/* * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000 * * Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org> * May be copied or modified under the terms of the GNU General Public License */ /* * Special Thanks to Mark for his Six years of work. * * Copyright (c) 1995-1998 Mark Lord * May be copied or modified under the terms of the GNU General Public License */ /* * This module provides support for the bus-master IDE DMA functions * of various PCI chipsets, including the Intel PIIX (i82371FB for * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset) * ("PIIX" stands for "PCI ISA IDE Xcellerator"). * * Pretty much the same code works for other IDE PCI bus-mastering chipsets. * * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). * * By default, DMA support is prepared for use, but is currently enabled only * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single), * or which are recognized as "good" (see table below). Drives with only mode0 * or mode1 (multi/single) DMA should also work with this chipset/driver * (eg. MC2112A) but are not enabled by default. * * Use "hdparm -i" to view modes supported by a given drive. * * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling * DMA support, but must be (re-)compiled against this kernel version or later. * * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting. * If problems arise, ide.c will disable DMA operation after a few retries. * This error recovery mechanism works and has been extremely well exercised. * * IDE drives, depending on their vintage, may support several different modes * of DMA operation. The boot-time modes are indicated with a "*" in * the "hdparm -i" listing, and can be changed with *knowledgeable* use of * the "hdparm -X" feature. There is seldom a need to do this, as drives * normally power-up with their "best" PIO/DMA modes enabled. * * Testing has been done with a rather extensive number of drives, * with Quantum & Western Digital models generally outperforming the pack, * and Fujitsu & Conner (and some Seagate which are really Conner) drives * showing more lackluster throughput. * * Keep an eye on /var/adm/messages for "DMA disabled" messages. * * Some people have reported trouble with Intel Zappa motherboards. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0, * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this). * * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for * fixing the problem with the BIOS on some Acer motherboards. * * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing * "TX" chipset compatibility and for providing patches for the "TX" chipset. * * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack * at generic DMA -- his patches were referred to when preparing this code. * * Most importantly, thanks to Robert Bringman <rob@mars.trion.com> * for supplying a Promise UDMA board & WD UDMA drive for this work! * * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports. * * ATA-66/100 and recovery functions, I forgot the rest...... * */ #include <linux/config.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/ide.h> #include <linux/delay.h> #include <linux/scatterlist.h> #include <asm/io.h> #include <asm/irq.h> static const struct drive_list_entry drive_whitelist [] = { { "Micropolis 2112A" , "ALL" }, { "CONNER CTMA 4000" , "ALL" }, { "CONNER CTT8000-A" , "ALL" }, { "ST34342A" , "ALL" }, { NULL , NULL } }; static const struct drive_list_entry drive_blacklist [] = { { "WDC AC11000H" , "ALL" }, { "WDC AC22100H" , "ALL" }, { "WDC AC32500H" , "ALL" }, { "WDC AC33100H" , "ALL" }, { "WDC AC31600H" , "ALL" }, { "WDC AC32100H" , "24.09P07" }, { "WDC AC23200L" , "21.10N21" }, { "Compaq CRD-8241B" , "ALL" }, { "CRD-8400B" , "ALL" }, { "CRD-8480B", "ALL" }, { "CRD-8482B", "ALL" }, { "CRD-84" , "ALL" }, { "SanDisk SDP3B" , "ALL" }, { "SanDisk SDP3B-64" , "ALL" }, { "SANYO CD-ROM CRD" , "ALL" }, { "HITACHI CDR-8" , "ALL" }, { "HITACHI CDR-8335" , "ALL" }, { "HITACHI CDR-8435" , "ALL" }, { "Toshiba CD-ROM XM-6202B" , "ALL" }, { "CD-532E-A" , "ALL" }, { "E-IDE CD-ROM CR-840", "ALL" }, { "CD-ROM Drive/F5A", "ALL" }, { "WPI CDD-820", "ALL" }, { "SAMSUNG CD-ROM SC-148C", "ALL" }, { "SAMSUNG CD-ROM SC", "ALL" }, { "SanDisk SDP3B-64" , "ALL" }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" }, { "_NEC DV5800A", "ALL" }, { NULL , NULL } }; /** * ide_in_drive_list - look for drive in black/white list * @id: drive identifier * @drive_table: list to inspect * * Look for a drive in the blacklist and the whitelist tables * Returns 1 if the drive is found in the table. */ int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table) { for ( ; drive_table->id_model ; drive_table++) if ((!strcmp(drive_table->id_model, id->model)) && ((strstr(drive_table->id_firmware, id->fw_rev)) || (!strcmp(drive_table->id_firmware, "ALL")))) return 1; return 0; } EXPORT_SYMBOL_GPL(ide_in_drive_list); /** * ide_dma_intr - IDE DMA interrupt handler * @drive: the drive the interrupt is for * * Handle an interrupt completing a read/write DMA transfer on an * IDE device */ ide_startstop_t ide_dma_intr (ide_drive_t *drive) { u8 stat = 0, dma_stat = 0; dma_stat = HWIF(drive)->ide_dma_end(drive); stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */ if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { if (!dma_stat) { struct request *rq = HWGROUP(drive)->rq; if (rq->rq_disk) { ide_driver_t *drv; drv = *(ide_driver_t **)rq->rq_disk->private_data;; drv->end_request(drive, 1, rq->nr_sectors); } else ide_end_request(drive, 1, rq->nr_sectors); return ide_stopped; } printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n", drive->name, dma_stat); } return ide_error(drive, "dma_intr", stat); } EXPORT_SYMBOL_GPL(ide_dma_intr); #ifdef CONFIG_BLK_DEV_IDEDMA_PCI /** * ide_build_sglist - map IDE scatter gather for DMA I/O * @drive: the drive to build the DMA table for * @rq: the request holding the sg list * * Perform the PCI mapping magic necessary to access the source or * target buffers of a request via PCI DMA. The lower layers of the * kernel provide the necessary cache management so that we can * operate in a portable fashion */ int ide_build_sglist(ide_drive_t *drive, struct request *rq) { ide_hwif_t *hwif = HWIF(drive); struct scatterlist *sg = hwif->sg_table; if ((rq->flags & REQ_DRIVE_TASKFILE) && rq->nr_sectors > 256) BUG(); ide_map_sg(drive, rq); if (rq_data_dir(rq) == READ) hwif->sg_dma_direction = PCI_DMA_FROMDEVICE; else hwif->sg_dma_direction = PCI_DMA_TODEVICE; return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction); } EXPORT_SYMBOL_GPL(ide_build_sglist); /** * ide_build_dmatable - build IDE DMA table * * ide_build_dmatable() prepares a dma request. We map the command * to get the pci bus addresses of the buffers and then build up * the PRD table that the IDE layer wants to be fed. The code * knows about the 64K wrap bug in the CS5530. * * Returns the number of built PRD entries if all went okay, * returns 0 otherwise. * * May also be invoked from trm290.c */ int ide_build_dmatable (ide_drive_t *drive, struct request *rq) { ide_hwif_t *hwif = HWIF(drive); unsigned int *table = hwif->dmatable_cpu; unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0; unsigned int count = 0; int i; struct scatterlist *sg; hwif->sg_nents = i = ide_build_sglist(drive, rq); if (!i) return 0; sg = hwif->sg_table; while (i) { u32 cur_addr; u32 cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); /* * Fill in the dma table, without crossing any 64kB boundaries. * Most hardware requires 16-bit alignment of all blocks, * but the trm290 requires 32-bit alignment. */ while (cur_len) { if (count++ >= PRD_ENTRIES) { printk(KERN_ERR "%s: DMA table too small\n", drive->name); goto use_pio_instead; } else { u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff); if (bcount > cur_len) bcount = cur_len; *table++ = cpu_to_le32(cur_addr); xcount = bcount & 0xffff; if (is_trm290) xcount = ((xcount >> 2) - 1) << 16; if (xcount == 0x0000) { /* * Most chipsets correctly interpret a length of 0x0000 as 64KB, * but at least one (e.g. CS5530) misinterprets it as zero (!). * So here we break the 64KB entry into two 32KB entries instead. */ if (count++ >= PRD_ENTRIES) { printk(KERN_ERR "%s: DMA table too small\n", drive->name); goto use_pio_instead; } *table++ = cpu_to_le32(0x8000); *table++ = cpu_to_le32(cur_addr + 0x8000); xcount = 0x8000; } *table++ = cpu_to_le32(xcount); cur_addr += bcount; cur_len -= bcount; } } sg++; i--; } if (count) { if (!is_trm290) *--table |= cpu_to_le32(0x80000000); return count; } printk(KERN_ERR "%s: empty DMA table?\n", drive->name); use_pio_instead: pci_unmap_sg(hwif->pci_dev, hwif->sg_table, hwif->sg_nents, hwif->sg_dma_direction); return 0; /* revert to PIO for this request */ } EXPORT_SYMBOL_GPL(ide_build_dmatable); /** * ide_destroy_dmatable - clean up DMA mapping * @drive: The drive to unmap * * Teardown mappings after DMA has completed. This must be called * after the completion of each use of ide_build_dmatable and before * the next use of ide_build_dmatable. Failure to do so will cause * an oops as only one mapping can be live for each target at a given * time. */ void ide_destroy_dmatable (ide_drive_t *drive) { struct pci_dev *dev = HWIF(drive)->pci_dev; struct scatterlist *sg = HWIF(drive)->sg_table; int nents = HWIF(drive)->sg_nents; pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction); } EXPORT_SYMBOL_GPL(ide_destroy_dmatable); /** * config_drive_for_dma - attempt to activate IDE DMA * @drive: the drive to place in DMA mode * * If the drive supports at least mode 2 DMA or UDMA of any kind * then attempt to place it into DMA mode. Drives that are known to * support DMA but predate the DMA properties or that are known * to have DMA handling bugs are also set up appropriately based * on the good/bad drive lists. */ static int config_drive_for_dma (ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); if ((id->capability & 1) && hwif->autodma) { /* * Enable DMA on any drive that has * UltraDMA (mode 0/1/2/3/4/5/6) enabled */ if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f)) return hwif->ide_dma_on(drive); /* * Enable DMA on any drive that has mode2 DMA * (multi or single) enabled */ if (id->field_valid & 2) /* regular DMA */ if ((id->dma_mword & 0x404) == 0x404 || (id->dma_1word & 0x404) == 0x404) return hwif->ide_dma_on(drive); /* Consult the list of known "good" drives */ if (__ide_dma_good_drive(drive)) return hwif->ide_dma_on(drive); } // if (hwif->tuneproc != NULL) hwif->tuneproc(drive, 255); return hwif->ide_dma_off_quietly(drive); } /** * dma_timer_expiry - handle a DMA timeout * @drive: Drive that timed out * * An IDE DMA transfer timed out. In the event of an error we ask * the driver to resolve the problem, if a DMA transfer is still * in progress we continue to wait (arguably we need to add a * secondary 'I don't care what the drive thinks' timeout here) * Finally if we have an interrupt we let it complete the I/O. * But only one time - we clear expiry and if it's still not * completed after WAIT_CMD, we error and retry in PIO. * This can occur if an interrupt is lost or due to hang or bugs. */ static int dma_timer_expiry (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = hwif->INB(hwif->dma_status); printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n", drive->name, dma_stat); if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */ return WAIT_CMD; HWGROUP(drive)->expiry = NULL; /* one free ride for now */ /* 1 dmaing, 2 error, 4 intr */ if (dma_stat & 2) /* ERROR */ return -1; if (dma_stat & 1) /* DMAing */ return WAIT_CMD; if (dma_stat & 4) /* Got an Interrupt */ return WAIT_CMD; return 0; /* Status is unknown -- reset the bus */ } /** * __ide_dma_host_off - Generic DMA kill * @drive: drive to control * * Perform the generic IDE controller DMA off operation. This * works for most IDE bus mastering controllers */ int __ide_dma_host_off (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 unit = (drive->select.b.unit & 0x01); u8 dma_stat = hwif->INB(hwif->dma_status); hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status); return 0; } EXPORT_SYMBOL(__ide_dma_host_off); /** * __ide_dma_host_off_quietly - Generic DMA kill * @drive: drive to control * * Turn off the current DMA on this IDE controller. */ int __ide_dma_off_quietly (ide_drive_t *drive) { drive->using_dma = 0; ide_toggle_bounce(drive, 0); if (HWIF(drive)->ide_dma_host_off(drive)) return 1; return 0; } EXPORT_SYMBOL(__ide_dma_off_quietly); #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ /** * __ide_dma_off - disable DMA on a device * @drive: drive to disable DMA on * * Disable IDE DMA for a device on this IDE controller. * Inform the user that DMA has been disabled. */ int __ide_dma_off (ide_drive_t *drive) { printk(KERN_INFO "%s: DMA disabled\n", drive->name); return HWIF(drive)->ide_dma_off_quietly(drive); } EXPORT_SYMBOL(__ide_dma_off); #ifdef CONFIG_BLK_DEV_IDEDMA_PCI /** * __ide_dma_host_on - Enable DMA on a host * @drive: drive to enable for DMA * * Enable DMA on an IDE controller following generic bus mastering * IDE controller behaviour */ int __ide_dma_host_on (ide_drive_t *drive) { if (drive->using_dma) { ide_hwif_t *hwif = HWIF(drive); u8 unit = (drive->select.b.unit & 0x01); u8 dma_stat = hwif->INB(hwif->dma_status); hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status); return 0; } return 1; } EXPORT_SYMBOL(__ide_dma_host_on); /** * __ide_dma_on - Enable DMA on a device * @drive: drive to enable DMA on * * Enable IDE DMA for a device on this IDE controller. */ int __ide_dma_on (ide_drive_t *drive) { /* consult the list of known "bad" drives */ if (__ide_dma_bad_drive(drive)) return 1; drive->using_dma = 1; ide_toggle_bounce(drive, 1); if (HWIF(drive)->ide_dma_host_on(drive)) return 1; return 0; } EXPORT_SYMBOL(__ide_dma_on); /** * __ide_dma_check - check DMA setup * @drive: drive to check * * Don't use - due for extermination */ int __ide_dma_check (ide_drive_t *drive) { return config_drive_for_dma(drive); } EXPORT_SYMBOL(__ide_dma_check); /** * ide_dma_setup - begin a DMA phase * @drive: target device * * Build an IDE DMA PRD (IDE speak for scatter gather table) * and then set up the DMA transfer registers for a device * that follows generic IDE PCI DMA behaviour. Controllers can * override this function if they need to * * Returns 0 on success. If a PIO fallback is required then 1 * is returned. */ int ide_dma_setup(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct request *rq = HWGROUP(drive)->rq; unsigned int reading; u8 dma_stat; if (rq_data_dir(rq)) reading = 0; else reading = 1 << 3; /* fall back to pio! */ if (!ide_build_dmatable(drive, rq)) { ide_map_sg(drive, rq); return 1; } /* PRD table */ hwif->OUTL(hwif->dmatable_dma, hwif->dma_prdtable); /* specify r/w */ hwif->OUTB(reading, hwif->dma_command); /* read dma_status for INTR & ERROR flags */ dma_stat = hwif->INB(hwif->dma_status); /* clear INTR & ERROR flags */ hwif->OUTB(dma_stat|6, hwif->dma_status); drive->waiting_for_dma = 1; return 0; } EXPORT_SYMBOL_GPL(ide_dma_setup); static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command) { /* issue cmd to drive */ ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry); } void ide_dma_start(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_cmd = hwif->INB(hwif->dma_command); /* Note that this is done *after* the cmd has * been issued to the drive, as per the BM-IDE spec. * The Promise Ultra33 doesn't work correctly when * we do this part before issuing the drive cmd. */ /* start DMA */ hwif->OUTB(dma_cmd|1, hwif->dma_command); hwif->dma = 1; wmb(); } EXPORT_SYMBOL_GPL(ide_dma_start); /* returns 1 on error, 0 otherwise */ int __ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = 0, dma_cmd = 0; drive->waiting_for_dma = 0; /* get dma_command mode */ dma_cmd = hwif->INB(hwif->dma_command); /* stop DMA */ hwif->OUTB(dma_cmd&~1, hwif->dma_command); /* get DMA status */ dma_stat = hwif->INB(hwif->dma_status); /* clear the INTR & ERROR bits */ hwif->OUTB(dma_stat|6, hwif->dma_status); /* purge DMA mappings */ ide_destroy_dmatable(drive); /* verify good DMA status */ hwif->dma = 0; wmb(); return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0; } EXPORT_SYMBOL(__ide_dma_end); /* returns 1 if dma irq issued, 0 otherwise */ static int __ide_dma_test_irq(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = hwif->INB(hwif->dma_status); #if 0 /* do not set unless you know what you are doing */ if (dma_stat & 4) { u8 stat = hwif->INB(IDE_STATUS_REG); hwif->OUTB(hwif->dma_status, dma_stat & 0xE4); } #endif /* return 1 if INTR asserted */ if ((dma_stat & 4) == 4) return 1; if (!drive->waiting_for_dma) printk(KERN_WARNING "%s: (%s) called while not waiting\n", drive->name, __FUNCTION__); return 0; } #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ int __ide_dma_bad_drive (ide_drive_t *drive) { struct hd_driveid *id = drive->id; int blacklist = ide_in_drive_list(id, drive_blacklist); if (blacklist) { printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n", drive->name, id->model); return blacklist; } return 0; } EXPORT_SYMBOL(__ide_dma_bad_drive); int __ide_dma_good_drive (ide_drive_t *drive) { struct hd_driveid *id = drive->id; return ide_in_drive_list(id, drive_whitelist); } EXPORT_SYMBOL(__ide_dma_good_drive); int ide_use_dma(ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = drive->hwif; /* consult the list of known "bad" drives */ if (__ide_dma_bad_drive(drive)) return 0; /* capable of UltraDMA modes */ if (id->field_valid & 4) { if (hwif->ultra_mask & id->dma_ultra) return 1; } /* capable of regular DMA modes */ if (id->field_valid & 2) { if (hwif->mwdma_mask & id->dma_mword) return 1; if (hwif->swdma_mask & id->dma_1word) return 1; } /* consult the list of known "good" drives */ if (__ide_dma_good_drive(drive) && id->eide_dma_time < 150) return 1; return 0; } EXPORT_SYMBOL_GPL(ide_use_dma); void ide_dma_verbose(ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); if (id->field_valid & 4) { if ((id->dma_ultra >> 8) && (id->dma_mword >> 8)) goto bug_dma_off; if (id->dma_ultra & ((id->dma_ultra >> 8) & hwif->ultra_mask)) { if (((id->dma_ultra >> 11) & 0x1F) && eighty_ninty_three(drive)) { if ((id->dma_ultra >> 15) & 1) { printk(", UDMA(mode 7)"); } else if ((id->dma_ultra >> 14) & 1) { printk(", UDMA(133)"); } else if ((id->dma_ultra >> 13) & 1) { printk(", UDMA(100)"); } else if ((id->dma_ultra >> 12) & 1) { printk(", UDMA(66)"); } else if ((id->dma_ultra >> 11) & 1) { printk(", UDMA(44)"); } else goto mode_two; } else { mode_two: if ((id->dma_ultra >> 10) & 1) { printk(", UDMA(33)"); } else if ((id->dma_ultra >> 9) & 1) { printk(", UDMA(25)"); } else if ((id->dma_ultra >> 8) & 1) { printk(", UDMA(16)"); } } } else { printk(", (U)DMA"); /* Can be BIOS-enabled! */ } } else if (id->field_valid & 2) { if ((id->dma_mword >> 8) && (id->dma_1word >> 8)) goto bug_dma_off; printk(", DMA"); } else if (id->field_valid & 1) { printk(", BUG"); } return; bug_dma_off: printk(", BUG DMA OFF"); hwif->ide_dma_off_quietly(drive); return; } EXPORT_SYMBOL(ide_dma_verbose); #ifdef CONFIG_BLK_DEV_IDEDMA_PCI int __ide_dma_lostirq (ide_drive_t *drive) { printk("%s: DMA interrupt recovery\n", drive->name); return 1; } EXPORT_SYMBOL(__ide_dma_lostirq); int __ide_dma_timeout (ide_drive_t *drive) { printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name); if (HWIF(drive)->ide_dma_test_irq(drive)) return 0; return HWIF(drive)->ide_dma_end(drive); } EXPORT_SYMBOL(__ide_dma_timeout); /* * Needed for allowing full modular support of ide-driver */ static int ide_release_dma_engine(ide_hwif_t *hwif) { if (hwif->dmatable_cpu) { pci_free_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES, hwif->dmatable_cpu, hwif->dmatable_dma); hwif->dmatable_cpu = NULL; } return 1; } static int ide_release_iomio_dma(ide_hwif_t *hwif) { if ((hwif->dma_extra) && (hwif->channel == 0)) release_region((hwif->dma_base + 16), hwif->dma_extra); release_region(hwif->dma_base, 8); if (hwif->dma_base2) release_region(hwif->dma_base, 8); return 1; } /* * Needed for allowing full modular support of ide-driver */ int ide_release_dma (ide_hwif_t *hwif) { if (hwif->mmio == 2) return 1; if (hwif->chipset == ide_etrax100) return 1; ide_release_dma_engine(hwif); return ide_release_iomio_dma(hwif); } static int ide_allocate_dma_engine(ide_hwif_t *hwif) { hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES, &hwif->dmatable_dma); if (hwif->dmatable_cpu) return 0; printk(KERN_ERR "%s: -- Error, unable to allocate%s DMA table(s).\n", hwif->cds->name, !hwif->dmatable_cpu ? " CPU" : ""); ide_release_dma_engine(hwif); return 1; } static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: MMIO-DMA ", hwif->name); hwif->dma_base = base; if (hwif->cds->extra && hwif->channel == 0) hwif->dma_extra = hwif->cds->extra; if(hwif->mate) hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; else hwif->dma_master = base; return 0; } static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx", hwif->name, base, base + ports - 1); if (!request_region(base, ports, hwif->name)) { printk(" -- Error, ports in use.\n"); return 1; } hwif->dma_base = base; if ((hwif->cds->extra) && (hwif->channel == 0)) { request_region(base+16, hwif->cds->extra, hwif->cds->name); hwif->dma_extra = hwif->cds->extra; } if(hwif->mate) hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; else hwif->dma_master = base; if (hwif->dma_base2) { if (!request_region(hwif->dma_base2, ports, hwif->name)) { printk(" -- Error, secondary ports in use.\n"); release_region(base, ports); return 1; } } return 0; } static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base, unsigned int ports) { if (hwif->mmio == 2) return ide_mapped_mmio_dma(hwif, base,ports); BUG_ON(hwif->mmio == 1); return ide_iomio_dma(hwif, base, ports); } /* * This can be called for a dynamically installed interface. Don't __init it */ void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports) { if (ide_dma_iobase(hwif, dma_base, num_ports)) return; if (ide_allocate_dma_engine(hwif)) { ide_release_dma(hwif); return; } if (!(hwif->dma_command)) hwif->dma_command = hwif->dma_base; if (!(hwif->dma_vendor1)) hwif->dma_vendor1 = (hwif->dma_base + 1); if (!(hwif->dma_status)) hwif->dma_status = (hwif->dma_base + 2); if (!(hwif->dma_vendor3)) hwif->dma_vendor3 = (hwif->dma_base + 3); if (!(hwif->dma_prdtable)) hwif->dma_prdtable = (hwif->dma_base + 4); if (!hwif->ide_dma_off_quietly) hwif->ide_dma_off_quietly = &__ide_dma_off_quietly; if (!hwif->ide_dma_host_off) hwif->ide_dma_host_off = &__ide_dma_host_off; if (!hwif->ide_dma_on) hwif->ide_dma_on = &__ide_dma_on; if (!hwif->ide_dma_host_on) hwif->ide_dma_host_on = &__ide_dma_host_on; if (!hwif->ide_dma_check) hwif->ide_dma_check = &__ide_dma_check; if (!hwif->dma_setup) hwif->dma_setup = &ide_dma_setup; if (!hwif->dma_exec_cmd) hwif->dma_exec_cmd = &ide_dma_exec_cmd; if (!hwif->dma_start) hwif->dma_start = &ide_dma_start; if (!hwif->ide_dma_end) hwif->ide_dma_end = &__ide_dma_end; if (!hwif->ide_dma_test_irq) hwif->ide_dma_test_irq = &__ide_dma_test_irq; if (!hwif->ide_dma_timeout) hwif->ide_dma_timeout = &__ide_dma_timeout; if (!hwif->ide_dma_lostirq) hwif->ide_dma_lostirq = &__ide_dma_lostirq; if (hwif->chipset != ide_trm290) { u8 dma_stat = hwif->INB(hwif->dma_status); printk(", BIOS settings: %s:%s, %s:%s", hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio", hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio"); } printk("\n"); if (!(hwif->dma_master)) BUG(); } EXPORT_SYMBOL_GPL(ide_setup_dma); #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */