/* vi: set sw=4 ts=4: */ /* * Based on shasum from http://www.netsw.org/crypto/hash/ * Majorly hacked up to use Dr Brian Gladman's sha1 code * * Copyright (C) 2002 Dr Brian Gladman , Worcester, UK. * Copyright (C) 2003 Glenn L. McGrath * Copyright (C) 2003 Erik Andersen * * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. * * --------------------------------------------------------------------------- * Issue Date: 10/11/2002 * * This is a byte oriented version of SHA1 that operates on arrays of bytes * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor * * --------------------------------------------------------------------------- */ #include "abrtlib.h" #if defined(__BIG_ENDIAN__) && __BIG_ENDIAN__ # define SHA1_BIG_ENDIAN 1 # define SHA1_LITTLE_ENDIAN 0 #elif __BYTE_ORDER == __BIG_ENDIAN # define SHA1_BIG_ENDIAN 1 # define SHA1_LITTLE_ENDIAN 0 #elif __BYTE_ORDER == __LITTLE_ENDIAN # define SHA1_BIG_ENDIAN 0 # define SHA1_LITTLE_ENDIAN 1 #else # error "Can't determine endianness" #endif #define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) #define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) /* for sha512: */ #define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) #if SHA1_LITTLE_ENDIAN static inline uint64_t hton64(uint64_t v) { return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32); } #else #define hton64(v) (v) #endif #define ntoh64(v) hton64(v) /* To check alignment gcc has an appropriate operator. Other compilers don't. */ #if defined(__GNUC__) && __GNUC__ >= 2 # define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0) #else # define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0) #endif /* Some arch headers have conflicting defines */ #undef ch #undef parity #undef maj #undef rnd static void sha1_process_block64(sha1_ctx_t *ctx) { unsigned t; uint32_t W[80], a, b, c, d, e; const uint32_t *words = (uint32_t*) ctx->wbuffer; for (t = 0; t < 16; ++t) { W[t] = ntohl(*words); words++; } for (/*t = 16*/; t < 80; ++t) { uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]; W[t] = rotl32(T, 1); } a = ctx->hash[0]; b = ctx->hash[1]; c = ctx->hash[2]; d = ctx->hash[3]; e = ctx->hash[4]; /* Reverse byte order in 32-bit words */ #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define parity(x,y,z) ((x) ^ (y) ^ (z)) #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) /* A normal version as set out in the FIPS. This version uses */ /* partial loop unrolling and is optimised for the Pentium 4 */ #define rnd(f,k) \ do { \ uint32_t T = a; \ a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \ e = d; \ d = c; \ c = rotl32(b, 30); \ b = T; \ } while (0) for (t = 0; t < 20; ++t) rnd(ch, 0x5a827999); for (/*t = 20*/; t < 40; ++t) rnd(parity, 0x6ed9eba1); for (/*t = 40*/; t < 60; ++t) rnd(maj, 0x8f1bbcdc); for (/*t = 60*/; t < 80; ++t) rnd(parity, 0xca62c1d6); #undef ch #undef parity #undef maj #undef rnd ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; } void sha1_begin(sha1_ctx_t *ctx) { ctx->hash[0] = 0x67452301; ctx->hash[1] = 0xefcdab89; ctx->hash[2] = 0x98badcfe; ctx->hash[3] = 0x10325476; ctx->hash[4] = 0xc3d2e1f0; ctx->total64 = 0; ctx->process_block = sha1_process_block64; } static const uint32_t init256[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t init512_lo[] = { 0xf3bcc908, 0x84caa73b, 0xfe94f82b, 0x5f1d36f1, 0xade682d1, 0x2b3e6c1f, 0xfb41bd6b, 0x137e2179 }; /* Used also for sha256 */ void sha1_hash(const void *buffer, size_t len, sha1_ctx_t *ctx) { unsigned in_buf = ctx->total64 & 63; unsigned add = 64 - in_buf; ctx->total64 += len; while (len >= add) { /* transfer whole blocks while possible */ memcpy(ctx->wbuffer + in_buf, buffer, add); buffer = (const char *)buffer + add; len -= add; add = 64; in_buf = 0; ctx->process_block(ctx); } memcpy(ctx->wbuffer + in_buf, buffer, len); } /* Used also for sha256 */ void sha1_end(void *resbuf, sha1_ctx_t *ctx) { unsigned pad, in_buf; in_buf = ctx->total64 & 63; /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */ ctx->wbuffer[in_buf++] = 0x80; /* This loop iterates either once or twice, no more, no less */ while (1) { pad = 64 - in_buf; memset(ctx->wbuffer + in_buf, 0, pad); in_buf = 0; /* Do we have enough space for the length count? */ if (pad >= 8) { /* Store the 64-bit counter of bits in the buffer in BE format */ uint64_t t = ctx->total64 << 3; t = hton64(t); /* wbuffer is suitably aligned for this */ *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t; } ctx->process_block(ctx); if (pad >= 8) break; } in_buf = (ctx->process_block == sha1_process_block64) ? 5 : 8; /* This way we do not impose alignment constraints on resbuf: */ if (SHA1_LITTLE_ENDIAN) { unsigned i; for (i = 0; i < in_buf; ++i) ctx->hash[i] = htonl(ctx->hash[i]); } memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * in_buf); }