/* * Demo on how to use /dev/crypto device for HMAC. * * Placed under public domain. * */ #include #include #include #include #include #include #include #include #include #include "../ncr.h" #include #include #include #if GNUTLS_VERSION_NUMBER >= 0x020b00 # include #endif #define DATA_SIZE 4096 static void print_hex_datum (gnutls_datum_t * dat) { unsigned int j; #define SPACE "\t" fprintf (stdout, "\n" SPACE); for (j = 0; j < dat->size; j++) { fprintf (stdout, "%.2x:", (unsigned char) dat->data[j]); if ((j + 1) % 15 == 0) fprintf (stdout, "\n" SPACE); } fprintf (stdout, "\n"); } static void print_dsa_pkey (gnutls_datum_t * x, gnutls_datum_t * y, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g) { if (x) { fprintf (stdout, "private key:"); print_hex_datum (x); } fprintf (stdout, "public key:"); print_hex_datum (y); fprintf (stdout, "p:"); print_hex_datum (p); fprintf (stdout, "q:"); print_hex_datum (q); fprintf (stdout, "g:"); print_hex_datum (g); } static void print_rsa_pkey (gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * u, gnutls_datum_t * exp1, gnutls_datum_t *exp2) { fprintf (stdout, "modulus:"); print_hex_datum (m); fprintf (stdout, "public exponent:"); print_hex_datum (e); if (d) { fprintf (stdout, "private exponent:"); print_hex_datum (d); fprintf (stdout, "prime1:"); print_hex_datum (p); fprintf (stdout, "prime2:"); print_hex_datum (q); fprintf (stdout, "coefficient:"); print_hex_datum (u); if (exp1 && exp2) { fprintf (stdout, "exp1:"); print_hex_datum (exp1); fprintf (stdout, "exp2:"); print_hex_datum (exp2); } } } static const char * raw_to_string (const unsigned char *raw, size_t raw_size) { static char buf[1024]; size_t i; if (raw_size == 0) return NULL; if (raw_size * 3 + 1 >= sizeof (buf)) return NULL; for (i = 0; i < raw_size; i++) { sprintf (&(buf[i * 3]), "%02X%s", raw[i], (i == raw_size - 1) ? "" : ":"); } buf[sizeof (buf) - 1] = '\0'; return buf; } int privkey_info (void* data, int data_size, int verbose) { gnutls_x509_privkey_t key; size_t size; int ret; gnutls_datum_t der; unsigned char buffer[5*1024]; const char *cprint; ret = gnutls_x509_privkey_init (&key); if (ret < 0) { fprintf(stderr, "error in privkey_init\n"); return 1; } der.data = data; der.size = data_size; ret = gnutls_x509_privkey_import (key, &der, GNUTLS_X509_FMT_DER); if (ret < 0) { fprintf(stderr, "unable to import privkey\n"); return 1; } if (verbose > 0) { /* Public key algorithm */ fprintf (stdout, "Public Key Info:\n"); ret = gnutls_x509_privkey_get_pk_algorithm (key); fprintf (stdout, "\tPublic Key Algorithm: "); cprint = gnutls_pk_algorithm_get_name (ret); fprintf (stdout, "%s\n", cprint ? cprint : "Unknown"); /* Print the raw public and private keys */ if (ret == GNUTLS_PK_RSA) { gnutls_datum_t m, e, d, p, q, u, exp1={NULL,0}, exp2={NULL,0}; #if GNUTLS_VERSION_NUMBER >= 0x020b00 ret = gnutls_x509_privkey_export_rsa_raw2 (key, &m, &e, &d, &p, &q, &u, &exp1, &exp2); #else ret = gnutls_x509_privkey_export_rsa_raw (key, &m, &e, &d, &p, &q, &u); #endif if (ret < 0) fprintf (stderr, "Error in key RSA data export: %s\n", gnutls_strerror (ret)); else { print_rsa_pkey (&m, &e, &d, &p, &q, &u, &exp1, &exp2); gnutls_free (m.data); gnutls_free (e.data); gnutls_free (d.data); gnutls_free (p.data); gnutls_free (q.data); gnutls_free (u.data); gnutls_free (exp1.data); gnutls_free (exp2.data); } } else if (ret == GNUTLS_PK_DSA) { gnutls_datum_t p, q, g, y, x; ret = gnutls_x509_privkey_export_dsa_raw (key, &p, &q, &g, &y, &x); if (ret < 0) fprintf (stderr, "Error in key DSA data export: %s\n", gnutls_strerror (ret)); else { print_dsa_pkey (&x, &y, &p, &q, &g); gnutls_free (x.data); gnutls_free (y.data); gnutls_free (p.data); gnutls_free (q.data); gnutls_free (g.data); } } fprintf (stdout, "\n"); size = sizeof (buffer); if ((ret = gnutls_x509_privkey_get_key_id (key, 0, buffer, &size)) < 0) { fprintf (stderr, "Error in key id calculation: %s\n", gnutls_strerror (ret)); } else { fprintf (stdout, "Public Key ID: %s\n", raw_to_string (buffer, size)); } size = sizeof (buffer); ret = gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &size); if (ret < 0) { fprintf(stderr, "Error in privkey_export\n"); return 1; } fprintf (stdout, "\n%s\n", buffer); } gnutls_x509_privkey_deinit (key); return 0; } int pubkey_info(void* data, int data_size, int verbose) { #if GNUTLS_VERSION_NUMBER >= 0x020b00 gnutls_pubkey_t key; size_t size; int ret; gnutls_datum_t der; unsigned char buffer[5*1024]; const char *cprint; ret = gnutls_pubkey_init (&key); if (ret < 0) { fprintf(stderr, "error in pubkey_init\n"); return 1; } der.data = data; der.size = data_size; ret = gnutls_pubkey_import (key, &der, GNUTLS_X509_FMT_DER); if (ret < 0) { fprintf(stderr, "unable to import pubkey\n"); return 1; } if (verbose > 0) { /* Public key algorithm */ fprintf (stdout, "Public Key Info:\n"); ret = gnutls_pubkey_get_pk_algorithm (key, NULL); fprintf (stdout, "\tPublic Key Algorithm: "); cprint = gnutls_pk_algorithm_get_name (ret); fprintf (stdout, "%s\n", cprint ? cprint : "Unknown"); /* Print the raw public and private keys */ if (ret == GNUTLS_PK_RSA) { gnutls_datum_t m, e; ret = gnutls_pubkey_get_pk_rsa_raw (key, &m, &e); if (ret < 0) fprintf (stderr, "Error in key RSA data export: %s\n", gnutls_strerror (ret)); else { print_rsa_pkey (&m, &e, NULL, NULL, NULL, NULL, NULL, NULL); gnutls_free (m.data); gnutls_free (e.data); } } else if (ret == GNUTLS_PK_DSA) { gnutls_datum_t p, q, g, y; ret = gnutls_pubkey_get_pk_dsa_raw (key, &p, &q, &g, &y); if (ret < 0) fprintf (stderr, "Error in key DSA data export: %s\n", gnutls_strerror (ret)); else { print_dsa_pkey (NULL, &y, &p, &q, &g); gnutls_free (y.data); gnutls_free (p.data); gnutls_free (q.data); gnutls_free (g.data); } } fprintf (stdout, "\n"); size = sizeof (buffer); if ((ret = gnutls_pubkey_get_key_id (key, 0, buffer, &size)) < 0) { fprintf (stderr, "Error in key id calculation: %s\n", gnutls_strerror (ret)); } else { fprintf (stdout, "Public Key ID: %s\n", raw_to_string (buffer, size)); } size = sizeof (buffer); ret = gnutls_pubkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &size); if (ret < 0) { fprintf(stderr, "Error in privkey_export\n"); return 1; } fprintf (stdout, "\n%s\n", buffer); } gnutls_pubkey_deinit (key); #endif return 0; } /* Diffie Hellman */ const char dh_params_txt[] = "-----BEGIN DH PARAMETERS-----\n"\ "MIGHAoGBAKMox0/IjuGqSaGMJESYMhdmXiTe1pY8gkSzWZ/ktWaUdaYAzgAZp7r3\n"\ "OCh68YslS9Oi7/UQjmBbgGuOucMKgq3tYeYzY8G2epIuIzM4TAogaEqwkdSrXlth\n"\ "MMsP2FhLhHg8m6V6iItitnMOz9r8t3BEf04GRlfzgZraM0gUUwTjAgEF\n"\ "-----END DH PARAMETERS-----\n"; static int test_ncr_dh(int cfd) { struct ncr_key_generate_st kgen; ncr_key_t private1, public1, public2, private2; ncr_key_t z1, z2; int ret; gnutls_datum g, p, params; gnutls_dh_params_t dhp; unsigned char y1[1024], y2[1024]; size_t y1_size, y2_size; struct ncr_key_data_st keydata; struct ncr_key_derivation_params_st kderive; fprintf(stdout, "Tests on DH key exchange:"); fflush(stdout); params.data = (void*)dh_params_txt; params.size = sizeof(dh_params_txt)-1; ret = gnutls_dh_params_init(&dhp); if (ret < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "gnutls: %s\n", gnutls_strerror(ret)); return 1; } ret = gnutls_dh_params_import_pkcs3(dhp, ¶ms, GNUTLS_X509_FMT_PEM); if (ret < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "gnutls: %s\n", gnutls_strerror(ret)); return 1; } ret = gnutls_dh_params_export_raw(dhp, &p, &g, NULL); if (ret < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "gnutls: %s\n", gnutls_strerror(ret)); return 1; } /* generate a DH key */ if (ioctl(cfd, NCRIO_KEY_INIT, &private1)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } if (ioctl(cfd, NCRIO_KEY_INIT, &public1)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kgen, 0, sizeof(kgen)); kgen.desc = private1; kgen.desc2 = public1; kgen.params.algorithm = NCR_ALG_DH; kgen.params.keyflags = NCR_KEY_FLAG_EXPORTABLE; kgen.params.params.dh.p = p.data; kgen.params.params.dh.p_size = p.size; kgen.params.params.dh.g = g.data; kgen.params.params.dh.g_size = g.size; if (ioctl(cfd, NCRIO_KEY_GENERATE_PAIR, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE)"); return 1; } /* generate another DH key */ if (ioctl(cfd, NCRIO_KEY_INIT, &private2)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } if (ioctl(cfd, NCRIO_KEY_INIT, &public2)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kgen, 0, sizeof(kgen)); kgen.desc = private2; kgen.desc2 = public2; kgen.params.algorithm = NCR_ALG_DH; kgen.params.keyflags = NCR_KEY_FLAG_EXPORTABLE; kgen.params.params.dh.p = p.data; kgen.params.params.dh.p_size = p.size; kgen.params.params.dh.g = g.data; kgen.params.params.dh.g_size = g.size; if (ioctl(cfd, NCRIO_KEY_GENERATE_PAIR, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE)"); return 1; } /* export y1=g^x1 */ memset(&keydata, 0, sizeof(keydata)); keydata.key = public1; keydata.idata = y1; keydata.idata_size = sizeof(y1); if (ioctl(cfd, NCRIO_KEY_EXPORT, &keydata)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } y1_size = keydata.idata_size; /* export y2=g^x2 */ memset(&keydata, 0, sizeof(keydata)); keydata.key = public2; keydata.idata = y2; keydata.idata_size = sizeof(y2); if (ioctl(cfd, NCRIO_KEY_EXPORT, &keydata)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } y2_size = keydata.idata_size; /* z1=y1^x2 */ if (ioctl(cfd, NCRIO_KEY_INIT, &z1)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kderive, 0, sizeof(kderive)); kderive.derive = NCR_DERIVE_DH; kderive.newkey = z1; kderive.keyflags = NCR_KEY_FLAG_EXPORTABLE; kderive.key = private1; kderive.params.params.dh.pub = y2; kderive.params.params.dh.pub_size = y2_size; if (ioctl(cfd, NCRIO_KEY_DERIVE, &kderive)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } /* z2=y2^x1 */ if (ioctl(cfd, NCRIO_KEY_INIT, &z2)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kderive, 0, sizeof(kderive)); kderive.derive = NCR_DERIVE_DH; kderive.newkey = z2; kderive.keyflags = NCR_KEY_FLAG_EXPORTABLE; kderive.key = private2; kderive.params.params.dh.pub = y1; kderive.params.params.dh.pub_size = y1_size; if (ioctl(cfd, NCRIO_KEY_DERIVE, &kderive)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } /* z1==z2 */ memset(&keydata, 0, sizeof(keydata)); keydata.key = z1; keydata.idata = y1; keydata.idata_size = sizeof(y1); if (ioctl(cfd, NCRIO_KEY_EXPORT, &keydata)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } y1_size = keydata.idata_size; memset(&keydata, 0, sizeof(keydata)); keydata.key = z2; keydata.idata = y2; keydata.idata_size = sizeof(y2); if (ioctl(cfd, NCRIO_KEY_EXPORT, &keydata)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } y2_size = keydata.idata_size; if (y1_size == 0 || y1_size != y2_size || memcmp(y1, y2, y1_size) != 0) { int i; fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "Output in DH does not match (%d, %d)!\n", (int)y1_size, (int)y2_size); fprintf(stderr, "Key1[%d]: ", (int) y1_size); for(i=0;i