/* * Driver for AMD7930 sound chips found on Sparcs. * Copyright (C) 2002, 2008 David S. Miller <davem@davemloft.net> * * Based entirely upon drivers/sbus/audio/amd7930.c which is: * Copyright (C) 1996,1997 Thomas K. Dyas (tdyas@eden.rutgers.edu) * * --- Notes from Thomas's original driver --- * This is the lowlevel driver for the AMD7930 audio chip found on all * sun4c machines and some sun4m machines. * * The amd7930 is actually an ISDN chip which has a very simple * integrated audio encoder/decoder. When Sun decided on what chip to * use for audio, they had the brilliant idea of using the amd7930 and * only connecting the audio encoder/decoder pins. * * Thanks to the AMD engineer who was able to get us the AMD79C30 * databook which has all the programming information and gain tables. * * Advanced Micro Devices' Am79C30A is an ISDN/audio chip used in the * SparcStation 1+. The chip provides microphone and speaker interfaces * which provide mono-channel audio at 8K samples per second via either * 8-bit A-law or 8-bit mu-law encoding. Also, the chip features an * ISDN BRI Line Interface Unit (LIU), I.430 S/T physical interface, * which performs basic D channel LAPD processing and provides raw * B channel data. The digital audio channel, the two ISDN B channels, * and two 64 Kbps channels to the microprocessor are all interconnected * via a multiplexer. * --- End of notes from Thoamas's original driver --- */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/moduleparam.h> #include <linux/of.h> #include <linux/of_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/info.h> #include <sound/control.h> #include <sound/initval.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/prom.h> static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Sun AMD7930 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Sun AMD7930 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Sun AMD7930 soundcard."); MODULE_AUTHOR("Thomas K. Dyas and David S. Miller"); MODULE_DESCRIPTION("Sun AMD7930"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Sun,AMD7930}}"); /* Device register layout. */ /* Register interface presented to the CPU by the amd7930. */ #define AMD7930_CR 0x00UL /* Command Register (W) */ #define AMD7930_IR AMD7930_CR /* Interrupt Register (R) */ #define AMD7930_DR 0x01UL /* Data Register (R/W) */ #define AMD7930_DSR1 0x02UL /* D-channel Status Register 1 (R) */ #define AMD7930_DER 0x03UL /* D-channel Error Register (R) */ #define AMD7930_DCTB 0x04UL /* D-channel Transmit Buffer (W) */ #define AMD7930_DCRB AMD7930_DCTB /* D-channel Receive Buffer (R) */ #define AMD7930_BBTB 0x05UL /* Bb-channel Transmit Buffer (W) */ #define AMD7930_BBRB AMD7930_BBTB /* Bb-channel Receive Buffer (R) */ #define AMD7930_BCTB 0x06UL /* Bc-channel Transmit Buffer (W) */ #define AMD7930_BCRB AMD7930_BCTB /* Bc-channel Receive Buffer (R) */ #define AMD7930_DSR2 0x07UL /* D-channel Status Register 2 (R) */ /* Indirect registers in the Main Audio Processor. */ struct amd7930_map { __u16 x[8]; __u16 r[8]; __u16 gx; __u16 gr; __u16 ger; __u16 stgr; __u16 ftgr; __u16 atgr; __u8 mmr1; __u8 mmr2; }; /* After an amd7930 interrupt, reading the Interrupt Register (ir) * clears the interrupt and returns a bitmask indicating which * interrupt source(s) require service. */ #define AMR_IR_DTTHRSH 0x01 /* D-channel xmit threshold */ #define AMR_IR_DRTHRSH 0x02 /* D-channel recv threshold */ #define AMR_IR_DSRI 0x04 /* D-channel packet status */ #define AMR_IR_DERI 0x08 /* D-channel error */ #define AMR_IR_BBUF 0x10 /* B-channel data xfer */ #define AMR_IR_LSRI 0x20 /* LIU status */ #define AMR_IR_DSR2I 0x40 /* D-channel buffer status */ #define AMR_IR_MLTFRMI 0x80 /* multiframe or PP */ /* The amd7930 has "indirect registers" which are accessed by writing * the register number into the Command Register and then reading or * writing values from the Data Register as appropriate. We define the * AMR_* macros to be the indirect register numbers and AM_* macros to * be bits in whatever register is referred to. */ /* Initialization */ #define AMR_INIT 0x21 #define AM_INIT_ACTIVE 0x01 #define AM_INIT_DATAONLY 0x02 #define AM_INIT_POWERDOWN 0x03 #define AM_INIT_DISABLE_INTS 0x04 #define AMR_INIT2 0x20 #define AM_INIT2_ENABLE_POWERDOWN 0x20 #define AM_INIT2_ENABLE_MULTIFRAME 0x10 /* Line Interface Unit */ #define AMR_LIU_LSR 0xA1 #define AM_LIU_LSR_STATE 0x07 #define AM_LIU_LSR_F3 0x08 #define AM_LIU_LSR_F7 0x10 #define AM_LIU_LSR_F8 0x20 #define AM_LIU_LSR_HSW 0x40 #define AM_LIU_LSR_HSW_CHG 0x80 #define AMR_LIU_LPR 0xA2 #define AMR_LIU_LMR1 0xA3 #define AM_LIU_LMR1_B1_ENABL 0x01 #define AM_LIU_LMR1_B2_ENABL 0x02 #define AM_LIU_LMR1_F_DISABL 0x04 #define AM_LIU_LMR1_FA_DISABL 0x08 #define AM_LIU_LMR1_REQ_ACTIV 0x10 #define AM_LIU_LMR1_F8_F3 0x20 #define AM_LIU_LMR1_LIU_ENABL 0x40 #define AMR_LIU_LMR2 0xA4 #define AM_LIU_LMR2_DECHO 0x01 #define AM_LIU_LMR2_DLOOP 0x02 #define AM_LIU_LMR2_DBACKOFF 0x04 #define AM_LIU_LMR2_EN_F3_INT 0x08 #define AM_LIU_LMR2_EN_F8_INT 0x10 #define AM_LIU_LMR2_EN_HSW_INT 0x20 #define AM_LIU_LMR2_EN_F7_INT 0x40 #define AMR_LIU_2_4 0xA5 #define AMR_LIU_MF 0xA6 #define AMR_LIU_MFSB 0xA7 #define AMR_LIU_MFQB 0xA8 /* Multiplexor */ #define AMR_MUX_MCR1 0x41 #define AMR_MUX_MCR2 0x42 #define AMR_MUX_MCR3 0x43 #define AM_MUX_CHANNEL_B1 0x01 #define AM_MUX_CHANNEL_B2 0x02 #define AM_MUX_CHANNEL_Ba 0x03 #define AM_MUX_CHANNEL_Bb 0x04 #define AM_MUX_CHANNEL_Bc 0x05 #define AM_MUX_CHANNEL_Bd 0x06 #define AM_MUX_CHANNEL_Be 0x07 #define AM_MUX_CHANNEL_Bf 0x08 #define AMR_MUX_MCR4 0x44 #define AM_MUX_MCR4_ENABLE_INTS 0x08 #define AM_MUX_MCR4_REVERSE_Bb 0x10 #define AM_MUX_MCR4_REVERSE_Bc 0x20 #define AMR_MUX_1_4 0x45 /* Main Audio Processor */ #define AMR_MAP_X 0x61 #define AMR_MAP_R 0x62 #define AMR_MAP_GX 0x63 #define AMR_MAP_GR 0x64 #define AMR_MAP_GER 0x65 #define AMR_MAP_STGR 0x66 #define AMR_MAP_FTGR_1_2 0x67 #define AMR_MAP_ATGR_1_2 0x68 #define AMR_MAP_MMR1 0x69 #define AM_MAP_MMR1_ALAW 0x01 #define AM_MAP_MMR1_GX 0x02 #define AM_MAP_MMR1_GR 0x04 #define AM_MAP_MMR1_GER 0x08 #define AM_MAP_MMR1_X 0x10 #define AM_MAP_MMR1_R 0x20 #define AM_MAP_MMR1_STG 0x40 #define AM_MAP_MMR1_LOOPBACK 0x80 #define AMR_MAP_MMR2 0x6A #define AM_MAP_MMR2_AINB 0x01 #define AM_MAP_MMR2_LS 0x02 #define AM_MAP_MMR2_ENABLE_DTMF 0x04 #define AM_MAP_MMR2_ENABLE_TONEGEN 0x08 #define AM_MAP_MMR2_ENABLE_TONERING 0x10 #define AM_MAP_MMR2_DISABLE_HIGHPASS 0x20 #define AM_MAP_MMR2_DISABLE_AUTOZERO 0x40 #define AMR_MAP_1_10 0x6B #define AMR_MAP_MMR3 0x6C #define AMR_MAP_STRA 0x6D #define AMR_MAP_STRF 0x6E #define AMR_MAP_PEAKX 0x70 #define AMR_MAP_PEAKR 0x71 #define AMR_MAP_15_16 0x72 /* Data Link Controller */ #define AMR_DLC_FRAR_1_2_3 0x81 #define AMR_DLC_SRAR_1_2_3 0x82 #define AMR_DLC_TAR 0x83 #define AMR_DLC_DRLR 0x84 #define AMR_DLC_DTCR 0x85 #define AMR_DLC_DMR1 0x86 #define AMR_DLC_DMR1_DTTHRSH_INT 0x01 #define AMR_DLC_DMR1_DRTHRSH_INT 0x02 #define AMR_DLC_DMR1_TAR_ENABL 0x04 #define AMR_DLC_DMR1_EORP_INT 0x08 #define AMR_DLC_DMR1_EN_ADDR1 0x10 #define AMR_DLC_DMR1_EN_ADDR2 0x20 #define AMR_DLC_DMR1_EN_ADDR3 0x40 #define AMR_DLC_DMR1_EN_ADDR4 0x80 #define AMR_DLC_DMR1_EN_ADDRS 0xf0 #define AMR_DLC_DMR2 0x87 #define AMR_DLC_DMR2_RABRT_INT 0x01 #define AMR_DLC_DMR2_RESID_INT 0x02 #define AMR_DLC_DMR2_COLL_INT 0x04 #define AMR_DLC_DMR2_FCS_INT 0x08 #define AMR_DLC_DMR2_OVFL_INT 0x10 #define AMR_DLC_DMR2_UNFL_INT 0x20 #define AMR_DLC_DMR2_OVRN_INT 0x40 #define AMR_DLC_DMR2_UNRN_INT 0x80 #define AMR_DLC_1_7 0x88 #define AMR_DLC_DRCR 0x89 #define AMR_DLC_RNGR1 0x8A #define AMR_DLC_RNGR2 0x8B #define AMR_DLC_FRAR4 0x8C #define AMR_DLC_SRAR4 0x8D #define AMR_DLC_DMR3 0x8E #define AMR_DLC_DMR3_VA_INT 0x01 #define AMR_DLC_DMR3_EOTP_INT 0x02 #define AMR_DLC_DMR3_LBRP_INT 0x04 #define AMR_DLC_DMR3_RBA_INT 0x08 #define AMR_DLC_DMR3_LBT_INT 0x10 #define AMR_DLC_DMR3_TBE_INT 0x20 #define AMR_DLC_DMR3_RPLOST_INT 0x40 #define AMR_DLC_DMR3_KEEP_FCS 0x80 #define AMR_DLC_DMR4 0x8F #define AMR_DLC_DMR4_RCV_1 0x00 #define AMR_DLC_DMR4_RCV_2 0x01 #define AMR_DLC_DMR4_RCV_4 0x02 #define AMR_DLC_DMR4_RCV_8 0x03 #define AMR_DLC_DMR4_RCV_16 0x01 #define AMR_DLC_DMR4_RCV_24 0x02 #define AMR_DLC_DMR4_RCV_30 0x03 #define AMR_DLC_DMR4_XMT_1 0x00 #define AMR_DLC_DMR4_XMT_2 0x04 #define AMR_DLC_DMR4_XMT_4 0x08 #define AMR_DLC_DMR4_XMT_8 0x0c #define AMR_DLC_DMR4_XMT_10 0x08 #define AMR_DLC_DMR4_XMT_14 0x0c #define AMR_DLC_DMR4_IDLE_MARK 0x00 #define AMR_DLC_DMR4_IDLE_FLAG 0x10 #define AMR_DLC_DMR4_ADDR_BOTH 0x00 #define AMR_DLC_DMR4_ADDR_1ST 0x20 #define AMR_DLC_DMR4_ADDR_2ND 0xa0 #define AMR_DLC_DMR4_CR_ENABLE 0x40 #define AMR_DLC_12_15 0x90 #define AMR_DLC_ASR 0x91 #define AMR_DLC_EFCR 0x92 #define AMR_DLC_EFCR_EXTEND_FIFO 0x01 #define AMR_DLC_EFCR_SEC_PKT_INT 0x02 #define AMR_DSR1_VADDR 0x01 #define AMR_DSR1_EORP 0x02 #define AMR_DSR1_PKT_IP 0x04 #define AMR_DSR1_DECHO_ON 0x08 #define AMR_DSR1_DLOOP_ON 0x10 #define AMR_DSR1_DBACK_OFF 0x20 #define AMR_DSR1_EOTP 0x40 #define AMR_DSR1_CXMT_ABRT 0x80 #define AMR_DSR2_LBRP 0x01 #define AMR_DSR2_RBA 0x02 #define AMR_DSR2_RPLOST 0x04 #define AMR_DSR2_LAST_BYTE 0x08 #define AMR_DSR2_TBE 0x10 #define AMR_DSR2_MARK_IDLE 0x20 #define AMR_DSR2_FLAG_IDLE 0x40 #define AMR_DSR2_SECOND_PKT 0x80 #define AMR_DER_RABRT 0x01 #define AMR_DER_RFRAME 0x02 #define AMR_DER_COLLISION 0x04 #define AMR_DER_FCS 0x08 #define AMR_DER_OVFL 0x10 #define AMR_DER_UNFL 0x20 #define AMR_DER_OVRN 0x40 #define AMR_DER_UNRN 0x80 /* Peripheral Port */ #define AMR_PP_PPCR1 0xC0 #define AMR_PP_PPSR 0xC1 #define AMR_PP_PPIER 0xC2 #define AMR_PP_MTDR 0xC3 #define AMR_PP_MRDR 0xC3 #define AMR_PP_CITDR0 0xC4 #define AMR_PP_CIRDR0 0xC4 #define AMR_PP_CITDR1 0xC5 #define AMR_PP_CIRDR1 0xC5 #define AMR_PP_PPCR2 0xC8 #define AMR_PP_PPCR3 0xC9 struct snd_amd7930 { spinlock_t lock; void __iomem *regs; u32 flags; #define AMD7930_FLAG_PLAYBACK 0x00000001 #define AMD7930_FLAG_CAPTURE 0x00000002 struct amd7930_map map; struct snd_card *card; struct snd_pcm *pcm; struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; /* Playback/Capture buffer state. */ unsigned char *p_orig, *p_cur; int p_left; unsigned char *c_orig, *c_cur; int c_left; int rgain; int pgain; int mgain; struct of_device *op; unsigned int irq; struct snd_amd7930 *next; }; static struct snd_amd7930 *amd7930_list; /* Idle the AMD7930 chip. The amd->lock is not held. */ static __inline__ void amd7930_idle(struct snd_amd7930 *amd) { unsigned long flags; spin_lock_irqsave(&amd->lock, flags); sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR); sbus_writeb(0, amd->regs + AMD7930_DR); spin_unlock_irqrestore(&amd->lock, flags); } /* Enable chip interrupts. The amd->lock is not held. */ static __inline__ void amd7930_enable_ints(struct snd_amd7930 *amd) { unsigned long flags; spin_lock_irqsave(&amd->lock, flags); sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR); sbus_writeb(AM_INIT_ACTIVE, amd->regs + AMD7930_DR); spin_unlock_irqrestore(&amd->lock, flags); } /* Disable chip interrupts. The amd->lock is not held. */ static __inline__ void amd7930_disable_ints(struct snd_amd7930 *amd) { unsigned long flags; spin_lock_irqsave(&amd->lock, flags); sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR); sbus_writeb(AM_INIT_ACTIVE | AM_INIT_DISABLE_INTS, amd->regs + AMD7930_DR); spin_unlock_irqrestore(&amd->lock, flags); } /* Commit amd7930_map settings to the hardware. * The amd->lock is held and local interrupts are disabled. */ static void __amd7930_write_map(struct snd_amd7930 *amd) { struct amd7930_map *map = &amd->map; sbus_writeb(AMR_MAP_GX, amd->regs + AMD7930_CR); sbus_writeb(((map->gx >> 0) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(((map->gx >> 8) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(AMR_MAP_GR, amd->regs + AMD7930_CR); sbus_writeb(((map->gr >> 0) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(((map->gr >> 8) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(AMR_MAP_STGR, amd->regs + AMD7930_CR); sbus_writeb(((map->stgr >> 0) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(((map->stgr >> 8) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(AMR_MAP_GER, amd->regs + AMD7930_CR); sbus_writeb(((map->ger >> 0) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(((map->ger >> 8) & 0xff), amd->regs + AMD7930_DR); sbus_writeb(AMR_MAP_MMR1, amd->regs + AMD7930_CR); sbus_writeb(map->mmr1, amd->regs + AMD7930_DR); sbus_writeb(AMR_MAP_MMR2, amd->regs + AMD7930_CR); sbus_writeb(map->mmr2, amd->regs + AMD7930_DR); } /* gx, gr & stg gains. this table must contain 256 elements with * the 0th being "infinity" (the magic value 9008). The remaining * elements match sun's gain curve (but with higher resolution): * -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps. */ static __const__ __u16 gx_coeff[256] = { 0x9008, 0x8b7c, 0x8b51, 0x8b45, 0x8b42, 0x8b3b, 0x8b36, 0x8b33, 0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22, 0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b, 0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb, 0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a, 0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213, 0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231, 0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4, 0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2, 0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa, 0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b, 0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b, 0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd, 0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808, 0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243, 0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224, 0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb, 0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33, 0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32, 0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323, 0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a, 0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23, 0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1, 0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333, 0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227, 0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6, 0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2, 0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba, 0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033, 0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021, 0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012, 0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e, }; static __const__ __u16 ger_coeff[] = { 0x431f, /* 5. dB */ 0x331f, /* 5.5 dB */ 0x40dd, /* 6. dB */ 0x11dd, /* 6.5 dB */ 0x440f, /* 7. dB */ 0x411f, /* 7.5 dB */ 0x311f, /* 8. dB */ 0x5520, /* 8.5 dB */ 0x10dd, /* 9. dB */ 0x4211, /* 9.5 dB */ 0x410f, /* 10. dB */ 0x111f, /* 10.5 dB */ 0x600b, /* 11. dB */ 0x00dd, /* 11.5 dB */ 0x4210, /* 12. dB */ 0x110f, /* 13. dB */ 0x7200, /* 14. dB */ 0x2110, /* 15. dB */ 0x2200, /* 15.9 dB */ 0x000b, /* 16.9 dB */ 0x000f /* 18. dB */ }; /* Update amd7930_map settings and program them into the hardware. * The amd->lock is held and local interrupts are disabled. */ static void __amd7930_update_map(struct snd_amd7930 *amd) { struct amd7930_map *map = &amd->map; int level; map->gx = gx_coeff[amd->rgain]; map->stgr = gx_coeff[amd->mgain]; level = (amd->pgain * (256 + ARRAY_SIZE(ger_coeff))) >> 8; if (level >= 256) { map->ger = ger_coeff[level - 256]; map->gr = gx_coeff[255]; } else { map->ger = ger_coeff[0]; map->gr = gx_coeff[level]; } __amd7930_write_map(amd); } static irqreturn_t snd_amd7930_interrupt(int irq, void *dev_id) { struct snd_amd7930 *amd = dev_id; unsigned int elapsed; u8 ir; spin_lock(&amd->lock); elapsed = 0; ir = sbus_readb(amd->regs + AMD7930_IR); if (ir & AMR_IR_BBUF) { u8 byte; if (amd->flags & AMD7930_FLAG_PLAYBACK) { if (amd->p_left > 0) { byte = *(amd->p_cur++); amd->p_left--; sbus_writeb(byte, amd->regs + AMD7930_BBTB); if (amd->p_left == 0) elapsed |= AMD7930_FLAG_PLAYBACK; } else sbus_writeb(0, amd->regs + AMD7930_BBTB); } else if (amd->flags & AMD7930_FLAG_CAPTURE) { byte = sbus_readb(amd->regs + AMD7930_BBRB); if (amd->c_left > 0) { *(amd->c_cur++) = byte; amd->c_left--; if (amd->c_left == 0) elapsed |= AMD7930_FLAG_CAPTURE; } } } spin_unlock(&amd->lock); if (elapsed & AMD7930_FLAG_PLAYBACK) snd_pcm_period_elapsed(amd->playback_substream); else snd_pcm_period_elapsed(amd->capture_substream); return IRQ_HANDLED; } static int snd_amd7930_trigger(struct snd_amd7930 *amd, unsigned int flag, int cmd) { unsigned long flags; int result = 0; spin_lock_irqsave(&amd->lock, flags); if (cmd == SNDRV_PCM_TRIGGER_START) { if (!(amd->flags & flag)) { amd->flags |= flag; /* Enable B channel interrupts. */ sbus_writeb(AMR_MUX_MCR4, amd->regs + AMD7930_CR); sbus_writeb(AM_MUX_MCR4_ENABLE_INTS, amd->regs + AMD7930_DR); } } else if (cmd == SNDRV_PCM_TRIGGER_STOP) { if (amd->flags & flag) { amd->flags &= ~flag; /* Disable B channel interrupts. */ sbus_writeb(AMR_MUX_MCR4, amd->regs + AMD7930_CR); sbus_writeb(0, amd->regs + AMD7930_DR); } } else { result = -EINVAL; } spin_unlock_irqrestore(&amd->lock, flags); return result; } static int snd_amd7930_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); return snd_amd7930_trigger(amd, AMD7930_FLAG_PLAYBACK, cmd); } static int snd_amd7930_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); return snd_amd7930_trigger(amd, AMD7930_FLAG_CAPTURE, cmd); } static int snd_amd7930_playback_prepare(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int size = snd_pcm_lib_buffer_bytes(substream); unsigned long flags; u8 new_mmr1; spin_lock_irqsave(&amd->lock, flags); amd->flags |= AMD7930_FLAG_PLAYBACK; /* Setup the pseudo-dma transfer pointers. */ amd->p_orig = amd->p_cur = runtime->dma_area; amd->p_left = size; /* Put the chip into the correct encoding format. */ new_mmr1 = amd->map.mmr1; if (runtime->format == SNDRV_PCM_FORMAT_A_LAW) new_mmr1 |= AM_MAP_MMR1_ALAW; else new_mmr1 &= ~AM_MAP_MMR1_ALAW; if (new_mmr1 != amd->map.mmr1) { amd->map.mmr1 = new_mmr1; __amd7930_update_map(amd); } spin_unlock_irqrestore(&amd->lock, flags); return 0; } static int snd_amd7930_capture_prepare(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int size = snd_pcm_lib_buffer_bytes(substream); unsigned long flags; u8 new_mmr1; spin_lock_irqsave(&amd->lock, flags); amd->flags |= AMD7930_FLAG_CAPTURE; /* Setup the pseudo-dma transfer pointers. */ amd->c_orig = amd->c_cur = runtime->dma_area; amd->c_left = size; /* Put the chip into the correct encoding format. */ new_mmr1 = amd->map.mmr1; if (runtime->format == SNDRV_PCM_FORMAT_A_LAW) new_mmr1 |= AM_MAP_MMR1_ALAW; else new_mmr1 &= ~AM_MAP_MMR1_ALAW; if (new_mmr1 != amd->map.mmr1) { amd->map.mmr1 = new_mmr1; __amd7930_update_map(amd); } spin_unlock_irqrestore(&amd->lock, flags); return 0; } static snd_pcm_uframes_t snd_amd7930_playback_pointer(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); size_t ptr; if (!(amd->flags & AMD7930_FLAG_PLAYBACK)) return 0; ptr = amd->p_cur - amd->p_orig; return bytes_to_frames(substream->runtime, ptr); } static snd_pcm_uframes_t snd_amd7930_capture_pointer(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); size_t ptr; if (!(amd->flags & AMD7930_FLAG_CAPTURE)) return 0; ptr = amd->c_cur - amd->c_orig; return bytes_to_frames(substream->runtime, ptr); } /* Playback and capture have identical properties. */ static struct snd_pcm_hardware snd_amd7930_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_HALF_DUPLEX), .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, .rates = SNDRV_PCM_RATE_8000, .rate_min = 8000, .rate_max = 8000, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = (64*1024), .period_bytes_min = 1, .period_bytes_max = (64*1024), .periods_min = 1, .periods_max = 1024, }; static int snd_amd7930_playback_open(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; amd->playback_substream = substream; runtime->hw = snd_amd7930_pcm_hw; return 0; } static int snd_amd7930_capture_open(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; amd->capture_substream = substream; runtime->hw = snd_amd7930_pcm_hw; return 0; } static int snd_amd7930_playback_close(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); amd->playback_substream = NULL; return 0; } static int snd_amd7930_capture_close(struct snd_pcm_substream *substream) { struct snd_amd7930 *amd = snd_pcm_substream_chip(substream); amd->capture_substream = NULL; return 0; } static int snd_amd7930_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_amd7930_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static struct snd_pcm_ops snd_amd7930_playback_ops = { .open = snd_amd7930_playback_open, .close = snd_amd7930_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_amd7930_hw_params, .hw_free = snd_amd7930_hw_free, .prepare = snd_amd7930_playback_prepare, .trigger = snd_amd7930_playback_trigger, .pointer = snd_amd7930_playback_pointer, }; static struct snd_pcm_ops snd_amd7930_capture_ops = { .open = snd_amd7930_capture_open, .close = snd_amd7930_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_amd7930_hw_params, .hw_free = snd_amd7930_hw_free, .prepare = snd_amd7930_capture_prepare, .trigger = snd_amd7930_capture_trigger, .pointer = snd_amd7930_capture_pointer, }; static int __devinit snd_amd7930_pcm(struct snd_amd7930 *amd) { struct snd_pcm *pcm; int err; if ((err = snd_pcm_new(amd->card, /* ID */ "sun_amd7930", /* device */ 0, /* playback count */ 1, /* capture count */ 1, &pcm)) < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_amd7930_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_amd7930_capture_ops); pcm->private_data = amd; pcm->info_flags = 0; strcpy(pcm->name, amd->card->shortname); amd->pcm = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 64*1024, 64*1024); return 0; } #define VOLUME_MONITOR 0 #define VOLUME_CAPTURE 1 #define VOLUME_PLAYBACK 2 static int snd_amd7930_info_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 255; return 0; } static int snd_amd7930_get_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct snd_amd7930 *amd = snd_kcontrol_chip(kctl); int type = kctl->private_value; int *swval; switch (type) { case VOLUME_MONITOR: swval = &amd->mgain; break; case VOLUME_CAPTURE: swval = &amd->rgain; break; case VOLUME_PLAYBACK: default: swval = &amd->pgain; break; }; ucontrol->value.integer.value[0] = *swval; return 0; } static int snd_amd7930_put_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct snd_amd7930 *amd = snd_kcontrol_chip(kctl); unsigned long flags; int type = kctl->private_value; int *swval, change; switch (type) { case VOLUME_MONITOR: swval = &amd->mgain; break; case VOLUME_CAPTURE: swval = &amd->rgain; break; case VOLUME_PLAYBACK: default: swval = &amd->pgain; break; }; spin_lock_irqsave(&amd->lock, flags); if (*swval != ucontrol->value.integer.value[0]) { *swval = ucontrol->value.integer.value[0] & 0xff; __amd7930_update_map(amd); change = 1; } else change = 0; spin_unlock_irqrestore(&amd->lock, flags); return change; } static struct snd_kcontrol_new amd7930_controls[] __devinitdata = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Monitor Volume", .index = 0, .info = snd_amd7930_info_volume, .get = snd_amd7930_get_volume, .put = snd_amd7930_put_volume, .private_value = VOLUME_MONITOR, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Volume", .index = 0, .info = snd_amd7930_info_volume, .get = snd_amd7930_get_volume, .put = snd_amd7930_put_volume, .private_value = VOLUME_CAPTURE, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Playback Volume", .index = 0, .info = snd_amd7930_info_volume, .get = snd_amd7930_get_volume, .put = snd_amd7930_put_volume, .private_value = VOLUME_PLAYBACK, }, }; static int __devinit snd_amd7930_mixer(struct snd_amd7930 *amd) { struct snd_card *card; int idx, err; if (snd_BUG_ON(!amd || !amd->card)) return -EINVAL; card = amd->card; strcpy(card->mixername, card->shortname); for (idx = 0; idx < ARRAY_SIZE(amd7930_controls); idx++) { if ((err = snd_ctl_add(card, snd_ctl_new1(&amd7930_controls[idx], amd))) < 0) return err; } return 0; } static int snd_amd7930_free(struct snd_amd7930 *amd) { struct of_device *op = amd->op; amd7930_idle(amd); if (amd->irq) free_irq(amd->irq, amd); if (amd->regs) of_iounmap(&op->resource[0], amd->regs, resource_size(&op->resource[0])); kfree(amd); return 0; } static int snd_amd7930_dev_free(struct snd_device *device) { struct snd_amd7930 *amd = device->device_data; return snd_amd7930_free(amd); } static struct snd_device_ops snd_amd7930_dev_ops = { .dev_free = snd_amd7930_dev_free, }; static int __devinit snd_amd7930_create(struct snd_card *card, struct of_device *op, int irq, int dev, struct snd_amd7930 **ramd) { struct snd_amd7930 *amd; unsigned long flags; int err; *ramd = NULL; amd = kzalloc(sizeof(*amd), GFP_KERNEL); if (amd == NULL) return -ENOMEM; spin_lock_init(&amd->lock); amd->card = card; amd->op = op; amd->regs = of_ioremap(&op->resource[0], 0, resource_size(&op->resource[0]), "amd7930"); if (!amd->regs) { snd_printk("amd7930-%d: Unable to map chip registers.\n", dev); return -EIO; } amd7930_idle(amd); if (request_irq(irq, snd_amd7930_interrupt, IRQF_DISABLED | IRQF_SHARED, "amd7930", amd)) { snd_printk("amd7930-%d: Unable to grab IRQ %d\n", dev, irq); snd_amd7930_free(amd); return -EBUSY; } amd->irq = irq; amd7930_enable_ints(amd); spin_lock_irqsave(&amd->lock, flags); amd->rgain = 128; amd->pgain = 200; amd->mgain = 0; memset(&amd->map, 0, sizeof(amd->map)); amd->map.mmr1 = (AM_MAP_MMR1_GX | AM_MAP_MMR1_GER | AM_MAP_MMR1_GR | AM_MAP_MMR1_STG); amd->map.mmr2 = (AM_MAP_MMR2_LS | AM_MAP_MMR2_AINB); __amd7930_update_map(amd); /* Always MUX audio (Ba) to channel Bb. */ sbus_writeb(AMR_MUX_MCR1, amd->regs + AMD7930_CR); sbus_writeb(AM_MUX_CHANNEL_Ba | (AM_MUX_CHANNEL_Bb << 4), amd->regs + AMD7930_DR); spin_unlock_irqrestore(&amd->lock, flags); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, amd, &snd_amd7930_dev_ops)) < 0) { snd_amd7930_free(amd); return err; } *ramd = amd; return 0; } static int __devinit amd7930_sbus_probe(struct of_device *op, const struct of_device_id *match) { struct resource *rp = &op->resource[0]; static int dev_num; struct snd_card *card; struct snd_amd7930 *amd; int err, irq; irq = op->irqs[0]; if (dev_num >= SNDRV_CARDS) return -ENODEV; if (!enable[dev_num]) { dev_num++; return -ENOENT; } card = snd_card_new(index[dev_num], id[dev_num], THIS_MODULE, 0); if (card == NULL) return -ENOMEM; strcpy(card->driver, "AMD7930"); strcpy(card->shortname, "Sun AMD7930"); sprintf(card->longname, "%s at 0x%02lx:0x%08Lx, irq %d", card->shortname, rp->flags & 0xffL, (unsigned long long)rp->start, irq); if ((err = snd_amd7930_create(card, op, irq, dev_num, &amd)) < 0) goto out_err; if ((err = snd_amd7930_pcm(amd)) < 0) goto out_err; if ((err = snd_amd7930_mixer(amd)) < 0) goto out_err; if ((err = snd_card_register(card)) < 0) goto out_err; amd->next = amd7930_list; amd7930_list = amd; dev_num++; return 0; out_err: snd_card_free(card); return err; } static const struct of_device_id amd7930_match[] = { { .name = "audio", }, {}, }; static struct of_platform_driver amd7930_sbus_driver = { .name = "audio", .match_table = amd7930_match, .probe = amd7930_sbus_probe, }; static int __init amd7930_init(void) { return of_register_driver(&amd7930_sbus_driver, &of_bus_type); } static void __exit amd7930_exit(void) { struct snd_amd7930 *p = amd7930_list; while (p != NULL) { struct snd_amd7930 *next = p->next; snd_card_free(p->card); p = next; } amd7930_list = NULL; of_unregister_driver(&amd7930_sbus_driver); } module_init(amd7930_init); module_exit(amd7930_exit);