/* Copyright (C) 2004 - 2008 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00lib Abstract: rt2x00 queue specific routines. */ #include #include #include #include "rt2x00.h" #include "rt2x00lib.h" struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev, struct queue_entry *entry) { struct sk_buff *skb; struct skb_frame_desc *skbdesc; unsigned int frame_size; unsigned int head_size = 0; unsigned int tail_size = 0; /* * The frame size includes descriptor size, because the * hardware directly receive the frame into the skbuffer. */ frame_size = entry->queue->data_size + entry->queue->desc_size; /* * The payload should be aligned to a 4-byte boundary, * this means we need at least 3 bytes for moving the frame * into the correct offset. */ head_size = 4; /* * For IV/EIV/ICV assembly we must make sure there is * at least 8 bytes bytes available in headroom for IV/EIV * and 4 bytes for ICV data as tailroon. */ #ifdef CONFIG_RT2X00_LIB_CRYPTO if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { head_size += 8; tail_size += 4; } #endif /* CONFIG_RT2X00_LIB_CRYPTO */ /* * Allocate skbuffer. */ skb = dev_alloc_skb(frame_size + head_size + tail_size); if (!skb) return NULL; /* * Make sure we not have a frame with the requested bytes * available in the head and tail. */ skb_reserve(skb, head_size); skb_put(skb, frame_size); /* * Populate skbdesc. */ skbdesc = get_skb_frame_desc(skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->entry = entry; if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) { skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_FROM_DEVICE); skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; } return skb; } void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE); skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; } EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len, DMA_FROM_DEVICE); skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; } if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len, DMA_TO_DEVICE); skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; } } void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) { if (!skb) return; rt2x00queue_unmap_skb(rt2x00dev, skb); dev_kfree_skb_any(skb); } static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; struct ieee80211_rate *rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); const struct rt2x00_rate *hwrate; unsigned int data_length; unsigned int duration; unsigned int residual; unsigned long irqflags; memset(txdesc, 0, sizeof(*txdesc)); /* * Initialize information from queue */ txdesc->queue = entry->queue->qid; txdesc->cw_min = entry->queue->cw_min; txdesc->cw_max = entry->queue->cw_max; txdesc->aifs = entry->queue->aifs; /* Data length + CRC + IV/EIV/ICV/MMIC (when using encryption) */ data_length = entry->skb->len + 4; /* * Check whether this frame is to be acked. */ if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) __set_bit(ENTRY_TXD_ACK, &txdesc->flags); #ifdef CONFIG_RT2X00_LIB_CRYPTO if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags) && !entry->skb->do_not_encrypt) { struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; __set_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags); txdesc->cipher = rt2x00crypto_key_to_cipher(hw_key); if (hw_key->flags & IEEE80211_KEY_FLAG_PAIRWISE) __set_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags); txdesc->key_idx = hw_key->hw_key_idx; txdesc->iv_offset = ieee80211_get_hdrlen_from_skb(entry->skb); /* * Extend frame length to include all encryption overhead * that will be added by the hardware. */ data_length += rt2x00crypto_tx_overhead(tx_info); if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV)) __set_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags); if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) __set_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags); } #endif /* CONFIG_RT2X00_LIB_CRYPTO */ /* * Check if this is a RTS/CTS frame */ if (ieee80211_is_rts(hdr->frame_control) || ieee80211_is_cts(hdr->frame_control)) { __set_bit(ENTRY_TXD_BURST, &txdesc->flags); if (ieee80211_is_rts(hdr->frame_control)) __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); else __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); if (tx_info->control.rts_cts_rate_idx >= 0) rate = ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); } /* * Determine retry information. */ txdesc->retry_limit = tx_info->control.retry_limit; if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT) __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); /* * Check if more fragments are pending */ if (ieee80211_has_morefrags(hdr->frame_control)) { __set_bit(ENTRY_TXD_BURST, &txdesc->flags); __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); } /* * Beacons and probe responses require the tsf timestamp * to be inserted into the frame. */ if (ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control)) __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); /* * Determine with what IFS priority this frame should be send. * Set ifs to IFS_SIFS when the this is not the first fragment, * or this fragment came after RTS/CTS. */ if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) { txdesc->ifs = IFS_SIFS; } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); txdesc->ifs = IFS_BACKOFF; } else { txdesc->ifs = IFS_SIFS; } /* * Hardware should insert sequence counter. * FIXME: We insert a software sequence counter first for * hardware that doesn't support hardware sequence counting. * * This is wrong because beacons are not getting sequence * numbers assigned properly. * * A secondary problem exists for drivers that cannot toggle * sequence counting per-frame, since those will override the * sequence counter given by mac80211. */ if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { spin_lock_irqsave(&intf->seqlock, irqflags); if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) intf->seqno += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(intf->seqno); spin_unlock_irqrestore(&intf->seqlock, irqflags); __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); } /* * PLCP setup * Length calculation depends on OFDM/CCK rate. */ hwrate = rt2x00_get_rate(rate->hw_value); txdesc->signal = hwrate->plcp; txdesc->service = 0x04; if (hwrate->flags & DEV_RATE_OFDM) { __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags); txdesc->length_high = (data_length >> 6) & 0x3f; txdesc->length_low = data_length & 0x3f; } else { /* * Convert length to microseconds. */ residual = get_duration_res(data_length, hwrate->bitrate); duration = get_duration(data_length, hwrate->bitrate); if (residual != 0) { duration++; /* * Check if we need to set the Length Extension */ if (hwrate->bitrate == 110 && residual <= 30) txdesc->service |= 0x80; } txdesc->length_high = (duration >> 8) & 0xff; txdesc->length_low = duration & 0xff; /* * When preamble is enabled we should set the * preamble bit for the signal. */ if (rt2x00_get_rate_preamble(rate->hw_value)) txdesc->signal |= 0x08; } } static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, struct txentry_desc *txdesc) { struct data_queue *queue = entry->queue; struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc); /* * All processing on the frame has been completed, this means * it is now ready to be dumped to userspace through debugfs. */ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb); /* * Check if we need to kick the queue, there are however a few rules * 1) Don't kick beacon queue * 2) Don't kick unless this is the last in frame in a burst. * When the burst flag is set, this frame is always followed * by another frame which in some way are related to eachother. * This is true for fragments, RTS or CTS-to-self frames. * 3) Rule 2 can be broken when the available entries * in the queue are less then a certain threshold. */ if (entry->queue->qid == QID_BEACON) return; if (rt2x00queue_threshold(queue) || !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid); } int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb) { struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX); struct txentry_desc txdesc; struct skb_frame_desc *skbdesc; unsigned int iv_len = IEEE80211_SKB_CB(skb)->control.iv_len; if (unlikely(rt2x00queue_full(queue))) return -EINVAL; if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) { ERROR(queue->rt2x00dev, "Arrived at non-free entry in the non-full queue %d.\n" "Please file bug report to %s.\n", queue->qid, DRV_PROJECT); return -EINVAL; } /* * Copy all TX descriptor information into txdesc, * after that we are free to use the skb->cb array * for our information. */ entry->skb = skb; rt2x00queue_create_tx_descriptor(entry, &txdesc); /* * All information is retreived from the skb->cb array, * now we should claim ownership of the driver part of that * array. */ skbdesc = get_skb_frame_desc(entry->skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->entry = entry; /* * When hardware encryption is supported, and this frame * is to be encrypted, we should strip the IV/EIV data from * the frame so we can provide it to the driver seperately. */ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) rt2x00crypto_tx_remove_iv(skb, iv_len); /* * It could be possible that the queue was corrupted and this * call failed. Just drop the frame, we cannot rollback and pass * the frame to mac80211 because the skb->cb has now been tainted. */ if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) { clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); dev_kfree_skb_any(entry->skb); entry->skb = NULL; return 0; } if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags)) rt2x00queue_map_txskb(queue->rt2x00dev, skb); set_bit(ENTRY_DATA_PENDING, &entry->flags); rt2x00queue_index_inc(queue, Q_INDEX); rt2x00queue_write_tx_descriptor(entry, &txdesc); return 0; } int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif) { struct rt2x00_intf *intf = vif_to_intf(vif); struct skb_frame_desc *skbdesc; struct txentry_desc txdesc; __le32 desc[16]; if (unlikely(!intf->beacon)) return -ENOBUFS; intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); if (!intf->beacon->skb) return -ENOMEM; /* * Copy all TX descriptor information into txdesc, * after that we are free to use the skb->cb array * for our information. */ rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc); /* * For the descriptor we use a local array from where the * driver can move it to the correct location required for * the hardware. */ memset(desc, 0, sizeof(desc)); /* * Fill in skb descriptor */ skbdesc = get_skb_frame_desc(intf->beacon->skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->desc = desc; skbdesc->desc_len = intf->beacon->queue->desc_size; skbdesc->entry = intf->beacon; /* * Write TX descriptor into reserved room in front of the beacon. */ rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc); /* * Send beacon to hardware. * Also enable beacon generation, which might have been disabled * by the driver during the config_beacon() callback function. */ rt2x00dev->ops->lib->write_beacon(intf->beacon); rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON); return 0; } struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue) { int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) return &rt2x00dev->tx[queue]; if (!rt2x00dev->bcn) return NULL; if (queue == QID_BEACON) return &rt2x00dev->bcn[0]; else if (queue == QID_ATIM && atim) return &rt2x00dev->bcn[1]; return NULL; } EXPORT_SYMBOL_GPL(rt2x00queue_get_queue); struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, enum queue_index index) { struct queue_entry *entry; unsigned long irqflags; if (unlikely(index >= Q_INDEX_MAX)) { ERROR(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n", index); return NULL; } spin_lock_irqsave(&queue->lock, irqflags); entry = &queue->entries[queue->index[index]]; spin_unlock_irqrestore(&queue->lock, irqflags); return entry; } EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index) { unsigned long irqflags; if (unlikely(index >= Q_INDEX_MAX)) { ERROR(queue->rt2x00dev, "Index change on invalid index type (%d)\n", index); return; } spin_lock_irqsave(&queue->lock, irqflags); queue->index[index]++; if (queue->index[index] >= queue->limit) queue->index[index] = 0; if (index == Q_INDEX) { queue->length++; } else if (index == Q_INDEX_DONE) { queue->length--; queue->count ++; } spin_unlock_irqrestore(&queue->lock, irqflags); } static void rt2x00queue_reset(struct data_queue *queue) { unsigned long irqflags; spin_lock_irqsave(&queue->lock, irqflags); queue->count = 0; queue->length = 0; memset(queue->index, 0, sizeof(queue->index)); spin_unlock_irqrestore(&queue->lock, irqflags); } void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue = rt2x00dev->rx; unsigned int i; rt2x00queue_reset(queue); if (!rt2x00dev->ops->lib->init_rxentry) return; for (i = 0; i < queue->limit; i++) { queue->entries[i].flags = 0; rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &queue->entries[i]); } } void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; unsigned int i; txall_queue_for_each(rt2x00dev, queue) { rt2x00queue_reset(queue); if (!rt2x00dev->ops->lib->init_txentry) continue; for (i = 0; i < queue->limit; i++) { queue->entries[i].flags = 0; rt2x00dev->ops->lib->init_txentry(rt2x00dev, &queue->entries[i]); } } } static int rt2x00queue_alloc_entries(struct data_queue *queue, const struct data_queue_desc *qdesc) { struct queue_entry *entries; unsigned int entry_size; unsigned int i; rt2x00queue_reset(queue); queue->limit = qdesc->entry_num; queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10); queue->data_size = qdesc->data_size; queue->desc_size = qdesc->desc_size; /* * Allocate all queue entries. */ entry_size = sizeof(*entries) + qdesc->priv_size; entries = kzalloc(queue->limit * entry_size, GFP_KERNEL); if (!entries) return -ENOMEM; #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ ( ((char *)(__base)) + ((__limit) * (__esize)) + \ ((__index) * (__psize)) ) for (i = 0; i < queue->limit; i++) { entries[i].flags = 0; entries[i].queue = queue; entries[i].skb = NULL; entries[i].entry_idx = i; entries[i].priv_data = QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, sizeof(*entries), qdesc->priv_size); } #undef QUEUE_ENTRY_PRIV_OFFSET queue->entries = entries; return 0; } static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev, struct data_queue *queue) { unsigned int i; if (!queue->entries) return; for (i = 0; i < queue->limit; i++) { if (queue->entries[i].skb) rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb); } } static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev, struct data_queue *queue) { unsigned int i; struct sk_buff *skb; for (i = 0; i < queue->limit; i++) { skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]); if (!skb) return -ENOMEM; queue->entries[i].skb = skb; } return 0; } int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; int status; status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx); if (status) goto exit; tx_queue_for_each(rt2x00dev, queue) { status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx); if (status) goto exit; } status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn); if (status) goto exit; if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) { status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1], rt2x00dev->ops->atim); if (status) goto exit; } status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx); if (status) goto exit; return 0; exit: ERROR(rt2x00dev, "Queue entries allocation failed.\n"); rt2x00queue_uninitialize(rt2x00dev); return status; } void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx); queue_for_each(rt2x00dev, queue) { kfree(queue->entries); queue->entries = NULL; } } static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, struct data_queue *queue, enum data_queue_qid qid) { spin_lock_init(&queue->lock); queue->rt2x00dev = rt2x00dev; queue->qid = qid; queue->aifs = 2; queue->cw_min = 5; queue->cw_max = 10; } int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; enum data_queue_qid qid; unsigned int req_atim = !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); /* * We need the following queues: * RX: 1 * TX: ops->tx_queues * Beacon: 1 * Atim: 1 (if required) */ rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL); if (!queue) { ERROR(rt2x00dev, "Queue allocation failed.\n"); return -ENOMEM; } /* * Initialize pointers */ rt2x00dev->rx = queue; rt2x00dev->tx = &queue[1]; rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; /* * Initialize queue parameters. * RX: qid = QID_RX * TX: qid = QID_AC_BE + index * TX: cw_min: 2^5 = 32. * TX: cw_max: 2^10 = 1024. * BCN: qid = QID_BEACON * ATIM: qid = QID_ATIM */ rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); qid = QID_AC_BE; tx_queue_for_each(rt2x00dev, queue) rt2x00queue_init(rt2x00dev, queue, qid++); rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON); if (req_atim) rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM); return 0; } void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) { kfree(rt2x00dev->rx); rt2x00dev->rx = NULL; rt2x00dev->tx = NULL; rt2x00dev->bcn = NULL; }