/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995 Waldorf Electronics * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle * Copyright (C) 1996 Stoned Elipot * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_data); #ifdef CONFIG_VT struct screen_info screen_info; #endif /* * Despite it's name this variable is even if we don't have PCI */ unsigned int PCI_DMA_BUS_IS_PHYS; EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); /* * Setup information * * These are initialized so they are in the .data section */ unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN; EXPORT_SYMBOL(mips_machtype); EXPORT_SYMBOL(mips_machgroup); struct boot_mem_map boot_mem_map; static char command_line[CL_SIZE]; char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; /* * mips_io_port_base is the begin of the address space to which x86 style * I/O ports are mapped. */ const unsigned long mips_io_port_base __read_mostly = -1; EXPORT_SYMBOL(mips_io_port_base); /* * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped * for the processor. */ unsigned long isa_slot_offset; EXPORT_SYMBOL(isa_slot_offset); static struct resource code_resource = { .name = "Kernel code", }; static struct resource data_resource = { .name = "Kernel data", }; void __init add_memory_region(phys_t start, phys_t size, long type) { int x = boot_mem_map.nr_map; struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; /* Sanity check */ if (start + size < start) { printk("Trying to add an invalid memory region, skipped\n"); return; } /* * Try to merge with previous entry if any. This is far less than * perfect but is sufficient for most real world cases. */ if (x && prev->addr + prev->size == start && prev->type == type) { prev->size += size; return; } if (x == BOOT_MEM_MAP_MAX) { printk("Ooops! Too many entries in the memory map!\n"); return; } boot_mem_map.map[x].addr = start; boot_mem_map.map[x].size = size; boot_mem_map.map[x].type = type; boot_mem_map.nr_map++; } static void __init print_memory_map(void) { int i; const int field = 2 * sizeof(unsigned long); for (i = 0; i < boot_mem_map.nr_map; i++) { printk(" memory: %0*Lx @ %0*Lx ", field, (unsigned long long) boot_mem_map.map[i].size, field, (unsigned long long) boot_mem_map.map[i].addr); switch (boot_mem_map.map[i].type) { case BOOT_MEM_RAM: printk("(usable)\n"); break; case BOOT_MEM_ROM_DATA: printk("(ROM data)\n"); break; case BOOT_MEM_RESERVED: printk("(reserved)\n"); break; default: printk("type %lu\n", boot_mem_map.map[i].type); break; } } } static inline void parse_cmdline_early(void) { char c = ' ', *to = command_line, *from = saved_command_line; unsigned long start_at, mem_size; int len = 0; int usermem = 0; printk("Determined physical RAM map:\n"); print_memory_map(); for (;;) { /* * "mem=XXX[kKmM]" defines a memory region from * 0 to , overriding the determined size. * "mem=XXX[KkmM]@YYY[KkmM]" defines a memory region from * to +, overriding the determined size. */ if (c == ' ' && !memcmp(from, "mem=", 4)) { if (to != command_line) to--; /* * If a user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { boot_mem_map.nr_map = 0; usermem = 1; } mem_size = memparse(from + 4, &from); if (*from == '@') start_at = memparse(from + 1, &from); else start_at = 0; add_memory_region(start_at, mem_size, BOOT_MEM_RAM); } c = *(from++); if (!c) break; if (CL_SIZE <= ++len) break; *(to++) = c; } *to = '\0'; if (usermem) { printk("User-defined physical RAM map:\n"); print_memory_map(); } } /* * Manage initrd */ #ifdef CONFIG_BLK_DEV_INITRD static int __init parse_rd_cmdline(unsigned long *rd_start, unsigned long *rd_end) { /* * "rd_start=0xNNNNNNNN" defines the memory address of an initrd * "rd_size=0xNN" it's size */ unsigned long start = 0; unsigned long size = 0; unsigned long end; char cmd_line[CL_SIZE]; char *start_str; char *size_str; char *tmp; strcpy(cmd_line, command_line); *command_line = 0; tmp = cmd_line; /* Ignore "rd_start=" strings in other parameters. */ start_str = strstr(cmd_line, "rd_start="); if (start_str && start_str != cmd_line && *(start_str - 1) != ' ') start_str = strstr(start_str, " rd_start="); while (start_str) { if (start_str != cmd_line) strncat(command_line, tmp, start_str - tmp); start = memparse(start_str + 9, &start_str); tmp = start_str + 1; start_str = strstr(start_str, " rd_start="); } if (*tmp) strcat(command_line, tmp); strcpy(cmd_line, command_line); *command_line = 0; tmp = cmd_line; /* Ignore "rd_size" strings in other parameters. */ size_str = strstr(cmd_line, "rd_size="); if (size_str && size_str != cmd_line && *(size_str - 1) != ' ') size_str = strstr(size_str, " rd_size="); while (size_str) { if (size_str != cmd_line) strncat(command_line, tmp, size_str - tmp); size = memparse(size_str + 8, &size_str); tmp = size_str + 1; size_str = strstr(size_str, " rd_size="); } if (*tmp) strcat(command_line, tmp); #ifdef CONFIG_64BIT /* HACK: Guess if the sign extension was forgotten */ if (start > 0x0000000080000000 && start < 0x00000000ffffffff) start |= 0xffffffff00000000UL; #endif end = start + size; if (start && end) { *rd_start = start; *rd_end = end; return 1; } return 0; } static unsigned long __init init_initrd(void) { unsigned long tmp, end; u32 *initrd_header; ROOT_DEV = Root_RAM0; if (parse_rd_cmdline(&initrd_start, &initrd_end)) return initrd_end; /* * Board specific code should have set up initrd_start * and initrd_end... */ end = (unsigned long)&_end; tmp = PAGE_ALIGN(end) - sizeof(u32) * 2; if (tmp < end) tmp += PAGE_SIZE; initrd_header = (u32 *)tmp; if (initrd_header[0] == 0x494E5244) { initrd_start = (unsigned long)&initrd_header[2]; initrd_end = initrd_start + initrd_header[1]; } return initrd_end; } static void __init finalize_initrd(void) { unsigned long size = initrd_end - initrd_start; if (size == 0) { printk(KERN_INFO "Initrd not found or empty"); goto disable; } if (CPHYSADDR(initrd_end) > PFN_PHYS(max_low_pfn)) { printk("Initrd extends beyond end of memory"); goto disable; } reserve_bootmem(CPHYSADDR(initrd_start), size); initrd_below_start_ok = 1; printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", initrd_start, size); return; disable: printk(" - disabling initrd\n"); initrd_start = 0; initrd_end = 0; } #else /* !CONFIG_BLK_DEV_INITRD */ #define init_initrd() 0 #define finalize_initrd() do {} while (0) #endif /* * Initialize the bootmem allocator. It also setup initrd related data * if needed. */ #ifdef CONFIG_SGI_IP27 static void __init bootmem_init(void) { init_initrd(); finalize_initrd(); } #else /* !CONFIG_SGI_IP27 */ static void __init bootmem_init(void) { unsigned long reserved_end; unsigned long highest = 0; unsigned long mapstart = -1UL; unsigned long bootmap_size; int i; /* * Init any data related to initrd. It's a nop if INITRD is * not selected. Once that done we can determine the low bound * of usable memory. */ reserved_end = init_initrd(); reserved_end = PFN_UP(CPHYSADDR(max(reserved_end, (unsigned long)&_end))); /* * Find the highest page frame number we have available. */ for (i = 0; i < boot_mem_map.nr_map; i++) { unsigned long start, end; if (boot_mem_map.map[i].type != BOOT_MEM_RAM) continue; start = PFN_UP(boot_mem_map.map[i].addr); end = PFN_DOWN(boot_mem_map.map[i].addr + boot_mem_map.map[i].size); if (end > highest) highest = end; if (end <= reserved_end) continue; if (start >= mapstart) continue; mapstart = max(reserved_end, start); } /* * Determine low and high memory ranges */ if (highest > PFN_DOWN(HIGHMEM_START)) { #ifdef CONFIG_HIGHMEM highstart_pfn = PFN_DOWN(HIGHMEM_START); highend_pfn = highest; #endif highest = PFN_DOWN(HIGHMEM_START); } /* * Initialize the boot-time allocator with low memory only. */ bootmap_size = init_bootmem(mapstart, highest); /* * Register fully available low RAM pages with the bootmem allocator. */ for (i = 0; i < boot_mem_map.nr_map; i++) { unsigned long start, end, size; /* * Reserve usable memory. */ if (boot_mem_map.map[i].type != BOOT_MEM_RAM) continue; start = PFN_UP(boot_mem_map.map[i].addr); end = PFN_DOWN(boot_mem_map.map[i].addr + boot_mem_map.map[i].size); /* * We are rounding up the start address of usable memory * and at the end of the usable range downwards. */ if (start >= max_low_pfn) continue; if (start < reserved_end) start = reserved_end; if (end > max_low_pfn) end = max_low_pfn; /* * ... finally, is the area going away? */ if (end <= start) continue; size = end - start; /* Register lowmem ranges */ free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); memory_present(0, start, end); } /* * Reserve the bootmap memory. */ reserve_bootmem(PFN_PHYS(mapstart), bootmap_size); /* * Reserve initrd memory if needed. */ finalize_initrd(); } #endif /* CONFIG_SGI_IP27 */ /* * arch_mem_init - initialize memory managment subsystem * * o plat_mem_setup() detects the memory configuration and will record detected * memory areas using add_memory_region. * o parse_cmdline_early() parses the command line for mem= options which, * iff detected, will override the results of the automatic detection. * * At this stage the memory configuration of the system is known to the * kernel but generic memory managment system is still entirely uninitialized. * * o bootmem_init() * o sparse_init() * o paging_init() * * At this stage the bootmem allocator is ready to use. * * NOTE: historically plat_mem_setup did the entire platform initialization. * This was rather impractical because it meant plat_mem_setup had to * get away without any kind of memory allocator. To keep old code from * breaking plat_setup was just renamed to plat_setup and a second platform * initialization hook for anything else was introduced. */ extern void plat_mem_setup(void); static void __init arch_mem_init(char **cmdline_p) { /* call board setup routine */ plat_mem_setup(); strlcpy(command_line, arcs_cmdline, sizeof(command_line)); strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_cmdline_early(); bootmem_init(); sparse_init(); paging_init(); } #define MAXMEM HIGHMEM_START #define MAXMEM_PFN PFN_DOWN(MAXMEM) static inline void resource_init(void) { int i; if (UNCAC_BASE != IO_BASE) return; code_resource.start = virt_to_phys(&_text); code_resource.end = virt_to_phys(&_etext) - 1; data_resource.start = virt_to_phys(&_etext); data_resource.end = virt_to_phys(&_edata) - 1; /* * Request address space for all standard RAM. */ for (i = 0; i < boot_mem_map.nr_map; i++) { struct resource *res; unsigned long start, end; start = boot_mem_map.map[i].addr; end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; if (start >= MAXMEM) continue; if (end >= MAXMEM) end = MAXMEM - 1; res = alloc_bootmem(sizeof(struct resource)); switch (boot_mem_map.map[i].type) { case BOOT_MEM_RAM: case BOOT_MEM_ROM_DATA: res->name = "System RAM"; break; case BOOT_MEM_RESERVED: default: res->name = "reserved"; } res->start = start; res->end = end; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, &code_resource); request_resource(res, &data_resource); } } #undef MAXMEM #undef MAXMEM_PFN void __init setup_arch(char **cmdline_p) { cpu_probe(); prom_init(); cpu_report(); #if defined(CONFIG_VT) #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif arch_mem_init(cmdline_p); resource_init(); #ifdef CONFIG_SMP plat_smp_setup(); #endif } int __init fpu_disable(char *s) { int i; for (i = 0; i < NR_CPUS; i++) cpu_data[i].options &= ~MIPS_CPU_FPU; return 1; } __setup("nofpu", fpu_disable); int __init dsp_disable(char *s) { cpu_data[0].ases &= ~MIPS_ASE_DSP; return 1; } __setup("nodsp", dsp_disable);