# partitioning.py # Disk partitioning functions. # # Copyright (C) 2009 Red Hat, Inc. # # This copyrighted material is made available to anyone wishing to use, # modify, copy, or redistribute it subject to the terms and conditions of # the GNU General Public License v.2, or (at your option) any later version. # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY expressed or implied, including the implied warranties of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. You should have received a copy of the # GNU General Public License along with this program; if not, write to the # Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. Any Red Hat trademarks that are incorporated in the # source code or documentation are not subject to the GNU General Public # License and may only be used or replicated with the express permission of # Red Hat, Inc. # # Red Hat Author(s): Dave Lehman # import sys import os from operator import add, sub, gt, lt import parted from pykickstart.constants import * from pyanaconda.constants import * from pyanaconda.errors import * from errors import * from deviceaction import * from devices import PartitionDevice, LUKSDevice, devicePathToName from formats import getFormat import gettext _ = lambda x: gettext.ldgettext("anaconda", x) import logging log = logging.getLogger("storage") def _getCandidateDisks(storage): """ Return a list of disks with space for a default-sized partition. """ disks = [] for disk in storage.partitioned: if storage.config.clearPartDisks and \ (disk.name not in storage.config.clearPartDisks): continue part = disk.format.firstPartition while part: if not part.type & parted.PARTITION_FREESPACE: part = part.nextPartition() continue if part.getSize(unit="MB") > PartitionDevice.defaultSize: disks.append(disk) break part = part.nextPartition() return disks def _scheduleImplicitPartitions(storage, disks): """ Schedule creation of a lvm/btrfs partition on each disk in disks. """ # create a separate pv or btrfs partition for each disk with free space devs = [] # only schedule the partitions if either lvm or btrfs autopart was chosen if storage.autoPartType not in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_BTRFS): return devs for disk in disks: if storage.encryptedAutoPart: fmt_type = "luks" fmt_args = {"passphrase": storage.encryptionPassphrase, "escrow_cert": storage.autoPartEscrowCert, "add_backup_passphrase": storage.autoPartAddBackupPassphrase} else: if storage.autoPartType == AUTOPART_TYPE_LVM: fmt_type = "lvmpv" else: fmt_type = "btrfs" fmt_args = {} part = storage.newPartition(fmt_type=fmt_type, fmt_args=fmt_args, grow=True, parents=[disk]) storage.createDevice(part) devs.append(part) return devs def _schedulePartitions(storage, disks): """ Schedule creation of autopart partitions. """ # basis for requests with requiredSpace is the sum of the sizes of the # two largest free regions all_free = getFreeRegions(disks) all_free.sort(key=lambda f: f.length, reverse=True) if not all_free: # this should never happen since we've already filtered the disks # to those with at least 500MB free log.error("no free space on disks %s" % ([d.name for d in disks],)) return free = all_free[0].getSize() if len(all_free) > 1: free += all_free[1].getSize() # The boot disk must be set at this point. See if any platform-specific # stage1 device we might allocate already exists on the boot disk. stage1_device = None for device in storage.devices: if storage.bootloader.stage1_disk not in device.disks: continue if storage.bootloader.is_valid_stage1_device(device): stage1_device = device break # # First pass is for partitions only. We'll do LVs later. # for request in storage.autoPartitionRequests: if (request.lv and storage.autoPartType == AUTOPART_TYPE_LVM) or \ (request.btr and storage.autoPartType == AUTOPART_TYPE_BTRFS): continue if request.requiredSpace and request.requiredSpace > free: continue elif request.fstype in ("prepboot", "efi", "hfs+") and \ stage1_device: # there should never be a need for more than one of these # partitions, so skip them. log.info("skipping unneeded stage1 %s request" % request.fstype) log.debug(request) if request.fstype == "efi": # Set the mountpoint for the existing EFI boot partition stage1_device.format.mountpoint = "/boot/efi" log.debug(stage1_device) continue elif request.fstype == "biosboot": is_gpt = (stage1_device and getattr(stage1_device.format, "labelType", None) == "gpt") has_bios_boot = (stage1_device and any([p.format.type == "biosboot" for p in storage.partitions if p.disk == stage1_device])) if not (stage1_device and stage1_device.isDisk and is_gpt and not has_bios_boot): # there should never be a need for more than one of these # partitions, so skip them. log.info("skipping unneeded stage1 %s request" % request.fstype) log.debug(request) log.debug(stage1_device) continue if request.encrypted and storage.encryptedAutoPart: fmt_type = "luks" fmt_args = {"passphrase": storage.encryptionPassphrase, "escrow_cert": storage.autoPartEscrowCert, "add_backup_passphrase": storage.autoPartAddBackupPassphrase} else: fmt_type = request.fstype fmt_args = {} dev = storage.newPartition(fmt_type=fmt_type, fmt_args=fmt_args, size=request.size, grow=request.grow, maxsize=request.maxSize, mountpoint=request.mountpoint, parents=disks, weight=request.weight) # schedule the device for creation storage.createDevice(dev) if request.encrypted and storage.encryptedAutoPart: luks_fmt = getFormat(request.fstype, device=dev.path, mountpoint=request.mountpoint) luks_dev = LUKSDevice("luks-%s" % dev.name, format=luks_fmt, size=dev.size, parents=dev) storage.createDevice(luks_dev) # make sure preexisting broken lvm/raid configs get out of the way return def _scheduleVolumes(storage, devs): """ Schedule creation of autopart lvm/btrfs volumes. """ if not devs: return if storage.autoPartType == AUTOPART_TYPE_LVM: new_container = storage.newVG new_volume = storage.newLV format_name = "lvmpv" else: new_container = storage.newBTRFS new_volume = storage.newBTRFS format_name = "btrfs" if storage.encryptedAutoPart: pvs = [] for dev in devs: pv = LUKSDevice("luks-%s" % dev.name, format=getFormat(format_name, device=dev.path), size=dev.size, parents=dev) pvs.append(pv) storage.createDevice(pv) else: pvs = devs # create a vg containing all of the autopart pvs container = new_container(parents=pvs) storage.createDevice(container) # # Convert storage.autoPartitionRequests into Device instances and # schedule them for creation. # # Second pass, for LVs only. for request in storage.autoPartitionRequests: btr = storage.autoPartType == AUTOPART_TYPE_BTRFS and request.btr lv = storage.autoPartType == AUTOPART_TYPE_LVM and request.lv if not btr and not lv: continue # required space isn't relevant on btrfs if lv and \ request.requiredSpace and request.requiredSpace > container.size: continue if request.fstype is None: if btr: # btrfs volumes can only contain btrfs filesystems request.fstype = "btrfs" else: request.fstype = storage.defaultFSType kwargs = {"mountpoint": request.mountpoint, "fmt_type": request.fstype} if lv: kwargs.update({"parents": [container], "grow": request.grow, "maxsize": request.maxSize, "size": request.size, "singlePV": request.singlePV}) else: kwargs.update({"parents": [container], "size": request.size, "subvol": True}) dev = new_volume(**kwargs) # schedule the device for creation storage.createDevice(dev) def doAutoPartition(storage, data): log.debug("doAutoPart: %s" % storage.doAutoPart) log.debug("encryptedAutoPart: %s" % storage.encryptedAutoPart) log.debug("autoPartType: %s" % storage.autoPartType) log.debug("clearPartType: %s" % storage.config.clearPartType) log.debug("clearPartDisks: %s" % storage.config.clearPartDisks) log.debug("autoPartitionRequests:\n%s" % "".join([str(p) for p in storage.autoPartitionRequests])) log.debug("storage.disks: %s" % [d.name for d in storage.disks]) log.debug("storage.partitioned: %s" % [d.name for d in storage.partitioned]) log.debug("all names: %s" % [d.name for d in storage.devices]) log.debug("boot disk: %s" % getattr(storage.bootDisk, "name", None)) disks = [] devs = [] if not storage.doAutoPart: return if not storage.partitioned: raise NoDisksError("No usable disks selected") disks = _getCandidateDisks(storage) devs = _scheduleImplicitPartitions(storage, disks) log.debug("candidate disks: %s" % disks) log.debug("devs: %s" % devs) if disks == []: raise NotEnoughFreeSpaceError("Not enough free space on disks for " "automatic partitioning") _schedulePartitions(storage, disks) # run the autopart function to allocate and grow partitions doPartitioning(storage) _scheduleVolumes(storage, devs) # grow LVs growLVM(storage) storage.setUpBootLoader() # now do a full check of the requests (errors, warnings) = storage.sanityCheck() for error in errors: log.error(error) for warning in warnings: log.warning(warning) if errors: raise PartitioningError("\n".join(errors)) def partitionCompare(part1, part2): """ More specifically defined partitions come first. < 1 => x < y 0 => x == y > 1 => x > y """ ret = 0 if part1.req_base_weight: ret -= part1.req_base_weight if part2.req_base_weight: ret += part2.req_base_weight # more specific disk specs to the front of the list # req_disks being empty is equivalent to it being an infinitely long list if part1.req_disks and not part2.req_disks: ret -= 500 elif not part1.req_disks and part2.req_disks: ret += 500 else: ret += cmp(len(part1.req_disks), len(part2.req_disks)) * 500 # primary-only to the front of the list ret -= cmp(part1.req_primary, part2.req_primary) * 200 # fixed size requests to the front ret += cmp(part1.req_grow, part2.req_grow) * 100 # larger requests go to the front of the list ret -= cmp(part1.req_base_size, part2.req_base_size) * 50 # potentially larger growable requests go to the front if part1.req_grow and part2.req_grow: if not part1.req_max_size and part2.req_max_size: ret -= 25 elif part1.req_max_size and not part2.req_max_size: ret += 25 else: ret -= cmp(part1.req_max_size, part2.req_max_size) * 25 # give a little bump based on mountpoint if hasattr(part1.format, "mountpoint") and \ hasattr(part2.format, "mountpoint"): ret += cmp(part1.format.mountpoint, part2.format.mountpoint) * 10 if ret > 0: ret = 1 elif ret < 0: ret = -1 return ret def getNextPartitionType(disk, no_primary=None): """ Find the type of partition to create next on a disk. Return a parted partition type value representing the type of the next partition we will create on this disk. If there is only one free primary partition and we can create an extended partition, we do that. If there are free primary slots and an extended partition we will recommend creating a primary partition. This can be overridden with the keyword argument no_primary. Arguments: disk -- a parted.Disk instance representing the disk Keyword arguments: no_primary -- given a choice between primary and logical partitions, prefer logical """ part_type = None extended = disk.getExtendedPartition() supports_extended = disk.supportsFeature(parted.DISK_TYPE_EXTENDED) logical_count = len(disk.getLogicalPartitions()) max_logicals = disk.getMaxLogicalPartitions() primary_count = disk.primaryPartitionCount if primary_count < disk.maxPrimaryPartitionCount: if primary_count == disk.maxPrimaryPartitionCount - 1: # can we make an extended partition? now's our chance. if not extended and supports_extended: part_type = parted.PARTITION_EXTENDED elif not extended: # extended partitions not supported. primary or nothing. if not no_primary: part_type = parted.PARTITION_NORMAL else: # there is an extended and a free primary if not no_primary: part_type = parted.PARTITION_NORMAL elif logical_count < max_logicals: # we have an extended with logical slots, so use one. part_type = parted.PARTITION_LOGICAL else: # there are two or more primary slots left. use one unless we're # not supposed to make primaries. if not no_primary: part_type = parted.PARTITION_NORMAL elif extended and logical_count < max_logicals: part_type = parted.PARTITION_LOGICAL elif extended and logical_count < max_logicals: part_type = parted.PARTITION_LOGICAL return part_type def getBestFreeSpaceRegion(disk, part_type, req_size, boot=None, best_free=None, grow=None): """ Return the "best" free region on the specified disk. For non-boot partitions, we return the largest free region on the disk. For boot partitions, we return the first region that is large enough to hold the partition. Partition type (parted's PARTITION_NORMAL, PARTITION_LOGICAL) is taken into account when locating a suitable free region. For locating the best region from among several disks, the keyword argument best_free allows the specification of a current "best" free region with which to compare the best from this disk. The overall best region is returned. Arguments: disk -- the disk (a parted.Disk instance) part_type -- the type of partition we want to allocate (one of parted's partition type constants) req_size -- the requested size of the partition (in MB) Keyword arguments: boot -- indicates whether this will be a bootable partition (boolean) best_free -- current best free region for this partition grow -- indicates whether this is a growable request """ log.debug("getBestFreeSpaceRegion: disk=%s part_type=%d req_size=%dMB " "boot=%s best=%s grow=%s" % (disk.device.path, part_type, req_size, boot, best_free, grow)) extended = disk.getExtendedPartition() for _range in disk.getFreeSpaceRegions(): if extended: # find out if there is any overlap between this region and the # extended partition log.debug("looking for intersection between extended (%d-%d) and free (%d-%d)" % (extended.geometry.start, extended.geometry.end, _range.start, _range.end)) # parted.Geometry.overlapsWith can handle this try: free_geom = extended.geometry.intersect(_range) except ArithmeticError: # this freespace region does not lie within the extended # partition's geometry free_geom = None if (free_geom and part_type == parted.PARTITION_NORMAL) or \ (not free_geom and part_type == parted.PARTITION_LOGICAL): log.debug("free region not suitable for request") continue if part_type == parted.PARTITION_NORMAL: # we're allocating a primary and the region is not within # the extended, so we use the original region free_geom = _range else: free_geom = _range if free_geom.start > disk.maxPartitionStartSector: log.debug("free range start sector beyond max for new partitions") continue if boot: free_start_mb = sectorsToSize(free_geom.start, disk.device.sectorSize) req_end_mb = free_start_mb + req_size if req_end_mb > 2*1024*1024: log.debug("free range position would place boot req above 2TB") continue log.debug("current free range is %d-%d (%dMB)" % (free_geom.start, free_geom.end, free_geom.getSize())) free_size = free_geom.getSize() # For boot partitions, we want the first suitable region we find. # For growable or extended partitions, we want the largest possible # free region. # For all others, we want the smallest suitable free region. if grow or part_type == parted.PARTITION_EXTENDED: op = gt else: op = lt if req_size <= free_size: if not best_free or op(free_geom.length, best_free.length): best_free = free_geom if boot: # if this is a bootable partition we want to # use the first freespace region large enough # to satisfy the request break return best_free def sectorsToSize(sectors, sectorSize): """ Convert length in sectors to size in MB. Arguments: sectors - sector count sectorSize - sector size for the device, in bytes """ return (sectors * sectorSize) / (1024.0 * 1024.0) def sizeToSectors(size, sectorSize): """ Convert size in MB to length in sectors. Arguments: size - size in MB sectorSize - sector size for the device, in bytes """ return (size * 1024.0 * 1024.0) / sectorSize def removeNewPartitions(disks, partitions): """ Remove newly added input partitions from input disks. Arguments: disks -- list of StorageDevice instances with DiskLabel format partitions -- list of PartitionDevice instances """ log.debug("removing all non-preexisting partitions %s from disk(s) %s" % (["%s(id %d)" % (p.name, p.id) for p in partitions if not p.exists], [d.name for d in disks])) for part in partitions: if part.partedPartition and part.disk in disks: if part.exists: # we're only removing partitions that don't physically exist continue if part.isExtended: # these get removed last continue part.disk.format.partedDisk.removePartition(part.partedPartition) part.partedPartition = None part.disk = None for disk in disks: # remove empty extended so it doesn't interfere extended = disk.format.extendedPartition if extended and not disk.format.logicalPartitions: log.debug("removing empty extended partition from %s" % disk.name) disk.format.partedDisk.removePartition(extended) def addPartition(disklabel, free, part_type, size): """ Return new partition after adding it to the specified disk. Arguments: disklabel -- disklabel instance to add partition to free -- where to add the partition (parted.Geometry instance) part_type -- partition type (parted.PARTITION_* constant) size -- size (in MB) of the new partition The new partition will be aligned. Return value is a parted.Partition instance. """ start = free.start if not disklabel.alignment.isAligned(free, start): start = disklabel.alignment.alignNearest(free, start) if disklabel.labelType == "sun" and start == 0: start = disklabel.alignment.alignUp(free, start) if part_type == parted.PARTITION_LOGICAL: # make room for logical partition's metadata start += disklabel.alignment.grainSize if start != free.start: log.debug("adjusted start sector from %d to %d" % (free.start, start)) if part_type == parted.PARTITION_EXTENDED: end = free.end length = end - start + 1 else: # size is in MB length = sizeToSectors(size, disklabel.partedDevice.sectorSize) end = start + length - 1 if not disklabel.endAlignment.isAligned(free, end): end = disklabel.endAlignment.alignNearest(free, end) log.debug("adjusted length from %d to %d" % (length, end - start + 1)) if start > end: raise PartitioningError("unable to allocate aligned partition") new_geom = parted.Geometry(device=disklabel.partedDevice, start=start, end=end) max_length = disklabel.partedDisk.maxPartitionLength if max_length and new_geom.length > max_length: raise PartitioningError("requested size exceeds maximum allowed") # create the partition and add it to the disk partition = parted.Partition(disk=disklabel.partedDisk, type=part_type, geometry=new_geom) constraint = parted.Constraint(exactGeom=new_geom) disklabel.partedDisk.addPartition(partition=partition, constraint=constraint) return partition def getFreeRegions(disks): """ Return a list of free regions on the specified disks. Arguments: disks -- list of parted.Disk instances Return value is a list of unaligned parted.Geometry instances. """ free = [] for disk in disks: for f in disk.format.partedDisk.getFreeSpaceRegions(): if f.length > 0: free.append(f) return free def updateExtendedPartitions(storage, disks): # XXX hack -- if we created any extended partitions we need to add # them to the tree now for disk in disks: extended = disk.format.extendedPartition if not extended: # remove any obsolete extended partitions for part in storage.partitions: if part.disk == disk and part.isExtended: if part.exists: storage.destroyDevice(part) else: storage.devicetree._removeDevice(part, moddisk=False) continue extendedName = devicePathToName(extended.getDeviceNodeName()) # remove any obsolete extended partitions for part in storage.partitions: if part.disk == disk and part.isExtended and \ part.partedPartition not in disk.format.partitions: if part.exists: storage.destroyDevice(part) else: storage.devicetree._removeDevice(part, moddisk=False) device = storage.devicetree.getDeviceByName(extendedName) if device: if not device.exists: # created by us, update partedPartition device.partedPartition = extended continue # This is a little odd because normally instantiating a partition # that does not exist means leaving self.parents empty and instead # populating self.req_disks. In this case, we need to skip past # that since this partition is already defined. device = PartitionDevice(extendedName, parents=disk) device.parents = [disk] device.partedPartition = extended # just add the device for now -- we'll handle actions at the last # moment to simplify things storage.devicetree._addDevice(device) def doPartitioning(storage): """ Allocate and grow partitions. When this function returns without error, all PartitionDevice instances must have their parents set to the disk they are allocated on, and their partedPartition attribute set to the appropriate parted.Partition instance from their containing disk. All req_xxxx attributes must be unchanged. Arguments: storage - Main anaconda Storage instance Keyword/Optional Arguments: None """ if not hasattr(storage.platform, "diskLabelTypes"): raise StorageError("can't allocate partitions without platform data") disks = storage.partitioned if storage.config.exclusiveDisks: disks = [d for d in disks if d.name in storage.config.exclusiveDisks] for disk in disks: try: disk.setup() except DeviceError as (msg, name): log.error("failed to set up disk %s: %s" % (name, msg)) raise PartitioningError("disk %s inaccessible" % disk.name) partitions = storage.partitions[:] for part in storage.partitions: part.req_bootable = False if part.exists: # if the partition is preexisting or part of a complex device # then we shouldn't modify it partitions.remove(part) continue if not part.exists: # start over with flexible-size requests part.req_size = part.req_base_size try: storage.bootDevice.req_bootable = True except AttributeError: # there's no stage2 device. hopefully it's temporary. pass removeNewPartitions(disks, partitions) free = getFreeRegions(disks) try: allocatePartitions(storage, disks, partitions, free) growPartitions(disks, partitions, free, size_sets=storage.size_sets) except Exception: raise else: # Mark all growable requests as no longer growable. for partition in storage.partitions: log.debug("fixing size of %s at %.2f" % (partition, partition.size)) partition.req_grow = False partition.req_base_size = partition.size partition.req_size = partition.size finally: # The number and thus the name of partitions may have changed now, # allocatePartitions() takes care of this for new partitions, but not # for pre-existing ones, so we update the name of all partitions here for part in storage.partitions: # leave extended partitions as-is -- we'll handle them separately if part.isExtended: continue part.updateName() updateExtendedPartitions(storage, disks) for part in [p for p in storage.partitions if not p.exists]: problem = part.checkSize() if problem < 0: raise PartitioningError("partition is too small for %s formatting " "(allowable size is %d MB to %d MB)" % (part.format.name, part.format.minSize, part.format.maxSize)) elif problem > 0: raise PartitioningError("partition is too large for %s formatting " "(allowable size is %d MB to %d MB)" % (part.format.name, part.format.minSize, part.format.maxSize)) def allocatePartitions(storage, disks, partitions, freespace): """ Allocate partitions based on requested features. Non-existing partitions are sorted according to their requested attributes, and then allocated. The basic approach to sorting is that the more specifically- defined a request is, the earlier it will be allocated. See the function partitionCompare for details on the sorting criteria. The PartitionDevice instances will have their name and parents attributes set once they have been allocated. """ log.debug("allocatePartitions: disks=%s ; partitions=%s" % ([d.name for d in disks], ["%s(id %d)" % (p.name, p.id) for p in partitions])) new_partitions = [p for p in partitions if not p.exists] new_partitions.sort(cmp=partitionCompare) # the following dicts all use device path strings as keys disklabels = {} # DiskLabel instances for each disk all_disks = {} # StorageDevice for each disk for disk in disks: if disk.path not in disklabels.keys(): disklabels[disk.path] = disk.format all_disks[disk.path] = disk removeNewPartitions(disks, new_partitions) for _part in new_partitions: if _part.partedPartition and _part.isExtended: # ignore new extendeds as they are implicit requests continue # obtain the set of candidate disks req_disks = [] if _part.req_disks: # use the requested disk set req_disks = _part.req_disks else: # no disks specified means any disk will do req_disks = disks # sort the disks, making sure the boot disk is first req_disks.sort(key=lambda d: d.name, cmp=storage.compareDisks) for disk in req_disks: if storage.bootDisk and disk == storage.bootDisk: boot_index = req_disks.index(disk) req_disks.insert(0, req_disks.pop(boot_index)) boot = _part.req_base_weight > 1000 log.debug("allocating partition: %s ; id: %d ; disks: %s ;\n" "boot: %s ; primary: %s ; size: %dMB ; grow: %s ; " "max_size: %s" % (_part.name, _part.id, [d.name for d in req_disks], boot, _part.req_primary, _part.req_size, _part.req_grow, _part.req_max_size)) free = None use_disk = None part_type = None growth = 0 # loop through disks for _disk in req_disks: disklabel = disklabels[_disk.path] sectorSize = disklabel.partedDevice.sectorSize best = None current_free = free # for growable requests, we don't want to pass the current free # geometry to getBestFreeRegion -- this allows us to try the # best region from each disk and choose one based on the total # growth it allows if _part.req_grow: current_free = None log.debug("checking freespace on %s" % _disk.name) new_part_type = getNextPartitionType(disklabel.partedDisk) if new_part_type is None: # can't allocate any more partitions on this disk log.debug("no free partition slots on %s" % _disk.name) continue if _part.req_primary and new_part_type != parted.PARTITION_NORMAL: if (disklabel.partedDisk.primaryPartitionCount < disklabel.partedDisk.maxPrimaryPartitionCount): # don't fail to create a primary if there are only three # primary partitions on the disk (#505269) new_part_type = parted.PARTITION_NORMAL else: # we need a primary slot and none are free on this disk log.debug("no primary slots available on %s" % _disk.name) continue best = getBestFreeSpaceRegion(disklabel.partedDisk, new_part_type, _part.req_size, best_free=current_free, boot=boot, grow=_part.req_grow) if best == free and not _part.req_primary and \ new_part_type == parted.PARTITION_NORMAL: # see if we can do better with a logical partition log.debug("not enough free space for primary -- trying logical") new_part_type = getNextPartitionType(disklabel.partedDisk, no_primary=True) if new_part_type: best = getBestFreeSpaceRegion(disklabel.partedDisk, new_part_type, _part.req_size, best_free=current_free, boot=boot, grow=_part.req_grow) if best and free != best: update = True allocated = new_partitions[:new_partitions.index(_part)+1] if any([p.req_grow for p in allocated]): log.debug("evaluating growth potential for new layout") new_growth = 0 for disk_path in disklabels.keys(): log.debug("calculating growth for disk %s" % disk_path) # Now we check, for growable requests, which of the two # free regions will allow for more growth. # set up chunks representing the disks' layouts temp_parts = [] for _p in new_partitions[:new_partitions.index(_part)]: if _p.disk.path == disk_path: temp_parts.append(_p) # add the current request to the temp disk to set up # its partedPartition attribute with a base geometry if disk_path == _disk.path: _part_type = new_part_type _free = best if new_part_type == parted.PARTITION_EXTENDED: addPartition(disklabel, best, new_part_type, None) _part_type = parted.PARTITION_LOGICAL _free = getBestFreeSpaceRegion(disklabel.partedDisk, _part_type, _part.req_size, boot=boot, grow=_part.req_grow) if not _free: log.info("not enough space after adding " "extended partition for growth test") if new_part_type == parted.PARTITION_EXTENDED: e = disklabel.extendedPartition disklabel.partedDisk.removePartition(e) continue temp_part = addPartition(disklabel, _free, _part_type, _part.req_size) _part.partedPartition = temp_part _part.disk = _disk temp_parts.append(_part) chunks = getDiskChunks(all_disks[disk_path], temp_parts, freespace) # grow all growable requests disk_growth = 0 disk_sector_size = disklabels[disk_path].partedDevice.sectorSize for chunk in chunks: chunk.growRequests() # record the growth for this layout new_growth += chunk.growth disk_growth += chunk.growth for req in chunk.requests: log.debug("request %d (%s) growth: %d (%dMB) " "size: %dMB" % (req.device.id, req.device.name, req.growth, sectorsToSize(req.growth, disk_sector_size), sectorsToSize(req.growth + req.base, disk_sector_size))) log.debug("disk %s growth: %d (%dMB)" % (disk_path, disk_growth, sectorsToSize(disk_growth, disk_sector_size))) disklabel.partedDisk.removePartition(temp_part) _part.partedPartition = None _part.disk = None if new_part_type == parted.PARTITION_EXTENDED: e = disklabel.extendedPartition disklabel.partedDisk.removePartition(e) log.debug("total growth: %d sectors" % new_growth) # update the chosen free region unless the previous # choice yielded greater total growth if new_growth <= growth: log.debug("keeping old free: %d <= %d" % (new_growth, growth)) update = False else: growth = new_growth if update: # now we know we are choosing a new free space, # so update the disk and part type log.debug("updating use_disk to %s, type: %s" % (_disk.name, new_part_type)) part_type = new_part_type use_disk = _disk log.debug("new free: %d-%d / %dMB" % (best.start, best.end, best.getSize())) log.debug("new free allows for %d sectors of growth" % growth) free = best if free and boot: # if this is a bootable partition we want to # use the first freespace region large enough # to satisfy the request log.debug("found free space for bootable request") break if free is None: raise PartitioningError("not enough free space on disks") _disk = use_disk disklabel = _disk.format # create the extended partition if needed if part_type == parted.PARTITION_EXTENDED: log.debug("creating extended partition") addPartition(disklabel, free, part_type, None) # now the extended partition exists, so set type to logical part_type = parted.PARTITION_LOGICAL # recalculate freespace log.debug("recalculating free space") free = getBestFreeSpaceRegion(disklabel.partedDisk, part_type, _part.req_size, boot=boot, grow=_part.req_grow) if not free: raise PartitioningError("not enough free space after " "creating extended partition") partition = addPartition(disklabel, free, part_type, _part.req_size) log.debug("created partition %s of %dMB and added it to %s" % (partition.getDeviceNodeName(), partition.getSize(), disklabel.device)) # this one sets the name _part.partedPartition = partition _part.disk = _disk # parted modifies the partition in the process of adding it to # the disk, so we need to grab the latest version... _part.partedPartition = disklabel.partedDisk.getPartitionByPath(_part.path) class Request(object): """ A partition request. Request instances are used for calculating how much to grow partitions. """ def __init__(self, device): """ Create a Request instance. Arguments: """ self.device = device self.growth = 0 # growth in sectors self.max_growth = 0 # max growth in sectors self.done = not getattr(device, "req_grow", True) # can we grow this # request more? self.base = 0 # base sectors @property def growable(self): """ True if this request is growable. """ return getattr(self.device, "req_grow", True) @property def id(self): """ The id of the Device instance this request corresponds to. """ return self.device.id def __repr__(self): s = ("%(type)s instance --\n" "id = %(id)s name = %(name)s growable = %(growable)s\n" "base = %(base)d growth = %(growth)d max_grow = %(max_grow)d\n" "done = %(done)s" % {"type": self.__class__.__name__, "id": self.id, "name": self.device.name, "growable": self.growable, "base": self.base, "growth": self.growth, "max_grow": self.max_growth, "done": self.done}) return s class PartitionRequest(Request): def __init__(self, partition): """ Create a PartitionRequest instance. Arguments: partition -- a PartitionDevice instance """ super(PartitionRequest, self).__init__(partition) self.base = partition.partedPartition.geometry.length # base sectors sector_size = partition.partedPartition.disk.device.sectorSize if partition.req_grow: limits = filter(lambda l: l > 0, [sizeToSectors(partition.req_max_size, sector_size), sizeToSectors(partition.format.maxSize, sector_size), partition.partedPartition.disk.maxPartitionLength]) if limits: max_sectors = min(limits) self.max_growth = max_sectors - self.base if self.max_growth <= 0: # max size is less than or equal to base, so we're done self.done = True class LVRequest(Request): def __init__(self, lv): """ Create a LVRequest instance. Arguments: lv -- an LVMLogicalVolumeDevice instance """ super(LVRequest, self).__init__(lv) # Round up to nearest pe. For growable requests this will mean that # first growth is to fill the remainder of any unused extent. self.base = lv.vg.align(lv.req_size, roundup=True) / lv.vg.peSize # pe if lv.req_grow: limits = [l / lv.vg.peSize for l in [lv.vg.align(lv.req_max_size), lv.vg.align(lv.format.maxSize)] if l > 0] if limits: max_units = min(limits) self.max_growth = max_units - self.base if self.max_growth <= 0: # max size is less than or equal to base, so we're done self.done = True class Chunk(object): """ A free region from which devices will be allocated """ def __init__(self, length, requests=None): """ Create a Chunk instance. Arguments: length -- the length of the chunk in allocation units Keyword Arguments: requests -- list of Request instances allocated from this chunk """ if not hasattr(self, "path"): self.path = None self.length = length self.pool = length # free unit count self.base = 0 # sum of growable requests' base # sizes self.requests = [] # list of Request instances if isinstance(requests, list): for req in requests: self.addRequest(req) self.skip_list = [] def __repr__(self): s = ("%(type)s instance --\n" "device = %(device)s length = %(length)d size = %(size)d\n" "remaining = %(rem)d pool = %(pool)d" % {"type": self.__class__.__name__, "device": self.path, "length": self.length, "size": self.lengthToSize(self.length), "pool": self.pool, "rem": self.remaining}) return s def __str__(self): s = "%d on %s" % (self.length, self.path) return s def addRequest(self, req): """ Add a Request to this chunk. """ log.debug("adding request %d to chunk %s" % (req.device.id, self)) self.requests.append(req) self.pool -= req.base if not req.done: self.base += req.base def reclaim(self, request, amount): """ Reclaim units from a request and return them to the pool. """ log.debug("reclaim: %s %d (%d MB)" % (request, amount, self.lengthToSize(amount))) if request.growth < amount: log.error("tried to reclaim %d from request with %d of growth" % (amount, request.growth)) raise ValueError("cannot reclaim more than request has grown") request.growth -= amount self.pool += amount # put this request in the skip list so we don't try to grow it the # next time we call growRequests to allocate the newly re-acquired pool if request not in self.skip_list: self.skip_list.append(request) @property def growth(self): """ Sum of growth for all requests in this chunk. """ return sum(r.growth for r in self.requests) @property def hasGrowable(self): """ True if this chunk contains at least one growable request. """ for req in self.requests: if req.growable: return True return False @property def remaining(self): """ Number of requests still being grown in this chunk. """ return len([d for d in self.requests if not d.done]) @property def done(self): """ True if we are finished growing all requests in this chunk. """ return self.remaining == 0 def maxGrowth(self, req): return req.max_growth def lengthToSize(self, length): return length def sizeToLength(self, size): return size def trimOverGrownRequest(self, req, base=None): """ Enforce max growth and return extra units to the pool. """ max_growth = self.maxGrowth(req) if max_growth and req.growth >= max_growth: if req.growth > max_growth: # we've grown beyond the maximum. put some back. extra = req.growth - max_growth log.debug("taking back %d (%dMB) from %d (%s)" % (extra, self.lengthToSize(extra), req.device.id, req.device.name)) self.pool += extra req.growth = max_growth # We're done growing this request, so it no longer # factors into the growable base used to determine # what fraction of the pool each request gets. if base is not None: base -= req.base req.done = True return base def sortRequests(self): pass def growRequests(self, uniform=False): """ Calculate growth amounts for requests in this chunk. """ log.debug("Chunk.growRequests: %r" % self) self.sortRequests() for req in self.requests: log.debug("req: %r" % req) # we use this to hold the base for the next loop through the # chunk's requests since we want the base to be the same for # all requests in any given growth iteration new_base = self.base last_pool = 0 # used to track changes to the pool across iterations while not self.done and self.pool and last_pool != self.pool: last_pool = self.pool # to keep from getting stuck self.base = new_base if uniform: growth = last_pool / self.remaining log.debug("%d requests and %d (%dMB) left in chunk" % (self.remaining, self.pool, self.lengthToSize(self.pool))) for p in self.requests: if p.done or p in self.skip_list: continue if not uniform: # Each request is allocated free units from the pool # based on the relative _base_ sizes of the remaining # growable requests. share = p.base / float(self.base) growth = int(share * last_pool) # truncate, don't round p.growth += growth self.pool -= growth log.debug("adding %d (%dMB) to %d (%s)" % (growth, self.lengthToSize(growth), p.device.id, p.device.name)) new_base = self.trimOverGrownRequest(p, base=new_base) log.debug("new grow amount for request %d (%s) is %d " "units, or %dMB" % (p.device.id, p.device.name, p.growth, self.lengthToSize(p.growth))) if self.pool: # allocate any leftovers in pool to the first partition # that can still grow for p in self.requests: if p.done: continue growth = self.pool p.growth += growth self.pool = 0 log.debug("adding %d (%dMB) to %d (%s)" % (growth, self.lengthToSize(growth), p.device.id, p.device.name)) self.trimOverGrownRequest(p) log.debug("new grow amount for request %d (%s) is %d " "units, or %dMB" % (p.device.id, p.device.name, p.growth, self.lengthToSize(p.growth))) if self.pool == 0: break # requests that were skipped over this time through are back on the # table next time self.skip_list = [] class DiskChunk(Chunk): """ A free region on disk from which partitions will be allocated """ def __init__(self, geometry, requests=None): """ Create a Chunk instance. Arguments: geometry -- parted.Geometry instance describing the free space Keyword Arguments: requests -- list of Request instances allocated from this chunk Note: We will limit partition growth based on disklabel limitations for partition end sector, so a 10TB disk with an msdos disklabel will be treated like a 2TB disk. """ self.geometry = geometry # parted.Geometry self.sectorSize = self.geometry.device.sectorSize self.path = self.geometry.device.path super(DiskChunk, self).__init__(self.geometry.length, requests=requests) def __repr__(self): s = super(DiskChunk, self).__str__() s += (" start = %(start)d end = %(end)d\n" "sectorSize = %(sectorSize)d\n" % {"start": self.geometry.start, "end": self.geometry.end, "sectorSize": self.sectorSize}) return s def __str__(self): s = "%d (%d-%d) on %s" % (self.length, self.geometry.start, self.geometry.end, self.path) return s def addRequest(self, req): """ Add a Request to this chunk. """ if not isinstance(req, PartitionRequest): raise ValueError("DiskChunk requests must be of type " "PartitionRequest") if not self.requests: # when adding the first request to the chunk, adjust the pool # size to reflect any disklabel-specific limits on end sector max_sector = req.device.partedPartition.disk.maxPartitionStartSector chunk_end = min(max_sector, self.geometry.end) if chunk_end <= self.geometry.start: # this should clearly never be possible, but if the chunk's # start sector is beyond the maximum allowed end sector, we # cannot continue log.error("chunk start sector is beyond disklabel maximum") raise PartitioningError("partitions allocated outside " "disklabel limits") new_pool = chunk_end - self.geometry.start + 1 if new_pool != self.pool: log.debug("adjusting pool to %d based on disklabel limits" % new_pool) self.pool = new_pool super(DiskChunk, self).addRequest(req) def maxGrowth(self, req): req_end = req.device.partedPartition.geometry.end req_start = req.device.partedPartition.geometry.start # Establish the current total number of sectors of growth for requests # that lie before this one within this chunk. We add the total count # to this request's end sector to obtain the end sector for this # request, including growth of earlier requests but not including # growth of this request. Maximum growth values are obtained using # this end sector and various values for maximum end sector. growth = 0 for request in self.requests: if request.device.partedPartition.geometry.start < req_start: growth += request.growth req_end += growth # obtain the set of possible maximum sectors-of-growth values for this # request and use the smallest limits = [] # disklabel-specific maximum sector max_sector = req.device.partedPartition.disk.maxPartitionStartSector limits.append(max_sector - req_end) # 2TB limit on bootable partitions, regardless of disklabel if req.device.req_bootable: limits.append(sizeToSectors(2*1024*1024, self.sectorSize) - req_end) # request-specific maximum (see Request.__init__, above, for details) if req.max_growth: limits.append(req.max_growth) max_growth = min(limits) return max_growth def lengthToSize(self, length): return sectorsToSize(length, self.sectorSize) def sizeToLength(self, size): return sizeToSectors(size, self.sectorSize) def sortRequests(self): # sort the partitions by start sector self.requests.sort(key=lambda r: r.device.partedPartition.geometry.start) class VGChunk(Chunk): """ A free region in an LVM VG from which LVs will be allocated """ def __init__(self, vg, requests=None): """ Create a VGChunk instance. Arguments: vg -- an LVMVolumeGroupDevice within which this chunk resides Keyword Arguments: requests -- list of Request instances allocated from this chunk """ self.vg = vg self.path = vg.path usable_extents = vg.extents - (vg.reservedSpace / vg.peSize) super(VGChunk, self).__init__(usable_extents, requests=requests) def addRequest(self, req): """ Add a Request to this chunk. """ if not isinstance(req, LVRequest): raise ValueError("VGChunk requests must be of type " "LVRequest") super(VGChunk, self).addRequest(req) def lengthToSize(self, length): return length * self.vg.peSize def sizeToLength(self, size): return size / self.vg.peSize def sortRequests(self): # sort the partitions by start sector self.requests.sort(key=lambda r: r.device, cmp=lvCompare) def growRequests(self): self.sortRequests() # grow the percentage-based requests last_pool = self.pool for req in self.requests: if req.done or not req.device.req_percent: continue growth = int(req.device.req_percent * 0.01 * self.length)# truncate req.growth += growth self.pool -= growth log.debug("adding %d (%dMB) to %d (%s)" % (growth, self.lengthToSize(growth), req.device.id, req.device.name)) new_base = self.trimOverGrownRequest(req) log.debug("new grow amount for request %d (%s) is %d " "units, or %dMB" % (req.device.id, req.device.name, req.growth, self.lengthToSize(req.growth))) # we're done with this request, so remove its base from the # chunk's base if not req.done: self.base -= req.base req.done = True super(VGChunk, self).growRequests() def getDiskChunks(disk, partitions, free): """ Return a list of Chunk instances representing a disk. Arguments: disk -- a StorageDevice with a DiskLabel format partitions -- list of PartitionDevice instances free -- list of parted.Geometry instances representing free space Partitions and free regions not on the specified disk are ignored. """ # list of all new partitions on this disk disk_parts = [p for p in partitions if p.disk == disk and not p.exists] disk_free = [f for f in free if f.device.path == disk.path] chunks = [DiskChunk(f) for f in disk_free] for p in disk_parts: if p.isExtended: # handle extended partitions specially since they are # indeed very special continue for i, f in enumerate(disk_free): if f.contains(p.partedPartition.geometry): chunks[i].addRequest(PartitionRequest(p)) break return chunks class TotalSizeSet(object): """ Set of device requests with a target combined size. This will be handled by growing the requests until the desired combined size has been achieved. """ def __init__(self, devices, size): self.devices = [] for device in devices: if isinstance(device, LUKSDevice): partition = device.slave else: partition = device self.devices.append(partition) self.size = size self.requests = [] self.allocated = sum([d.req_base_size for d in self.devices]) log.debug("set.allocated = %d" % self.allocated) def allocate(self, amount): log.debug("allocating %d to TotalSizeSet with %d/%d (%d needed)" % (amount, self.allocated, self.size, self.needed)) self.allocated += amount @property def needed(self): return self.size - self.allocated def deallocate(self, amount): log.debug("deallocating %d from TotalSizeSet with %d/%d (%d needed)" % (amount, self.allocated, self.size, self.needed)) self.allocated -= amount class SameSizeSet(object): """ Set of device requests with a common target size. """ def __init__(self, devices, size, grow=False, max_size=None): self.devices = [] for device in devices: if isinstance(device, LUKSDevice): partition = device.slave else: partition = device self.devices.append(partition) self.size = int(size / len(devices)) self.grow = grow self.max_size = max_size self.requests = [] def manageSizeSets(size_sets, chunks): growth_by_request = {} requests_by_device = {} chunks_by_request = {} for chunk in chunks: for request in chunk.requests: requests_by_device[request.device] = request chunks_by_request[request] = chunk growth_by_request[request] = 0 for i in range(2): reclaimed = dict([(chunk, 0) for chunk in chunks]) for ss in size_sets: if isinstance(ss, TotalSizeSet): # TotalSizeSet members are trimmed to achieve the requested # total size log.debug("set: %s %d/%d" % ([d.name for d in ss.devices], ss.allocated, ss.size)) for device in ss.devices: request = requests_by_device[device] if request.done: continue chunk = chunks_by_request[request] new_growth = request.growth - growth_by_request[request] ss.allocate(chunk.lengthToSize(new_growth)) # decide how much to take back from each request # We may assume that all requests have the same base size. # We're shooting for a roughly equal distribution by trimming # growth from the requests that have grown the most first. requests = sorted([requests_by_device[d] for d in ss.devices], key=lambda r: r.growth, reverse=True) for request in requests: chunk = chunks_by_request[request] log.debug("%s" % request) log.debug("needed: %d" % ss.needed) if ss.needed < 0: # it would be good to take back some from each device # instead of taking all from the last one(s) extra = min(-chunk.sizeToLength(ss.needed), request.growth) reclaimed[chunk] += extra chunk.reclaim(request, extra) ss.deallocate(chunk.lengthToSize(extra)) if ss.needed <= 0: request.done = True elif isinstance(ss, SameSizeSet): # SameSizeSet members all have the same size as the smallest # member requests = [requests_by_device[d] for d in ss.devices] _min_growth = min([r.growth for r in requests]) log.debug("set: %s %d" % ([d.name for d in ss.devices], ss.size)) log.debug("min growth is %d" % _min_growth) for request in requests: chunk = chunks_by_request[request] _max_growth = chunk.sizeToLength(ss.size) - request.base log.debug("max growth for %s is %d" % (request, _max_growth)) min_growth = max(min(_min_growth, _max_growth), 0) if request.growth > min_growth: extra = request.growth - min_growth reclaimed[chunk] += extra chunk.reclaim(request, extra) request.done = True elif request.growth == min_growth: request.done = True # store previous growth amounts so we know how much was allocated in # the latest growRequests call for request in growth_by_request.keys(): growth_by_request[request] = request.growth for chunk in chunks: if reclaimed[chunk] and not chunk.done: chunk.growRequests() def growPartitions(disks, partitions, free, size_sets=None): """ Grow all growable partition requests. Partitions have already been allocated from chunks of free space on the disks. This function does not modify the ordering of partitions or the free chunks from which they are allocated. Free space within a given chunk is allocated to each growable partition allocated from that chunk in an amount corresponding to the ratio of that partition's base size to the sum of the base sizes of all growable partitions allocated from the chunk. Arguments: disks -- a list of all usable disks (DiskDevice instances) partitions -- a list of all partitions (PartitionDevice instances) free -- a list of all free regions (parted.Geometry instances) """ log.debug("growPartitions: disks=%s, partitions=%s" % ([d.name for d in disks], ["%s(id %d)" % (p.name, p.id) for p in partitions])) all_growable = [p for p in partitions if p.req_grow] if not all_growable: log.debug("no growable partitions") return if size_sets is None: size_sets = [] log.debug("growable partitions are %s" % [p.name for p in all_growable]) # # collect info about each disk and the requests it contains # chunks = [] for disk in disks: sector_size = disk.format.partedDevice.sectorSize # list of free space regions on this disk prior to partition allocation disk_free = [f for f in free if f.device.path == disk.path] if not disk_free: log.debug("no free space on %s" % disk.name) continue disk_chunks = getDiskChunks(disk, partitions, disk_free) log.debug("disk %s has %d chunks" % (disk.name, len(disk_chunks))) chunks.extend(disk_chunks) # # grow the partitions in each chunk as a group # for chunk in chunks: if not chunk.hasGrowable: # no growable partitions in this chunk continue chunk.growRequests() # adjust set members' growth amounts as needed manageSizeSets(size_sets, chunks) for disk in disks: log.debug("growing partitions on %s" % disk.name) for chunk in chunks: if chunk.path != disk.path: continue if not chunk.hasGrowable: # no growable partitions in this chunk continue # recalculate partition geometries disklabel = disk.format start = chunk.geometry.start # find any extended partition on this disk extended_geometry = getattr(disklabel.extendedPartition, "geometry", None) # parted.Geometry # align start sector as needed if not disklabel.alignment.isAligned(chunk.geometry, start): start = disklabel.alignment.alignUp(chunk.geometry, start) new_partitions = [] for p in chunk.requests: ptype = p.device.partedPartition.type log.debug("partition %s (%d): %s" % (p.device.name, p.device.id, ptype)) if ptype == parted.PARTITION_EXTENDED: continue # XXX since we need one metadata sector before each # logical partition we burn one logical block to # safely align the start of each logical partition if ptype == parted.PARTITION_LOGICAL: start += disklabel.alignment.grainSize old_geometry = p.device.partedPartition.geometry new_length = p.base + p.growth end = start + new_length - 1 # align end sector as needed if not disklabel.endAlignment.isAligned(chunk.geometry, end): end = disklabel.endAlignment.alignDown(chunk.geometry, end) new_geometry = parted.Geometry(device=disklabel.partedDevice, start=start, end=end) log.debug("new geometry for %s: %s" % (p.device.name, new_geometry)) start = end + 1 new_partition = parted.Partition(disk=disklabel.partedDisk, type=ptype, geometry=new_geometry) new_partitions.append((new_partition, p.device)) # remove all new partitions from this chunk removeNewPartitions([disk], [r.device for r in chunk.requests]) log.debug("back from removeNewPartitions") # adjust the extended partition as needed # we will ony resize an extended partition that we created log.debug("extended: %s" % extended_geometry) if extended_geometry and \ chunk.geometry.contains(extended_geometry): log.debug("setting up new geometry for extended on %s" % disk.name) ext_start = 0 for (partition, device) in new_partitions: if partition.type != parted.PARTITION_LOGICAL: continue if not ext_start or partition.geometry.start < ext_start: # account for the logical block difference in start # sector for the extended -v- first logical # (partition.geometry.start is already aligned) ext_start = partition.geometry.start - disklabel.alignment.grainSize new_geometry = parted.Geometry(device=disklabel.partedDevice, start=ext_start, end=chunk.geometry.end) log.debug("new geometry for extended: %s" % new_geometry) new_extended = parted.Partition(disk=disklabel.partedDisk, type=parted.PARTITION_EXTENDED, geometry=new_geometry) ptypes = [p.type for (p, d) in new_partitions] for pt_idx, ptype in enumerate(ptypes): if ptype == parted.PARTITION_LOGICAL: new_partitions.insert(pt_idx, (new_extended, None)) break # add the partitions with their new geometries to the disk for (partition, device) in new_partitions: if device: name = device.name else: # If there was no extended partition on this disk when # doPartitioning was called we won't have a # PartitionDevice instance for it. name = partition.getDeviceNodeName() log.debug("setting %s new geometry: %s" % (name, partition.geometry)) constraint = parted.Constraint(exactGeom=partition.geometry) disklabel.partedDisk.addPartition(partition=partition, constraint=constraint) path = partition.path if device: # set the device's name device.partedPartition = partition # without this, the path attr will be a basename. eek. device.disk = disk # make sure we store the disk's version of the partition newpart = disklabel.partedDisk.getPartitionByPath(path) device.partedPartition = newpart def lvCompare(lv1, lv2): """ More specifically defined lvs come first. < 1 => x < y 0 => x == y > 1 => x > y """ ret = 0 # larger requests go to the front of the list ret -= cmp(lv1.size, lv2.size) * 100 # fixed size requests to the front ret += cmp(lv1.req_grow, lv2.req_grow) * 50 # potentially larger growable requests go to the front if lv1.req_grow and lv2.req_grow: if not lv1.req_max_size and lv2.req_max_size: ret -= 25 elif lv1.req_max_size and not lv2.req_max_size: ret += 25 else: ret -= cmp(lv1.req_max_size, lv2.req_max_size) * 25 if ret > 0: ret = 1 elif ret < 0: ret = -1 return ret def growLVM(storage): """ Grow LVs according to the sizes of the PVs. """ for vg in storage.vgs: total_free = vg.freeSpace if total_free < 0: # by now we have allocated the PVs so if there isn't enough # space in the VG we have a real problem raise PartitioningError("not enough space for LVM requests") elif not total_free: log.debug("vg %s has no free space" % vg.name) continue log.debug("vg %s: %dMB free ; lvs: %s" % (vg.name, total_free, [l.lvname for l in vg.lvs])) chunk = VGChunk(vg, requests=[LVRequest(l) for l in vg.lvs]) chunk.growRequests() # now grow the lvs by the amounts we've calculated above for req in chunk.requests: if not req.device.req_grow: continue # Base is in pe, which means potentially rounded up by as much as # pesize-1. As a result, you can't just add the growth to the # initial size. req.device.size = chunk.lengthToSize(req.base + req.growth)