/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2007, Mattias Nissler <mattias.nissler@gmx.de> * Copyright 2007-2008, Stefano Brivio <stefano.brivio@polimi.it> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/debugfs.h> #include <net/mac80211.h> #include "rate.h" #include "mesh.h" #include "rc80211_pid.h" /* This is an implementation of a TX rate control algorithm that uses a PID * controller. Given a target failed frames rate, the controller decides about * TX rate changes to meet the target failed frames rate. * * The controller basically computes the following: * * adj = CP * err + CI * err_avg + CD * (err - last_err) * (1 + sharpening) * * where * adj adjustment value that is used to switch TX rate (see below) * err current error: target vs. current failed frames percentage * last_err last error * err_avg average (i.e. poor man's integral) of recent errors * sharpening non-zero when fast response is needed (i.e. right after * association or no frames sent for a long time), heading * to zero over time * CP Proportional coefficient * CI Integral coefficient * CD Derivative coefficient * * CP, CI, CD are subject to careful tuning. * * The integral component uses a exponential moving average approach instead of * an actual sliding window. The advantage is that we don't need to keep an * array of the last N error values and computation is easier. * * Once we have the adj value, we map it to a rate by means of a learning * algorithm. This algorithm keeps the state of the percentual failed frames * difference between rates. The behaviour of the lowest available rate is kept * as a reference value, and every time we switch between two rates, we compute * the difference between the failed frames each rate exhibited. By doing so, * we compare behaviours which different rates exhibited in adjacent timeslices, * thus the comparison is minimally affected by external conditions. This * difference gets propagated to the whole set of measurements, so that the * reference is always the same. Periodically, we normalize this set so that * recent events weigh the most. By comparing the adj value with this set, we * avoid pejorative switches to lower rates and allow for switches to higher * rates if they behaved well. * * Note that for the computations we use a fixed-point representation to avoid * floating point arithmetic. Hence, all values are shifted left by * RC_PID_ARITH_SHIFT. */ /* Adjust the rate while ensuring that we won't switch to a lower rate if it * exhibited a worse failed frames behaviour and we'll choose the highest rate * whose failed frames behaviour is not worse than the one of the original rate * target. While at it, check that the new rate is valid. */ static void rate_control_pid_adjust_rate(struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, struct rc_pid_sta_info *spinfo, int adj, struct rc_pid_rateinfo *rinfo) { int cur_sorted, new_sorted, probe, tmp, n_bitrates, band; int cur = spinfo->txrate_idx; band = sband->band; n_bitrates = sband->n_bitrates; /* Map passed arguments to sorted values. */ cur_sorted = rinfo[cur].rev_index; new_sorted = cur_sorted + adj; /* Check limits. */ if (new_sorted < 0) new_sorted = rinfo[0].rev_index; else if (new_sorted >= n_bitrates) new_sorted = rinfo[n_bitrates - 1].rev_index; tmp = new_sorted; if (adj < 0) { /* Ensure that the rate decrease isn't disadvantageous. */ for (probe = cur_sorted; probe >= new_sorted; probe--) if (rinfo[probe].diff <= rinfo[cur_sorted].diff && rate_supported(sta, band, rinfo[probe].index)) tmp = probe; } else { /* Look for rate increase with zero (or below) cost. */ for (probe = new_sorted + 1; probe < n_bitrates; probe++) if (rinfo[probe].diff <= rinfo[new_sorted].diff && rate_supported(sta, band, rinfo[probe].index)) tmp = probe; } /* Fit the rate found to the nearest supported rate. */ do { if (rate_supported(sta, band, rinfo[tmp].index)) { spinfo->txrate_idx = rinfo[tmp].index; break; } if (adj < 0) tmp--; else tmp++; } while (tmp < n_bitrates && tmp >= 0); #ifdef CONFIG_MAC80211_DEBUGFS rate_control_pid_event_rate_change(&spinfo->events, spinfo->txrate_idx, sband->bitrates[spinfo->txrate_idx].bitrate); #endif } /* Normalize the failed frames per-rate differences. */ static void rate_control_pid_normalize(struct rc_pid_info *pinfo, int l) { int i, norm_offset = pinfo->norm_offset; struct rc_pid_rateinfo *r = pinfo->rinfo; if (r[0].diff > norm_offset) r[0].diff -= norm_offset; else if (r[0].diff < -norm_offset) r[0].diff += norm_offset; for (i = 0; i < l - 1; i++) if (r[i + 1].diff > r[i].diff + norm_offset) r[i + 1].diff -= norm_offset; else if (r[i + 1].diff <= r[i].diff) r[i + 1].diff += norm_offset; } static void rate_control_pid_sample(struct rc_pid_info *pinfo, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, struct rc_pid_sta_info *spinfo) { struct rc_pid_rateinfo *rinfo = pinfo->rinfo; u32 pf; s32 err_avg; u32 err_prop; u32 err_int; u32 err_der; int adj, i, j, tmp; unsigned long period; /* In case nothing happened during the previous control interval, turn * the sharpening factor on. */ period = (HZ * pinfo->sampling_period + 500) / 1000; if (!period) period = 1; if (jiffies - spinfo->last_sample > 2 * period) spinfo->sharp_cnt = pinfo->sharpen_duration; spinfo->last_sample = jiffies; /* This should never happen, but in case, we assume the old sample is * still a good measurement and copy it. */ if (unlikely(spinfo->tx_num_xmit == 0)) pf = spinfo->last_pf; else pf = spinfo->tx_num_failed * 100 / spinfo->tx_num_xmit; spinfo->tx_num_xmit = 0; spinfo->tx_num_failed = 0; /* If we just switched rate, update the rate behaviour info. */ if (pinfo->oldrate != spinfo->txrate_idx) { i = rinfo[pinfo->oldrate].rev_index; j = rinfo[spinfo->txrate_idx].rev_index; tmp = (pf - spinfo->last_pf); tmp = RC_PID_DO_ARITH_RIGHT_SHIFT(tmp, RC_PID_ARITH_SHIFT); rinfo[j].diff = rinfo[i].diff + tmp; pinfo->oldrate = spinfo->txrate_idx; } rate_control_pid_normalize(pinfo, sband->n_bitrates); /* Compute the proportional, integral and derivative errors. */ err_prop = (pinfo->target << RC_PID_ARITH_SHIFT) - pf; err_avg = spinfo->err_avg_sc >> pinfo->smoothing_shift; spinfo->err_avg_sc = spinfo->err_avg_sc - err_avg + err_prop; err_int = spinfo->err_avg_sc >> pinfo->smoothing_shift; err_der = (pf - spinfo->last_pf) * (1 + pinfo->sharpen_factor * spinfo->sharp_cnt); spinfo->last_pf = pf; if (spinfo->sharp_cnt) spinfo->sharp_cnt--; #ifdef CONFIG_MAC80211_DEBUGFS rate_control_pid_event_pf_sample(&spinfo->events, pf, err_prop, err_int, err_der); #endif /* Compute the controller output. */ adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i + err_der * pinfo->coeff_d); adj = RC_PID_DO_ARITH_RIGHT_SHIFT(adj, 2 * RC_PID_ARITH_SHIFT); /* Change rate. */ if (adj) rate_control_pid_adjust_rate(sband, sta, spinfo, adj, rinfo); } static void rate_control_pid_tx_status(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb) { struct rc_pid_info *pinfo = priv; struct rc_pid_sta_info *spinfo = priv_sta; unsigned long period; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (!spinfo) return; /* Ignore all frames that were sent with a different rate than the rate * we currently advise mac80211 to use. */ if (info->status.rates[0].idx != spinfo->txrate_idx) return; spinfo->tx_num_xmit++; #ifdef CONFIG_MAC80211_DEBUGFS rate_control_pid_event_tx_status(&spinfo->events, info); #endif /* We count frames that totally failed to be transmitted as two bad * frames, those that made it out but had some retries as one good and * one bad frame. */ if (!(info->flags & IEEE80211_TX_STAT_ACK)) { spinfo->tx_num_failed += 2; spinfo->tx_num_xmit++; } else if (info->status.rates[0].count > 1) { spinfo->tx_num_failed++; spinfo->tx_num_xmit++; } /* Update PID controller state. */ period = (HZ * pinfo->sampling_period + 500) / 1000; if (!period) period = 1; if (time_after(jiffies, spinfo->last_sample + period)) rate_control_pid_sample(pinfo, sband, sta, spinfo); } static void rate_control_pid_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc) { struct sk_buff *skb = txrc->skb; struct ieee80211_supported_band *sband = txrc->sband; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rc_pid_sta_info *spinfo = priv_sta; int rateidx; if (txrc->rts) info->control.rates[0].count = txrc->hw->conf.long_frame_max_tx_count; else info->control.rates[0].count = txrc->hw->conf.short_frame_max_tx_count; /* Send management frames and NO_ACK data using lowest rate. */ if (rate_control_send_low(sta, priv_sta, txrc)) return; rateidx = spinfo->txrate_idx; if (rateidx >= sband->n_bitrates) rateidx = sband->n_bitrates - 1; info->control.rates[0].idx = rateidx; #ifdef CONFIG_MAC80211_DEBUGFS rate_control_pid_event_tx_rate(&spinfo->events, rateidx, sband->bitrates[rateidx].bitrate); #endif } static void rate_control_pid_rate_init(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta) { struct rc_pid_sta_info *spinfo = priv_sta; struct rc_pid_info *pinfo = priv; struct rc_pid_rateinfo *rinfo = pinfo->rinfo; int i, j, tmp; bool s; /* TODO: This routine should consider using RSSI from previous packets * as we need to have IEEE 802.1X auth succeed immediately after assoc.. * Until that method is implemented, we will use the lowest supported * rate as a workaround. */ /* Sort the rates. This is optimized for the most common case (i.e. * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed * mapping too. */ for (i = 0; i < sband->n_bitrates; i++) { rinfo[i].index = i; rinfo[i].rev_index = i; if (RC_PID_FAST_START) rinfo[i].diff = 0; else rinfo[i].diff = i * pinfo->norm_offset; } for (i = 1; i < sband->n_bitrates; i++) { s = 0; for (j = 0; j < sband->n_bitrates - i; j++) if (unlikely(sband->bitrates[rinfo[j].index].bitrate > sband->bitrates[rinfo[j + 1].index].bitrate)) { tmp = rinfo[j].index; rinfo[j].index = rinfo[j + 1].index; rinfo[j + 1].index = tmp; rinfo[rinfo[j].index].rev_index = j; rinfo[rinfo[j + 1].index].rev_index = j + 1; s = 1; } if (!s) break; } spinfo->txrate_idx = rate_lowest_index(sband, sta); } static void *rate_control_pid_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) { struct rc_pid_info *pinfo; struct rc_pid_rateinfo *rinfo; struct ieee80211_supported_band *sband; int i, max_rates = 0; #ifdef CONFIG_MAC80211_DEBUGFS struct rc_pid_debugfs_entries *de; #endif pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC); if (!pinfo) return NULL; for (i = 0; i < IEEE80211_NUM_BANDS; i++) { sband = hw->wiphy->bands[i]; if (sband && sband->n_bitrates > max_rates) max_rates = sband->n_bitrates; } rinfo = kmalloc(sizeof(*rinfo) * max_rates, GFP_ATOMIC); if (!rinfo) { kfree(pinfo); return NULL; } pinfo->target = RC_PID_TARGET_PF; pinfo->sampling_period = RC_PID_INTERVAL; pinfo->coeff_p = RC_PID_COEFF_P; pinfo->coeff_i = RC_PID_COEFF_I; pinfo->coeff_d = RC_PID_COEFF_D; pinfo->smoothing_shift = RC_PID_SMOOTHING_SHIFT; pinfo->sharpen_factor = RC_PID_SHARPENING_FACTOR; pinfo->sharpen_duration = RC_PID_SHARPENING_DURATION; pinfo->norm_offset = RC_PID_NORM_OFFSET; pinfo->rinfo = rinfo; pinfo->oldrate = 0; #ifdef CONFIG_MAC80211_DEBUGFS de = &pinfo->dentries; de->target = debugfs_create_u32("target_pf", S_IRUSR | S_IWUSR, debugfsdir, &pinfo->target); de->sampling_period = debugfs_create_u32("sampling_period", S_IRUSR | S_IWUSR, debugfsdir, &pinfo->sampling_period); de->coeff_p = debugfs_create_u32("coeff_p", S_IRUSR | S_IWUSR, debugfsdir, (u32 *)&pinfo->coeff_p); de->coeff_i = debugfs_create_u32("coeff_i", S_IRUSR | S_IWUSR, debugfsdir, (u32 *)&pinfo->coeff_i); de->coeff_d = debugfs_create_u32("coeff_d", S_IRUSR | S_IWUSR, debugfsdir, (u32 *)&pinfo->coeff_d); de->smoothing_shift = debugfs_create_u32("smoothing_shift", S_IRUSR | S_IWUSR, debugfsdir, &pinfo->smoothing_shift); de->sharpen_factor = debugfs_create_u32("sharpen_factor", S_IRUSR | S_IWUSR, debugfsdir, &pinfo->sharpen_factor); de->sharpen_duration = debugfs_create_u32("sharpen_duration", S_IRUSR | S_IWUSR, debugfsdir, &pinfo->sharpen_duration); de->norm_offset = debugfs_create_u32("norm_offset", S_IRUSR | S_IWUSR, debugfsdir, &pinfo->norm_offset); #endif return pinfo; } static void rate_control_pid_free(void *priv) { struct rc_pid_info *pinfo = priv; #ifdef CONFIG_MAC80211_DEBUGFS struct rc_pid_debugfs_entries *de = &pinfo->dentries; debugfs_remove(de->norm_offset); debugfs_remove(de->sharpen_duration); debugfs_remove(de->sharpen_factor); debugfs_remove(de->smoothing_shift); debugfs_remove(de->coeff_d); debugfs_remove(de->coeff_i); debugfs_remove(de->coeff_p); debugfs_remove(de->sampling_period); debugfs_remove(de->target); #endif kfree(pinfo->rinfo); kfree(pinfo); } static void *rate_control_pid_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) { struct rc_pid_sta_info *spinfo; spinfo = kzalloc(sizeof(*spinfo), gfp); if (spinfo == NULL) return NULL; spinfo->last_sample = jiffies; #ifdef CONFIG_MAC80211_DEBUGFS spin_lock_init(&spinfo->events.lock); init_waitqueue_head(&spinfo->events.waitqueue); #endif return spinfo; } static void rate_control_pid_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) { kfree(priv_sta); } static struct rate_control_ops mac80211_rcpid = { .name = "pid", .tx_status = rate_control_pid_tx_status, .get_rate = rate_control_pid_get_rate, .rate_init = rate_control_pid_rate_init, .alloc = rate_control_pid_alloc, .free = rate_control_pid_free, .alloc_sta = rate_control_pid_alloc_sta, .free_sta = rate_control_pid_free_sta, #ifdef CONFIG_MAC80211_DEBUGFS .add_sta_debugfs = rate_control_pid_add_sta_debugfs, .remove_sta_debugfs = rate_control_pid_remove_sta_debugfs, #endif }; int __init rc80211_pid_init(void) { return ieee80211_rate_control_register(&mac80211_rcpid); } void rc80211_pid_exit(void) { ieee80211_rate_control_unregister(&mac80211_rcpid); }