness, the following code segment describes the function
used for initializing each cell of an MDD with the coordinates x+256*y:

r_ULong initWithCoordinates(const r_Point& pt)

{

 r_ULong value = 0;

 int factor = 1;

 for(int i = pt.dimension()-1; i >= 0; i--)

 {

 value += factor * pt[i];

rasdaman C++ Developers Guide

© p.17

 factor *= 0x100;

 }

 return value;

}

3.3 Lookup of an MDD set by its name

This example demonstrates retrieval of a set containing MDD objects as
elements and iteration through the retrieved result set using raslib.

 r_Database database;

r_Transaction transaction;

r_Ref< r_Set< r_Ref< r_GMarray > > > image_set;

r_Ref< r_GMarray > image;

(1) r_Iterator< r_Ref< r_GMarray > > iter;

 database.set_servername("ServerName");

database.set_useridentification("me", "myPassword");

database.open("DatabaseName");

(2) transaction.begin(r_Transaction::read_only);

(3) image_set = database.lookup_object("CollectionName");

(4) iter = image_set->create_iterator();

(5) for(iter.reset();iter.not_done(); iter++)

{

(6) image = (*iter);

 // work with the image

 // for example print its spatial domain

(7) cout << image->spatial_domain() << endl;

}

(8) transaction.commit();

database.close();

 Explanations

(1) An iteration variable named iterator is defined. It needs the ele-
ment type of the collection being iterated as template argument.

(2) A read-only transaction is started for the retrieval query. Read-only
transactions should be used whenever possible, i.e., when no
update operations occur within this transaction, in order to have
maximal performance.

(3) The set is retrieved by sending a lookup_object message with the
set name to the database object. At this moment, just a set of object
identifiers is sent back to the client.

rasdaman C++ Developers Guide

© p.18

(4) The statement creates an iteration variable pointing to the first
element of the set.

(5) A simple for loop is used for iterating through the collection.

(6) An element of the collection, which is an r_Ref pointer to the MDD
object, can be accessed by dereferencing the iteration variable
iter.

(7) The image itself is retrieved from the server when the r_Ref pointer
is dereferenced for the first time.

(8) The query result is valid only until transaction end.

3.4 Invocation of RasML statements

This example shows the creation and invocation of RasML queries using
the raslib classes:

(1) r_Minterval select_domain = r_Minterval("[0:4,0:4]");

r_Minterval where_domain = r_Minterval("[8:9,8:9]");

char collection_name[] = "CollectionName";

r_ULong threshold_value = 10;

 r_Database database;

r_Transaction transaction;

r_Set< r_Ref< r_GMarray > > image_set;

r_Ref< r_GMarray > image;

r_Iterator< r_Ref< r_GMarray > > iter;

rasdaman C++ Developers Guide

© p.19

 database.set_servername("ServerName");

database.set_useridentification("me", "myPassword");

database.open("DatabaseName");

(2) transaction.begin(r_Transaction::read_only);

(3) r_OQL_Query query("select a$1 from $2 as a where \

 some_cells(a$3 > $4)");

(4) query << select_domain << collection_name

 << where_domain << threshold_value;

(5) r_oql_execute(query, image_set);

 iter = image_set.create_iterator();

 for(iter.reset(); iter.not_done(); iter++)

{

 image = (*iter);

 // work with the image

}

 transaction.commit();

 database.close();

 Explanations

(1) Two domains, a collection name, and a threshold value are defined
to use them at creation stage of the RasML query.

(2) A read-only transaction is started for the retrieval query. Read-only
transactions should be used whenever possible, i.e., when no
update operations occur within this transaction, in order to have
maximal performance.

(3) The query object of type r_OQL_Query is created and initialized with
the parameterized query string.

(4) The query parameters are filled using the stream input operators on
the query object. First, the domain of type r_Minterval for the
select part is applied, then the collection name, the domain for the
where clause, and the threshold value are inserted. The resulting
query string looks like follows:

select a[0:4,0:4]

from CollectionName as a

where some_cells(a[8:9,8:9] > 10)

(5) Finally, the query is executed using the global function
r_oql_execute. The query result is returned in the call-by-refer-
ence parameter image_set. As query results are transient, the data
of the whole result is sent to the client at this point.

rasdaman C++ Developers Guide

© p.20

4 Raslib Classes

4.1 Overview

The raslib classes represent the rasdaman programming interface. It
relies on the ODMG standard with some extensions supporting a smooth
integration of the rasdaman-specific array structures into the conventional
C++ programming model.

raslib classes are categorized in

• Type Classes providing type information for MDD objects,

• Object Classes for handling persistent MDD objects,

• System Classes for general tasks such as session maintenance and
database querying,

• Schema Access Classes to get runtime type information,

• Storage Layout Classes for handling the storage structure, and

• Error Classes for error handling.

rasdaman C++ Developers Guide

© p.21

4.2 Type Classes

Figure 3: Primitive Types

The types r_Long, r_ULong, r_Short, r_UShort, r_Octet,

r_Char, r_Boolean, r_Float, and r_Double are atomic, serving as
base types for MDD objects. Composite types built from atomic (primitive)
or other complex (structured) types are built using the record (struct)
constructor.

Complex numbers, while by nature equivalent to a record structure
{float re,im;}, are provided as a built-in type. Type complex
implements complex numbers on single-precision float components while
complexd implements double-precision.

Null values, i.e., values of cells which have not been assigned a value yet,
always are the numerical zero value of the corresponding type. This
extends in the obvious way to composite cells.

RasDL C++ binding Length Description

Octet r_Octet 8 bit signed integer

Char r_Char 8 bit unsigned integer

Short r_Short 16 bit signed integer

unsigned short r_Ushort 16 bit unsigned integer

Long r_Long 32 bit signed integer

unsigned long r_Ulong 32 bit unsigned integer

Float r_Float 32 bit single precision floating
point

Double r_Double 64 bit double precision float-
ing point

Boolean r_Boolean 1 bit2 true (nonzero value)
false (zero value)

complex r_Complex 64 bit Single precision
complex number

complexd r_Complexd 128 bit Double precision
complex number

2 memory usage is one byte per pixel

r_Long r_ULong r_Short r_UShort r_Octet

r_Char r_Boolean r_Floatr_Double

rasdaman C++ Developers Guide

© p.22

4.3 Object Classes

Object Classes are used for the data exchange with the database. They
consist of classes able to generate and handle persistent arrays, i.e.,
arrays stored in a database, intervals, multidimensional intervals,
multidimensional points, and scalar data which can either be atomic
(primitive) or complex (structured). Figure 4 below shows the object
classes provided by rasdaman.

Figure 4: Object Classes

4.3.1 Class r_Point
Class r_Point handles multidimensional points.

 Example
r_Point pointname(5, 4);

4.3.2 Class r_Sinterval
Class r_Sinterval represents a one-dimensional interval with lower and
upper bound. Both bounds can either be fixed or variable (indicated by an
asterisk '*'). Operations on intervals are defined following conventional
interval arithmetics.

 Example
r_Sinterval(100L, 200L) specifies the interval [100:200].

4.3.3 Class r_Minterval
The spatial domain of an MDD is represented by an object of class
r_Minterval ("multidimensional interval"). It specifies lower and upper
bound of the point set for each dimension of an MDD. Internally, the class
is implemented through an array of intervals of type r_Sinterval.

r_Object

r_Collection

r_Marray

1..*

1

1 1

r_GMarray

r_OId

T

BaseType
r_Point r_Bag

T

r_Sinterval

r_Minterval

r_Scalar

r_Structure r_Primitive

rasdaman C++ Developers Guide

© p.23

 Example
r_Minterval intervalname(“[0:100, 0:300]”);

The object generated by the above expression yields the following output:

intervalname.dimension() → 2

intervalname[0].low() → 0

intervalname[0].high() → 100

4.3.4 Class r_OId
This handles object identifiers. Every array has a unique object identifier it
can be addressed with.

4.3.5 Class r_Object
r_Object is an abstract class. Instances can only be generated from the
non abstract classes inheriting from this class, that is r_Set, r_GMarray
and r_Marray<T>. All these subclasses are capable of having persistent
as well as transient instances and therefore are called persistent capable
classes.

Objects of these classes can be generated using the overloaded new
operator:

(1) void* operator new(size_t size)

(2) void* operator new(size_t size, r_Database *database,

 const char* type_name = 0)

(3) void* operator new(size_t size, const char* type_name)

(1) is used to create transient objects. The only argument is the size of
the new object.

(2) To generate persistent instances one also has to specify the database
the object is to be inserted in.

(3) is the new operator for transient objects carrying type information.

Calling the delete operator

void operator delete(void* obj_ptr)

removes the object from memory and, in case it is a persistent object,
from the database.

4.3.6 Classes r_Marray<T> and r_GMarray
The template class r_Marray<T> represents an MDD object over cell type
T. Class r_GMarray is more generic in that it is able to represent MDD
objects of any base type. This is necessary, firstly, for having a generic
class for query results where the base type is not known at compile time
and, secondly, for usage in the API where the final base types are not
known in advance either.

rasdaman C++ Developers Guide

© p.24

The template class r_Marray<T> for specific base types inherits from
r_GMarray; the constructor r_Marray<T>(r_GMarray&) is provided for
easy transformation to cell type safe m-arrays where the base type is
known at compile time. Operations for accessing single cells are only
available for r_Marray<T>.

4.3.7 Class r_Collection
r_Collection is an abstract class. It is the basic class of a collection.
Possible subclasses are r_Set , r_Bag and r_List. The protected
members isOrdered and allowsDuplicates are not initialized here, they
have to be initialized in the respective subclasses. The method

virtual void insert_element (const T& element, int

no_modification = 0)

inserts an element into the collection. If no_modification is set, the
mark_modified() method of r_Object is not invoked and, therefore, a
modification will not be recognized at the transaction commit point.

4.3.8 Class r_Set
The class implements a set container. It inherits most of the functionality
from r_Collection. The set can not have any duplicates and it is not
ordered. The method

virtual void insert_element (const T& element, int

no_modification = 0)

inserts an element into the collection. If no_modification is set, the
mark_modified() method of r_Object is not invoked and, therefore, a
modification will not be recognized at the commit point.

4.3.9 Classes r_Scalar, r_Primitive and r_Structured
The subclasses of r_Scalar are used to represent query results of the
primitive types r_Boolean, r_Char, r_Octet, r_Short, r_UShort,
r_Long, r_ULong, r_Float, r_Double and types composed of the
primitive ones.

Class r_Primitive supports type-safe value access methods.
r_Structure allows to access its elements by the subscript operator [].

 Examples
The following line shows access to an unsigned short value:

r_Primitive primitive;

...

r_UShort value = primitive.get_ushort();

A structured value consisting of three long values can be accessed as
follows:

r_Structure structuredValue;

...

for(int i=0; i<structuredValue.count_elements(); i++)

rasdaman C++ Developers Guide

© p.25

{

 value = ((r_Primitive&)structuredValue[i]).get_long();

...

}

4.4 System Classes

Figure 5: System Classes

4.4.1 Class r_Database
Class r_Database allows to open and close connections to a specific
database. The database name and the address of a running server
manager must be indicated. Further optional parameters are

• port number (default: 7001),

• access mode (read/write or read-only; by default: read-only),

• login (default: “rasguest”)

• password (default: “rasguest”).

A database object must be instantiated and opened before starting any
transaction on the database, and closed after ending these transactions
(with a commit or abort).

Which Server to Contact?
Note that the server/port to be indicated must address the rasdaman
server manager (not a particular rasdaman server); if in doubt, consult
your system administrator.

 Example
r_Database database;

database.set_servername("Server Name");

database.set_useridentification(“login name”, “passwd”);

database.open("Database Name");

...

database.close();

 Storage Format
The r_Database class also allows to set the storage format, both for
storage in MDD objects in the server and for their transfer between client
and server. See Section 4.6.9 for details.

r_Database r_Transaction r_Ref<T> r_Iterator<T> r_OQL_Queryr_Ref_Any

rasdaman C++ Developers Guide

© p.26

4.4.2 Class r_Transaction
To use a transaction, an object of type r_Transaction has to be in-
stantiated. Transactions can be started either in read/write or read-only
mode, committed, aborted, and checkpointed. It is important to note that
all access, creation, modification, and deletion of persistent objects must
be done within a transaction. In order to achieve maximal performance,
read-only transactions should be used whenever possible, i.e., when no
update operations occur within this transaction. Right now, only one
transaction can be active at a time and no checkpointing is supported.

r_Transaction transaction;

transaction.begin();

...

transaction.commit();

4.4.3 Classes r_Ref<T> and r_Ref_Any
An instance of template class r_Ref<T> is a reference to an instance of
type T and is used to reference persistent sets (r_Set<T>) and MDD
objects (r_GMarray and r_Marray<T>). It behaves like a normal C++
pointer but is capable of managing persistent data of type T within a
transaction. In case the r_Ref<T> pointer is dereferenced (using the
operator ->) and the object it is pointing to is not in the client memory yet,
it is retrieved from the server.

The class r_Ref_Any is defined to support a reference to any type. Its
primary purpose is to handle generic references and allow conversions of
r_Ref<T> in the type hierarchy. A r_Ref_Any object can be used as an
intermediary between any two types r_Ref<X> and r_Ref<Y> where X
and Y are different types. A r_Ref<T> can always be converted to a
r_Ref_Any; there is a function to perform the conversion in the r_Ref<T>
template. Each r_Ref<T> class has a constructor and assignment
operator that takes a reference to a r_Ref_Any.

4.4.4 Class r_Iterator<T>
The template class r_Iterator<T> defines the generic behavior for
iteration. An object of this class can be used within a for loop for iterating
through a collection of MDD objects. All iterators use a consistent protocol
for sequentially returning each element from the collection over which the
iteration is defined. When an iterator is constructed, it is either initialized
with another iterator or is set to null. When an iterator is constructed via
the method r_Collection<T>::create_iterator(), the iterator is
initialized to point to the first element, if there is one.

4.4.5 Class r_OQL_Query and the freestanding function r_oql_execute()
A query statement is represented through an object of class r_OQL_Query
(see Section 3.4). The r_OQL_Query constructor gets a query string which
optionally can be parametrized. In this case, $i indicates the i-th
parameter. The $i do not have to appear in a strict order – for example,
$3 may appear before $2 in the statement.

rasdaman C++ Developers Guide

© p.27

The overloaded stream input operator inserts the corresponding
parameter values into the query, at the same time preserving their
respective types. The query object expects parameters in the sequence of
$1, $2, and so on. If any of the $i is not followed by a parameter at the
point r_oql_execute() is called, an r_Error exception object of kind
r_Error_QueryParameterCountInvalid will be thrown.

A query is executed against an open database through invocation of the
freestanding function r_oql_execute(). This overloaded function exists
in three variants:

void r_oql_execute(r_OQL_Query & query)

void r_oql_execute(r_OQL_Query & query,

 r_Set<r_Ref<r_GMarray>> & result_set)

void r_oql_execute(r_OQL_Query & query,

 r_Set<r_Ref<r_Any>> & result_set)

The first version is used for insert, update, and delete statements
where no result is passed back. The second version is used for select
statements where an MDD is returned; in this case, the second parameter
receives the query result. The third case is for general query results which
may also contain non-MDD return values, e.g., resulting from select
oid(…) or select sdom(…) statements. This version will also be used
when the result type of a query is not known in advance (i.e., at compile
time). In this case, an r_Ref_Any object is returned, and the application is
responsible for decoding the proper type. In support of this, r_Ref_Any
objects contain their type information (see Section 4.5.15).

In all cases, the result_set parameter does not have to be initialised,
and any previous contents is discarded by r_oql_execute().

Once a query has been executed via r_oql_execute(), the arguments
associated with the $i parameters are cleared and new arguments must
be supplied.

 Example
The following code fragment creates a query string with two parameters
$1 and $2.

r_OQL_Query query1("select a$1 from $2 as a");

Now two query parameters are generated:

r_Minterval select_domain = r_Minterval(2)

 << r_Sinterval(100L, 199L)

 << r_Sinterval(0L, 149L);

char collection_name[] = "mr";

Next, the parameters are attached to the query using the stream operator:

query1 << select_domain << collection_name;

The resulting query string is

rasdaman C++ Developers Guide

© p.28

“select a[100:199, 0:149] from mr as a”

 Example
The following code shows how to attach an MDD object to an insert
query:

(1) r_Marray<r_Char> mddObject(...);

(2) r_OQL_Query query("insert into mr1 values $1");

(3) query << mddObject;

Explanation:

(1) A transient MDD named mdd is created.
(2) The query object of type r_OQL_Query is initialized with an insert

query statement including a placeholder $1.
(3) The MDD object is attached to the parameter $1 of the query.

4.5 Schema Access Classes

The rasdaman Schema Access Classes enable the user to determine the
type of a query result at runtime.

The following Schema Access Classes are provided:

Figure 6: Schema Access Classes

4.5.1 Class r_Meta_Object
Instances of class r_Meta_Object are used to describe elements of type
information. The class holds a name standing for the type name of its
instances.

r_Meta_Object

r_Base_Type

r_Structure_Type r_Primitive_Type

r_Attribute

r_Property

r_Point_Type

r_OId_Type

r_Sinterval_Type

r_Minterval_Type

r_Marray_Type
r_Collection_Type

r_Type

rasdaman C++ Developers Guide

© p.29

4.5.2 Class r_Type
r_Type is an abstract base class for all type descriptions. It provides
runtime type information through the method type_id() which returns a
value of type r_Type_Id. It is an identifier of the following list:

BOOL, OCTET, CHAR, SHORT, USHORT, LONG, ULONG, FLOAT,
DOUBLE, STRUCTURETYPE, MARRAYTYPE, COLLECTIONTYPE,
SINTERVALTYPE, MINTERVALTYPE, POINTTYPE, OIDTYPE

4.5.3 Class r_Collection_Type
The class represents the type of a collection object. The type of the
collection elements can be determined using method element_type().

4.5.4 Class r_Base_Type
r_Base_Type is an abstract base class for all type descriptions allowed as
MDD base types which can either be primitive or structured types. The
method size() delivers the size of a type instance in bytes.

4.5.5 Class r_Primitive_Type
This class represents all primitive types in the ODMG-conformant
representation of the rasdaman type system.

4.5.6 Class r_Structure_Type
This class represents all user defined structured types in the ODMG-
conformant representation of the rasdaman type system. They are
returned using the method print_status(). Members are described by
r_Attribute instances and represent the state or the structure. They can
be accessed using an iterator of type attribute_iterator. Structures
do not have object identity.

4.5.7 Class r_Property
This class is an abstract base class for all elements describing the state of
an application-defined type. Right now, the only subclass is r_Attribute.

4.5.8 Class r_Attribute
An instance of r_Attribute describes an object or a literal. An attribute
has a name and a type. The name is returned by the inherited method
r_Meta_Object::name(). The type description of an attribute can be
obtained using the inherited method r_Property::type_of(). The
method offset() gives back the byte offset of the corresponding data
area within a structure. If the attribute is not defined within a structure, the
offset is zero.

 Example
The structure

rasdaman C++ Developers Guide

© p.30

struct

{

 char red;

 char green;

 char blue;

};

has three attributes. The name of the third one, for example, is blue, its
type is char and its offset 2.

4.5.9 Class r_Minterval_Type
The class represents the type of an r_Minterval object.

4.5.10 Class r_Sinterval_Type
The class represents the type of an r_Sinterval object.

4.5.11 Class r_Point_Type
The class represents the type of an r_Point object.

4.5.12 Class r_Marray_Type
The class represents the type of an r_Marray object. The base type of the
MDD object can be determined using the method base_type().

4.5.13 Class r_Oid_Type
The class represents the type of an r_Oid object. The only meaningful
comparison operations are equality and inequality of two OIDs.

4.5.14 Entry Points of the Type Schema

The type information can be accessed using one of the following methods:

const r_Type* r_Object::get_type_schema()

const r_Base_Type* r_GMarray::get_base_type_schema()

const r_Type* r_Collection::get_element_type_schema()

4.5.15 Example: Dynamic Type Information of a Query Result

In a query, new structures can be created which are not already defined in
the database schema. For example, the following query forces the server
to introduce an array type based on a 2-component cell structure:

select { img.red, img.green }

from rgb as img

Regardless of a result object’s type being a database type or created on
the fly, the type information can be accessed using the previously
introduced type functions. The following – incomplete – code piece prints
out the type information associated with the MDD objects of a query
result.

rasdaman C++ Developers Guide

© p.31

r_Bag< r_Ref_Any > result_set;

// ...query preparation...

r_oql_execute(query_object, result_set);

r_Iterator< r_Ref_Any > iter = result_set.create_iterator();

for(iter.reset(); iter.not_done(); iter++, i++)

{

 switch(result_set.get_element_type_schema()->type_id())

 {

 case r_Type::MARRAYTYPE:

 r_Ref<r_GMarray>(*iter)->print_status(cout);

 break;

 case r_Type::POINTTYPE:

 r_Ref<r_Point>(*iter)->print_status(cout);

 break;

 // etc.

 }

}

Note that a result set may contain structures other than MDD, e.g., when a
spatial domain or some aggregate scalar is specified in the select clause!

 Example
The query

select sdom(a) [0].lo

from mr as a

returns a set of integer values.

4.6 Storage Layout Classes

A specialized storage structure for MDD objects is used in secondary
storage, which is designed to provide fast access to persistent MDD
objects for the most typical operations on such objects. This storage
structure is configurable so that it is possible to set the different
parameters (storage options) that define it. The storage options for an
MDD object should be set depending on the access characteristics
expected for that object. The current version allows to configure tiling (i.e.,
the subdivision algorithm used for the MDD objects) and storage format
(i.e., the way how MDD tiles are encoded and compressed in the
database and how MDD objects are compressed for client/server
transfer).

Tiling is the subdivision of the MDD object into multidimensional blocks
(tiles) of the same dimensionality as the MDD object. A tile is a
multidimensional subarray of an MDD object. Tiling enables fast access to
parts of an MDD, since only the tiles intersected by an access are
retrieved by rasdaman. Tiling may be done in different ways, resulting in
tiles with different formats and sizes. For example, tiles in a two
dimensional image may be squares or rectangles with different sizes.

rasdaman C++ Developers Guide

© p.32

Figure 7: Tiling of a 2-D image.

In rasdaman, tiling is done according to a tiling scheme. Different tiling
schemes allow the user to specify the subdivision of the domain in
different ways. The choice of the tiling scheme and tiling parameters for
an MDD object should be based on the most common type of access to
the MDD object. The following tiling schemes are provided: aligned,
default, directional, areas of interest and statistical tiling. All tiling schemes
take into account the tile size parameter, which defines the maximum size
in characters for individual tiles of the MDD object.

Aligned tiling divides the object into blocks which are aligned and have the
same specified format. Default tiling is the tiling scheme used in case no
specific tiling scheme is specified for an MDD object. It is a
multidimensional block with sizes of equal lengths along all the directions
of the domain. In directional tiling, the MDD object is divided into blocks
defined by a partition of the domain of the MDD along different directions
of the domain. This subdivision is appropriate for objects which are
accessed through selection of linear ranges along only part of the
directions of the domain.

The storage format indicates how tiles of an object are stored in the
database. This addresses both encoding and compression. Some en-
coding always has to be chosen; for compression, various alternatives are
available, ranging from uncompressed storage over losslessly
compressed to lossy compressed data.

An overview of the storage layout classes is given in the following figure:

rasdaman C++ Developers Guide

© p.33

Figure 8: Storage Layout Classes

4.6.1 Class r_Storage_Layout and r_Domain_Storage_Layout
The classes of the r_Storage_Layout hierarchy are used to express the
storage options for r_Marray objects. If an r_Storage_Layout object is
passed to the r_Marray constructor, the options specified in it determine
the structure of the object in persistent storage, otherwise, the default
storage layout is used. It is important to note, however, that the notiling
option of the client, activated by an environment variable, overrides the
storage layout tiling options specified through r_Storage_Layout. If the
rasdaman client is running with the option notiling, no tiling is done,
independently of the storage layout chosen.

For more advanced control of consistency between storage options and
MDD objects, different subclasses of r_Storage_Layout are defined. The
r_Domain_Storage_Layout class is used for MDD objects with specified
domains. When passed to the MDD constructor, the domain provided to it
as a parameter is checked against that of the MDD object and an error is
generated if there is incompatibility. This design also insures compatibility
between tiling schemes and storage layouts.

4.6.2 Class r_Tiling
Storage layout classes allow setting of the tiling option through instances
of r_Tiling classes. When an r_Marray object is made persistent, in the
rasdaman client the object is divided into blocks according to the tiling
chosen for the object. These tiles are sent to the server and stored to
constitute the MDD object. An index is built to access the tiles belonging
to the MDD object.

r_Tiling

r_Interest_Tiling

r_Accessr_Dir_Tiling

r_Domain_Storage_Layout

r_Dir_Decompose

r_Stat_Tiling r_Default_Tiling

r_Aligned_Tiling

r_Storage_Layout

rasdaman C++ Developers Guide

© p.34

Each derived class of r_Tiling implements a different decomposition
method or tiling scheme. The following tiling classes are provided:

r_Aligned_Tiling

r_Default_Tiling

r_Dir_Tiling

r_Interest_Tiling

r_Stat_Tiling.

All these tiling schemes evaluate the tile size parameter tile_size which
is the size of a tile in bytes. The default tile size is that specified for the
rasdaman client.

Next, these tiling subclasses will be explained.

4.6.3 Class r_Aligned_Tiling
Aligned tiling is the regular tiling of an MDD object. Parameters provided
are the tile format and tile size. The tile format specifies the sizes of a
block along the different directions of the domain. These are interpreted
as relative sizes. For example, if a [0:0,0:1] tile format is specified and
a tile with exactly that format would have a size much smaller than the
given tile size, that tile is stretched proportionally along all directions, so
that the final tiles are twice as long in the second direction as in the first
and have a size as close as possible to the tile size. An open interval
(indicated by an asterisk “*”, see documentation for r_Sinterval and
r_Minterval) along one of the directions specifies a direction of
preferential access. Tiles will be made as long as possible in that
direction.

4.6.4 Class r_Default_Tiling
This class specifies the default tiling scheme. It corresponds to tiling into
blocks with the same length along each of the directions. The length is
calculated based on the tile size, so that tile sizes are as close as possible
to the given tile_size parameter.

4.6.5 Class r_Dir_Tiling
r_Dir_Tiling implements non-regular decomposition along specific
directions of an MDD object. This tiling scheme allows a non-regular
subdivision of the space. The user has to give the number of dimensions
of the space and the decomposition wanted for each dimension.

4.6.6 Class r_Dir_Decompose
The r_Dir_Decompose class is used to specify a decomposition along one
direction, i.e., dimension. The resulting tiling structure consists of a non-
uniform grid where each grid line goes completely through the MDD and
the distance between parallel gridlines is arbitrary.

rasdaman C++ Developers Guide

© p.35

An array of r_Dir_Decompose objects, with one element for each
direction, must be provided.

 Example
To specify tiling restrictions on the first two dimensions of a three-
dimensional MDD object, the following code would apply:

r_Dir_Decompose decomp[3];

decomp[0] << 0 << 20 << 40 << 50;

decomp[1] << 0 << 15 << 20 << 50 << 60;

r_Dir_Tiling Tiling3DMDD(3, decomp, ts);

ts in the last line specifies the tile size. The first and last elements put into
the r_Dir_Decompose object must be the origin and limit of that dimension
or a cross-section of the domain will occur (as if the elements outside the
specification wouldn't mind). In this code example the first dimension is
going from 0 to 50 and the second one from 0 to 60.

4.6.7 Class r_Interest_Tiling and Dlist
The class r_Interest_Tiling implements the areas of interest tiling
algorithm. The user specifies which areas are of interest (areas which are
accessed very often) and tiling is performed accordingly, in order to
optimize access to those areas. Dlist is a double-linked list, which is
used to specify a set of areas of interest to the r_Interest_Tiling
objects.

Figure 9: 2-D MDD object with two areas of interest

 Example:
If the areas [10:20, 50:60] and [18:50, 65:70] are of interest in the
[0:1000,0:1000] domain, the following code does specification:

{

 ...

 r_Minterval domain(“[0:1000,0:1000] ”);

 r_Minterval interest1(“10:20,50:60] ”);

 r_Minterval interest2(“[18:50,65:70] ”);

 DList< r_Minterval > interest_areas;

 interest_areas.insert_element(interest1);

 interest_areas.insert_element(interest2);

 r_Interest_Tiling(interest_areas);

rasdaman C++ Developers Guide

© p.36

 ...

}

In addition to the list of areas of interest, two further parameters can be
passed to the constructor, which are default arguments of the constructor :

r_Interest_Tiling(DList<r_Minterval>& ias,

 Tilesize_Limit strat = SUB_TILING,

 unsigned long ts=RMInit::tileSize)

ts specifies the tile size to be used, whereas strat is the tile size
limitation strategy. The areas of interest algorithm splits the multi-
dimensional array into tiles aligned with the areas of interest so that future
accesses to those areas result in no cells outside the area being loaded
from disk. In order to perform this, the algorithm first calculates a
maximum partition of the space using the directional tiling algorithm. Since
this is suboptimal and the resulting tiles might have sizes greater than
tileSize it then performs further merges or subtiling, depending on the
tile size limitation strategy. The supported options for it are the following:

• NO_LIMIT: The blocks generated can have any size.

• REGROUP: Only when performing grouping/merging of tiles, the size of
the resulting tile of two merges is checked against tileSize. If it is
larger, they are not merged. Tiles larger than tileSize may exist (for
instance, if the user specifies an interest area with a size larger than
tileSize).

• SUB_TILING: In this strategy, regrouping is done regardless of the size
of the generated tiles. After all the blocks are created, sub-tiling is
performed on those whose size is larger than the tile size.

• REGROUP_AND_SUBTILING: This combines the last two strategies.
When merging blocks, tiles larger than tileSize are never created
and, when the final tiles are all created, sub-tiling is performed on
those whose size is larger then tileSize.

4.6.8 Class r_Stat_Tiling and r_Access
These classes support statistic tiling and specification of access patterns,
respectively. Statistic tiling splits MDD objects based on the access
patterns passed to it as a parameter. It actually detects areas of interest
out of a set of accesses and then performs tiling by using the areas of
interest tiling algorithm. In order to determine the areas of interest, the
algorithm performs a check of overlapping accesses to reduce accesses
which correspond to the same area of interest to one single area of
interest. In this step, the criteria used to reduce a set of accesses to a
single area of interest is that if a group of accesses are near up to a given
threshold, then they correspond to a single area of interest which is the
minimum interval covering the accesses.

The statistic tiling algorithm then eliminates some of the areas of interest.
It performs a check of the number of times each of the detected areas was
accessed. Those which were accessed less than a given threshold are

rasdaman C++ Developers Guide

© p.37

eliminated (they are accessed too few times to be considered areas of
interest).

Three parameters are passed in the constructor of the r_Stat_Tiling
class:

r_Stat_Tiling(unsigned int border_th = DEF_BORDER_THR,

 double interesting_th = DEF_INTERESTING_THR,

 unsigned long ts = RMInit::tileSize)

border_th is the border threshold for considering two access patterns to
be the same, interesting_th is the interesting threshold, i.e., the
percentage of accesses that must take place so that an area is considered
being of interest when performing tiling and also ts, the tile size.

A call to update_stat_information() should be made prior to
performing tiling, so that the statistic information about the accesses to the
object can be updated and the tiling operation prepared.

void r_Stat_ r_Access::update_stat_information(

 DList< r_Access > & stat_info)

This method inputs the statistic information into the class and calculates
the new interest areas that will be used to perform tiling on the object.
r_Stat_Tiling contains a list with the statistical information. This list is
updated by the method. At the end, the list will contain the filtered and
updated accesses count. This information can be used again as input to
the method, or it can be stored for later usage.

The class r_Access represents an access pattern to a certain object.
r_Stat_Tiling receives a list of these objects so that an appropriate
tiling can be defined. The r_Access constructor

r_Access(const r_Minterval& region,

 unsigned long accesses = 1)

takes as parameter the interval and the number of times the MDD
subarray with domain region was accessed.

4.6.9 Class r_Convertor and Subclasses
The storage format indicator specifies the compression method used to
compress / decompress tiles written to / retrieved from the database.

The transfer format indicator specifies the compression method used to
compress/decompress tiles when transferred between client and server.

By default storage and transfer format is r_Array which means encoding
in the server’s main memory format, without any compression. The
r_Database function set_transfer_format() allows to change transfer
format and compression, for both directions uniformly:

rasdaman C++ Developers Guide

© p.38

void set_transfer_format(r_Data_Format format,

 const char *formatParams=NULL)

The storage format in the server for MDD objects newly created by the
client and its currently open transaction is set through
set_storage_format():

void set_storage_format(r_Data_Format format,

 const char *formatParams=NULL)

Both functions understand these parameters, defined in the enumeration
type enum r_Data_Format in module raslib, see Table 1.

Table 1: Storage and transfer formats and their parameters

Compression
type

Enumeration
constant

Description

“direct”
storage

r_Array no compression,
row-major memory representation

r_TIFF TIFF format (2-D images, non-
compressing)

r_JPEG JPEG format (2-D, lossy compression;
not recommended!)

r_HDF HDF format (n-D, non-compressing)

r_PNG PNG format (2-D images, lossless
compression)

r_BMP BMP format (2-D images, non-
compressing)

r_VFF VFF format (3-D data, non-
compressing)

r_PPM PPM format (2-D binary/gray/colour
images, lossless)

R_TOR TOR format (used for 2-D geo laser
scan images, non-compressing)

Data
exchange
format

R_DEM ASCII format for 2-D digital elevation
data (non-compressing)

R_Auto_

Compression

automatic compression (lossless)

R_Zlib ZLIB compression (lossless)

R_RLE RLE compression (lossless)

Dedicated
compression
formats

(lossy if not
indicated
otherwise) R_Wavelet

_Haar

Haar Wavelet compression

rasdaman C++ Developers Guide

© p.39

r_Wavelet

_Daubechies

Daubechies 4-tap Wavelet compression

r_Sep_Zlib ZLIB compression, compress base
types separately (lossless)

r_Sep_RLE RLE compression, compress base types
separately (lossless)

r_Wavelet

_Daub

Daubechies n-tap Wavelet
compression, n=6, 8, ..., 18, 20

 r_Wavelet

_Least

Least asymmetric n-tap Wavelet comp.,
n=8, 10, ..., 18, 20

 r_Wavelet

_Coiflet

Coiflet n-tap Wavelet compression, n=6,
12, 18, 24, 30

 r_Wavelet

_Qhaar

Lossy Haar Wavelet compression

 Recommendations
• If space is not an issue, use r_Array storage for optimal performance.

• If compression is desired, use r_RLE for relatively homogeneous data,
r_Zlib in general. R_Sep_Zlib and r_sep_RLE give an advantage in the
compression rate whenever the cell type has a larger number (say, 3
and above) of cell components. All these compress lossless, i.e. a
compressed object inserted into the database will look the same after
extraction.

• Use lossy compression only if you are sure that database users can
live with information being filtered out of the original data.

• Almost all of the above formats have further parameters which allow
fine tuning. They are passed in a string as comma-separated
“name=value” pairs. See the r_Convertor class HTML documentation
for the admissible names and values.

• Moreover, a white paper is available from rasdaman GmbH if you really
want to go into the gory details.

 Warning
From the “dedicated compression formats” listed above, only the RLE,
SepRLE, Zlib, and SepZlib algorithms are fully released. The wavelet
algorithms are provided as beta versions only, using them for non-
experimental purposes is not recommended in the current version.

4.7 Error Classes

Figure 10 gives an overview on the rasdaman classes used to report on
error situations:

rasdaman C++ Developers Guide

© p.40

Figure 10: rasdaman Error Classes

4.7.1 Class r_Error
This class implements the relevant part of the ODMG C++ binding's
r_Error class. It extends exception handling through deriving special
classes for MDD specific errors. An error object consists of

• an error number which serves to uniquely identify the error,

• an error kind,

• an error text which verbally describes the error.

The error number, hence, serves as an index to a generic textual
description of the error.

Error texts are loaded from the text file errtxts located in
$RMANHOME/bin using the initialisation function initTextTable(). This
mechanism allows the system administrator to translate error messages
into target languages other than English.

If no error number is specified, the error kind will be used as error text.

The error description is received calling the member function what().

Further information on error messages can be found in Error Messages.

 Example

The following code fragment shows a typical try-catch block printing any
potential error reported by rasdaman.

try

{

 // rasdaman access

}

catch(r_Error& errorObj)

{

 cout << errorObj.what() << endl;

}

4.7.2 Class r_Eno_interval
This class represents an error object saying that the result is not an
interval.

r_Edim_mismatch

r_Eindex_violation

r_Error

r_Einit_overflow

r_Eno_cell

r_Eno_interval

r_Equery_execution_failed

rasdaman C++ Developers Guide

© p.41

4.7.3 Class r_Eindex_violation
r_Eindex_violation represents an error object saying that the specified
index is not within the bounds of the MDD object. In case the spatial
domain of object a is [0:199] and the user asks for a[300] an error
message of this class is raised.

4.7.4 Class r_Edim_mismatch
This class represents an error object saying that the dimensionalities of
two objects do not match.

4.7.5 Class r_Eno_cell
r_Eno_cell represents an error object saying that the result is no cell.
This happens f.e. if the cast operator for casting to the base type of class
r_Marray is invoked on an object which is not 'zero-dimensional'.

4.7.6 Class r_Einit_overflow
This class represents an error object saying that an initialization overflow
occured. This happens f.e. if the stream input operator is invoked more
often than the object has dimensions.

4.7.7 Class r_Equery_execution_failed
The class is used for errors occuring through query execution. In most
cases, the position which caused the error can be fixed. This position is
specified by line number, column number, and the token which is involved.
Additionally, the class is generic concerning the error type. Different error
types can be specified by stating the error number.

 Example
The following code segment shows possible error handling after query
execution:

try

{

 // execute a rasdaman query

}

catch(r_Equery_execution_failed& errorObj)

{

 cout << errorObj.what() << endl;

 cout << “Line No “ << errorObj.get_lineno();

 cout << “Column No “ << errorObj.get_columnno();

 cout << “Token “ << errorObj.get_token();

}

rasdaman C++ Developers Guide

© p.42

5 Linking MDD with Other Data

5.1 Sessions

Applications always maintain raster data and descriptive alphanumeric
data. The latter often are called metadata – a term we adopt for the
purpose of this discussion. Actually, all over the world a lot of effort
already has been put into metadata modelling, and many database
structures and metadata applications have been developed successfully.
rasdaman does not reinvent the wheel: metadata remain unchanged in
their (relational or object-oriented) database; they are not touched by
rasdaman, but remain under the sole control of the underlying
conventional DBMS (in the rasdaman documentation also referred to as
“base DBMS”).

Therefore, to work simultaneously with rasdaman and metadata, an
application has to open both a rasdaman database and the database
containing the metadata, and it must begin separate transactions in both
databases.

rasdaman C++ Developers Guide

© p.43

Opening of database in rasdaman and the metadata DBMS are
completely independent from each other, likewise are transactions in both
systems. They can be nested or interleaved in any way.

In order to embed MDD objects and MDD collections in underlying
databases, object identifiers and collection names may be used. These
constitute references to rasdaman objects (which are stored in the base
DBMS).

5.2 Collection Names

MDD collections in rasdaman must be named. This name can then be
used by an application as a reference to the MDD collection. The most
typical usage of these collection names is their storage in a base DBMS
object or tuple in order to reference an MDD collection which is related to
the object or tuple.

5.3 Object Identifiers

Each MDD object is uniquely identified in rasdaman by an object identifier.
Object identifiers are implemented by the r_OId class. A globally unique
object identifier has three components describing

• the system where it was created (system name),

• the database (base name) and

• the local object ID within the database.

The object identifier of a rasdaman object is returned by:

r_OId& r_Object::get_oid()

The object identifier may be used as a reference in an underlying data-
base.

To be used as a reference in the underlying database the object identifier
of a rasdaman object is stored as a member in an object of the underlying
database. This is illustrated by the following example:

rasdaman C++ Developers Guide

© p.44

class SatelliteImage

{

 private:

 Date acquisitionDate;

 Location acquisitionLoc;

 // local reference to rasdaman MDD object:

 double imageRasOid;

 ...

 ...

}

The member variable imageRasOid has to be translated into a rasdaman
object identifier. This translation is done by the r_OId constructor:

r_OId::r_OId(const char*)

The string representation for a specific object identifier is returned by:

const char* r_OId::get_string_representation()

rasdaman C++ Developers Guide

© p.45

6 Compilation and Linkage of Client Programs

6.1 Compilation

C++ applications using rasdaman have to include the header file
rasdaman.hh which resides in $RMANHOME/include. Technically,
rasdaman.hh includes further header files taken from the subdirectories of
$RMANHOME/include.

The class library makes intensive use of templates. As templates are
handled differently by the various compilers, individual measures have to
be taken. To this end, the header files are instrumented to recognise the
variable OSTYPE indicating the system platform. For example, setting
OSTYPE to linux-gnu (case-sensitive!) indicates a Linux/Gnu environ-
ment, whereas the value solaris indicates a SUN/ Solaris platform. You
should contact your dealer to find out which platforms are supported.

While in the deliverable sources (including the Makefiles provided)
platform issues are dealt with, it nevertheless is important to understand

rasdaman C++ Developers Guide

© p.46

the particularities. Therefore, some considerations follow next. If in doubt,
you may want to contact the hotline.

 Gnu
With the Gnu C++ compiler, the good way to handle templates is by early
template instantiation using the compile flag
-DEARLY_TEMPLATE. A template instantiation source file,
template_inst.hh, is provided in the $RMANHOME/include/raslib
directory; if the OSTYPE variable is set to linux-gnu, then this instantiation
file will be included automatically.

 Microsoft
With the Microsoft Visual C++ compiler, situation is similar as with Gnu
above: it also needs early template instantiation.

 Solaris
With the SUN-provided C++ compiler under Solaris, template instantiation
at compile time is done by looking at the .cc files in the
$RMANHOME/include subdirectories.

6.2 Linkage

For the linkage of an executable several libraries are needed. Those
delivered with rasdaman are located in the $RMANHOME/lib directory.

One common problem are the dynamic libraries needed, such as
libXmu.so. Usually there are different versions around. The version
needed by a rasdaman application can be found out with the Unix ldd
command which, for example, states:

 libtiff.so.3 => /usr/lib/libtiff.so.3 (0x4001b000)

 libstdc++-libc6.1-2.so.3 => not found

 libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 (0x4005e000)

 libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x40071000)

 libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x400bc000)

 libz.so.1 => /usr/lib/libz.so.1 (0x40160000)

 libm.so.6 => /lib/libm.so.6 (0x4016f000)

 libc.so.6 => /lib/libc.so.6 (0x4018c000)

 libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x40281000)

 libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x402a0000)

 libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x402ab000)

 libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x402c2000)

 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

As can be seen in the second line, libstdc++-libc6.1-2.so.3 cannot
be found whereas all other references to dynamic libraries can be
resolved. Sometimes a straightforward link to an older version helps, such
as

rasdaman C++ Developers Guide

© p.47

ln –s libstdc++-libc6.1-2.so.2 \

 $RMANHOME/lib/libstdc++-libc6.1-2.so.3

Obviously very much care should be taken when fooling the system like
this, and it is certainly not the recommended way.

Another common problem is to put the libraries into the right order in the
link command, and which of them have to be linked twice to resolve all
referenced symbols.

Some working examples can be found in the Makefiles of the delivered
examples.

6.3 Client Environment Parameters

To allow for easier application steering, raslib evaluates the environment
parameter RMANCLIENTOPT at program start-up. This variable can contain
options similar to command line option syntax.

If contradicting options are set (e.g., -tiling and -notiling), then the
last occurrence wins.

 Options Known
-timeout t set server communication timeout to t seconds
 (default: 3600)

-notimeout disable timeout, wait forever if necessary

-tilesize s set tile size to s bytes (default: 100000)

-notiling disable client-side tiling

-l logfile set log stream to logfile (default: ./client.log)

 Example
The following shell dialog shows how an environment is set before
invoking a rasdaman client. Settings done are: use timeout of 5 seconds,
write log output to /dev/null.

tcsh> export RMANCLIENTOPT=”-timeout 5 –l /dev/null”

tcsh> rview

6.4 The Example Programs

Three example programs are delivered in subdirectories of
$RMANHOME/examples:

• The insert program inserts an MDD with spatial domain [0:9,0:9] and
cell values of type ULong representing their coordinates into a specified
collection. If the collection does not exist, it will be created.

rasdaman C++ Developers Guide

© p.48

• The lookup program reads a specified collection and prints the MDDs
and their content.

• The query program sends a RasML query to the rasdaman server and
prints the retrieved result.

The code is well documented and produces ample screen output, so it
should be self explanatory. The programs are built by invoking make in the
corresponding subdirectory.

 Note

Before the test programs can be used, a database has to be created and
schema information has to be imported.

rasdl --basname db -c

rasdl --basename db -r odl/basictypes.odl -i

Further information on the rasdl processor can be found in the Query
Language Guide, Section 4.

6.5 Copyright Note

raslib contains code for password encoding based on MD5, located in the
C++ library $RMANHOME/lib/libcrypto.a. This library must be linked to
rasdaman applications in order to make them work.

Provision of this code is done in accordance with the GNU Library General
Public License (see www.gnu.org).

6.6 Legal Note

Note that under some legislations usage and/or distribution of crypto-
graphy code may be prohibited by law. If you have obtained the above-
mentioned library in or from a region under such a legislation, whatever
you do with it is fully under your own responsibility. Please inform
rasdaman GmbH about the source where you have it obtained from so
that we can take action against the violator.

rasdaman C++ Developers Guide

© p.49

7 HTML Documentation

All classes are described extensively in a set of HTML files shipped with
the software. Starting point into the whole documentation is
$RMANHOME/doc/index.html. Follow the “raslib” link to enter the
description of the C++ interface.

The documentation can be viewed with any Web browser. Only graphical
traversal between classes requires Java enabled; however, all links are
available in textual form, too.

Top-level entry to the documentation shows the alphabetical listing of
definitions, classes and functions; alternatively the class hierarchy display
can be selected. Every class name is linked to the related class
documentation. The subclass / superclass relations are indicated as
indentation levels in the class list. Clicking a class name expands into the
full class documentation consisting of three components.

First, there is the class inheritance hierarchy, including links to the direct
subclasses and superclasses. The second part gives a short description
of all class components, some of which have additional links to a more
detailed documentation in the third part of the page. In this third part there
is a detailed description of what the class does. Every time a class is used

rasdaman C++ Developers Guide

© p.50

inside method declarations as either a parameter or return value, a link to
the documentation of this class is provided.

rasdaman C++ Developers Guide

© p.51

8 Class Index

r_Access.. 36
r_Aligned_Tiling ... 34
r_Attribute .. 29
r_Base_Type ... 29
r_Boolean .. 21
r_Char.. 21
r_Collection.. 24
r_Collection_Type.. 29
r_Convertor.. 37
r_Database .. 25
r_Default_Tiling.. 34
r_Dir_Decompose.. 34
r_Dir_Tiling .. 34
r_Domain_Storage_Layout.. 33
r_Double .. 21
r_Edim_mismatch.. 41
r_Eindex_violation ... 41
r_Einit_overflow ... 41
r_Eno_cell.. 41

rasdaman C++ Developers Guide

© p.52

r_Eno_interval.. 40
r_Equery_execution_failed .. 41
r_Error ... 40
r_Float ... 21
r_GMarray ... 23
r_Interest_Tiling ... 35
r_Iterator<T>.. 26
r_Long ... 21
r_Marray_Type .. 30
r_Marray<T>.. 23
r_Meta_Object ... 28
r_Minterval ... 22
r_Minterval_Type... 30
r_Object ... 23
r_Octet ... 21
r_OId.. 23
r_Oid_Type.. 30
r_oql_execute .. 26
r_OQL_Query .. 26
r_Point ... 22
r_Point_Type ... 30
r_Primitive.. 24
r_Primitive_Type.. 29
r_Property .. 29
r_Ref_Any.. 26
r_Ref<T> ... 26
r_Scalar ... 24
r_Set .. 24
r_Short ... 21
r_Sinterval ... 22
r_Sinterval_Type.. 30
r_Stat_Tiling .. 36
r_Storage_Layout .. 33
r_Structured... 24
r_Structured_Type... 29
r_Tiling... 33
r_Transaction... 26
r_Type ... 29
r_ULong... 21
r_UShort .. 21

