//kernel/linux-omap-fsample/arch/arm/mach-omap1/clock.c#2 - edit change 3808 (text) /* * linux/arch/arm/mach-omap1/clock.c * * Copyright (C) 2004 - 2005 Nokia corporation * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> * * Modified to use omap shared clock framework by * Tony Lindgren <tony@atomide.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/clk.h> #include <asm/io.h> #include <asm/mach-types.h> #include <asm/arch/cpu.h> #include <asm/arch/usb.h> #include <asm/arch/clock.h> #include <asm/arch/sram.h> #include "clock.h" __u32 arm_idlect1_mask; /*------------------------------------------------------------------------- * Omap1 specific clock functions *-------------------------------------------------------------------------*/ static void omap1_watchdog_recalc(struct clk * clk) { clk->rate = clk->parent->rate / 14; } static void omap1_uart_recalc(struct clk * clk) { unsigned int val = omap_readl(clk->enable_reg); if (val & clk->enable_bit) clk->rate = 48000000; else clk->rate = 12000000; } static int omap1_clk_enable_dsp_domain(struct clk *clk) { int retval; retval = omap1_clk_enable(&api_ck.clk); if (!retval) { retval = omap1_clk_enable_generic(clk); omap1_clk_disable(&api_ck.clk); } return retval; } static void omap1_clk_disable_dsp_domain(struct clk *clk) { if (omap1_clk_enable(&api_ck.clk) == 0) { omap1_clk_disable_generic(clk); omap1_clk_disable(&api_ck.clk); } } static int omap1_clk_enable_uart_functional(struct clk *clk) { int ret; struct uart_clk *uclk; ret = omap1_clk_enable_generic(clk); if (ret == 0) { /* Set smart idle acknowledgement mode */ uclk = (struct uart_clk *)clk; omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8, uclk->sysc_addr); } return ret; } static void omap1_clk_disable_uart_functional(struct clk *clk) { struct uart_clk *uclk; /* Set force idle acknowledgement mode */ uclk = (struct uart_clk *)clk; omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr); omap1_clk_disable_generic(clk); } static void omap1_clk_allow_idle(struct clk *clk) { struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; if (!(clk->flags & CLOCK_IDLE_CONTROL)) return; if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count)) arm_idlect1_mask |= 1 << iclk->idlect_shift; } static void omap1_clk_deny_idle(struct clk *clk) { struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; if (!(clk->flags & CLOCK_IDLE_CONTROL)) return; if (iclk->no_idle_count++ == 0) arm_idlect1_mask &= ~(1 << iclk->idlect_shift); } static __u16 verify_ckctl_value(__u16 newval) { /* This function checks for following limitations set * by the hardware (all conditions must be true): * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 * ARM_CK >= TC_CK * DSP_CK >= TC_CK * DSPMMU_CK >= TC_CK * * In addition following rules are enforced: * LCD_CK <= TC_CK * ARMPER_CK <= TC_CK * * However, maximum frequencies are not checked for! */ __u8 per_exp; __u8 lcd_exp; __u8 arm_exp; __u8 dsp_exp; __u8 tc_exp; __u8 dspmmu_exp; per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3; lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3; arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3; dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3; tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3; dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3; if (dspmmu_exp < dsp_exp) dspmmu_exp = dsp_exp; if (dspmmu_exp > dsp_exp+1) dspmmu_exp = dsp_exp+1; if (tc_exp < arm_exp) tc_exp = arm_exp; if (tc_exp < dspmmu_exp) tc_exp = dspmmu_exp; if (tc_exp > lcd_exp) lcd_exp = tc_exp; if (tc_exp > per_exp) per_exp = tc_exp; newval &= 0xf000; newval |= per_exp << CKCTL_PERDIV_OFFSET; newval |= lcd_exp << CKCTL_LCDDIV_OFFSET; newval |= arm_exp << CKCTL_ARMDIV_OFFSET; newval |= dsp_exp << CKCTL_DSPDIV_OFFSET; newval |= tc_exp << CKCTL_TCDIV_OFFSET; newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET; return newval; } static int calc_dsor_exp(struct clk *clk, unsigned long rate) { /* Note: If target frequency is too low, this function will return 4, * which is invalid value. Caller must check for this value and act * accordingly. * * Note: This function does not check for following limitations set * by the hardware (all conditions must be true): * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 * ARM_CK >= TC_CK * DSP_CK >= TC_CK * DSPMMU_CK >= TC_CK */ unsigned long realrate; struct clk * parent; unsigned dsor_exp; if (unlikely(!(clk->flags & RATE_CKCTL))) return -EINVAL; parent = clk->parent; if (unlikely(parent == 0)) return -EIO; realrate = parent->rate; for (dsor_exp=0; dsor_exp<4; dsor_exp++) { if (realrate <= rate) break; realrate /= 2; } return dsor_exp; } static void omap1_ckctl_recalc(struct clk * clk) { int dsor; /* Calculate divisor encoded as 2-bit exponent */ dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset)); if (unlikely(clk->rate == clk->parent->rate / dsor)) return; /* No change, quick exit */ clk->rate = clk->parent->rate / dsor; if (unlikely(clk->flags & RATE_PROPAGATES)) propagate_rate(clk); } static void omap1_ckctl_recalc_dsp_domain(struct clk * clk) { int dsor; /* Calculate divisor encoded as 2-bit exponent * * The clock control bits are in DSP domain, * so api_ck is needed for access. * Note that DSP_CKCTL virt addr = phys addr, so * we must use __raw_readw() instead of omap_readw(). */ omap1_clk_enable(&api_ck.clk); dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset)); omap1_clk_disable(&api_ck.clk); if (unlikely(clk->rate == clk->parent->rate / dsor)) return; /* No change, quick exit */ clk->rate = clk->parent->rate / dsor; if (unlikely(clk->flags & RATE_PROPAGATES)) propagate_rate(clk); } /* MPU virtual clock functions */ static int omap1_select_table_rate(struct clk * clk, unsigned long rate) { /* Find the highest supported frequency <= rate and switch to it */ struct mpu_rate * ptr; if (clk != &virtual_ck_mpu) return -EINVAL; for (ptr = rate_table; ptr->rate; ptr++) { if (ptr->xtal != ck_ref.rate) continue; /* DPLL1 cannot be reprogrammed without risking system crash */ if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate) continue; /* Can check only after xtal frequency check */ if (ptr->rate <= rate) break; } if (!ptr->rate) return -EINVAL; /* * In most cases we should not need to reprogram DPLL. * Reprogramming the DPLL is tricky, it must be done from SRAM. * (on 730, bit 13 must always be 1) */ if (cpu_is_omap730()) omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000); else omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val); ck_dpll1.rate = ptr->pll_rate; propagate_rate(&ck_dpll1); return 0; } static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate) { int ret = -EINVAL; int dsor_exp; __u16 regval; if (clk->flags & RATE_CKCTL) { dsor_exp = calc_dsor_exp(clk, rate); if (dsor_exp > 3) dsor_exp = -EINVAL; if (dsor_exp < 0) return dsor_exp; regval = __raw_readw(DSP_CKCTL); regval &= ~(3 << clk->rate_offset); regval |= dsor_exp << clk->rate_offset; __raw_writew(regval, DSP_CKCTL); clk->rate = clk->parent->rate / (1 << dsor_exp); ret = 0; } if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) propagate_rate(clk); return ret; } static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate) { /* Find the highest supported frequency <= rate */ struct mpu_rate * ptr; long highest_rate; if (clk != &virtual_ck_mpu) return -EINVAL; highest_rate = -EINVAL; for (ptr = rate_table; ptr->rate; ptr++) { if (ptr->xtal != ck_ref.rate) continue; highest_rate = ptr->rate; /* Can check only after xtal frequency check */ if (ptr->rate <= rate) break; } return highest_rate; } static unsigned calc_ext_dsor(unsigned long rate) { unsigned dsor; /* MCLK and BCLK divisor selection is not linear: * freq = 96MHz / dsor * * RATIO_SEL range: dsor <-> RATIO_SEL * 0..6: (RATIO_SEL+2) <-> (dsor-2) * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6) * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9 * can not be used. */ for (dsor = 2; dsor < 96; ++dsor) { if ((dsor & 1) && dsor > 8) continue; if (rate >= 96000000 / dsor) break; } return dsor; } /* Only needed on 1510 */ static int omap1_set_uart_rate(struct clk * clk, unsigned long rate) { unsigned int val; val = omap_readl(clk->enable_reg); if (rate == 12000000) val &= ~(1 << clk->enable_bit); else if (rate == 48000000) val |= (1 << clk->enable_bit); else return -EINVAL; omap_writel(val, clk->enable_reg); clk->rate = rate; return 0; } /* External clock (MCLK & BCLK) functions */ static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate) { unsigned dsor; __u16 ratio_bits; dsor = calc_ext_dsor(rate); clk->rate = 96000000 / dsor; if (dsor > 8) ratio_bits = ((dsor - 8) / 2 + 6) << 2; else ratio_bits = (dsor - 2) << 2; ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd; omap_writew(ratio_bits, clk->enable_reg); return 0; } static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate) { return 96000000 / calc_ext_dsor(rate); } static void omap1_init_ext_clk(struct clk * clk) { unsigned dsor; __u16 ratio_bits; /* Determine current rate and ensure clock is based on 96MHz APLL */ ratio_bits = omap_readw(clk->enable_reg) & ~1; omap_writew(ratio_bits, clk->enable_reg); ratio_bits = (ratio_bits & 0xfc) >> 2; if (ratio_bits > 6) dsor = (ratio_bits - 6) * 2 + 8; else dsor = ratio_bits + 2; clk-> rate = 96000000 / dsor; } static int omap1_clk_enable(struct clk *clk) { int ret = 0; if (clk->usecount++ == 0) { if (likely(clk->parent)) { ret = omap1_clk_enable(clk->parent); if (unlikely(ret != 0)) { clk->usecount--; return ret; } if (clk->flags & CLOCK_NO_IDLE_PARENT) omap1_clk_deny_idle(clk->parent); } ret = clk->enable(clk); if (unlikely(ret != 0) && clk->parent) { omap1_clk_disable(clk->parent); clk->usecount--; } } return ret; } static void omap1_clk_disable(struct clk *clk) { if (clk->usecount > 0 && !(--clk->usecount)) { clk->disable(clk); if (likely(clk->parent)) { omap1_clk_disable(clk->parent); if (clk->flags & CLOCK_NO_IDLE_PARENT) omap1_clk_allow_idle(clk->parent); } } } static int omap1_clk_enable_generic(struct clk *clk) { __u16 regval16; __u32 regval32; if (clk->flags & ALWAYS_ENABLED) return 0; if (unlikely(clk->enable_reg == 0)) { printk(KERN_ERR "clock.c: Enable for %s without enable code\n", clk->name); return -EINVAL; } if (clk->flags & ENABLE_REG_32BIT) { if (clk->flags & VIRTUAL_IO_ADDRESS) { regval32 = __raw_readl(clk->enable_reg); regval32 |= (1 << clk->enable_bit); __raw_writel(regval32, clk->enable_reg); } else { regval32 = omap_readl(clk->enable_reg); regval32 |= (1 << clk->enable_bit); omap_writel(regval32, clk->enable_reg); } } else { if (clk->flags & VIRTUAL_IO_ADDRESS) { regval16 = __raw_readw(clk->enable_reg); regval16 |= (1 << clk->enable_bit); __raw_writew(regval16, clk->enable_reg); } else { regval16 = omap_readw(clk->enable_reg); regval16 |= (1 << clk->enable_bit); omap_writew(regval16, clk->enable_reg); } } return 0; } static void omap1_clk_disable_generic(struct clk *clk) { __u16 regval16; __u32 regval32; if (clk->enable_reg == 0) return; if (clk->flags & ENABLE_REG_32BIT) { if (clk->flags & VIRTUAL_IO_ADDRESS) { regval32 = __raw_readl(clk->enable_reg); regval32 &= ~(1 << clk->enable_bit); __raw_writel(regval32, clk->enable_reg); } else { regval32 = omap_readl(clk->enable_reg); regval32 &= ~(1 << clk->enable_bit); omap_writel(regval32, clk->enable_reg); } } else { if (clk->flags & VIRTUAL_IO_ADDRESS) { regval16 = __raw_readw(clk->enable_reg); regval16 &= ~(1 << clk->enable_bit); __raw_writew(regval16, clk->enable_reg); } else { regval16 = omap_readw(clk->enable_reg); regval16 &= ~(1 << clk->enable_bit); omap_writew(regval16, clk->enable_reg); } } } static long omap1_clk_round_rate(struct clk *clk, unsigned long rate) { int dsor_exp; if (clk->flags & RATE_FIXED) return clk->rate; if (clk->flags & RATE_CKCTL) { dsor_exp = calc_dsor_exp(clk, rate); if (dsor_exp < 0) return dsor_exp; if (dsor_exp > 3) dsor_exp = 3; return clk->parent->rate / (1 << dsor_exp); } if(clk->round_rate != 0) return clk->round_rate(clk, rate); return clk->rate; } static int omap1_clk_set_rate(struct clk *clk, unsigned long rate) { int ret = -EINVAL; int dsor_exp; __u16 regval; if (clk->set_rate) ret = clk->set_rate(clk, rate); else if (clk->flags & RATE_CKCTL) { dsor_exp = calc_dsor_exp(clk, rate); if (dsor_exp > 3) dsor_exp = -EINVAL; if (dsor_exp < 0) return dsor_exp; regval = omap_readw(ARM_CKCTL); regval &= ~(3 << clk->rate_offset); regval |= dsor_exp << clk->rate_offset; regval = verify_ckctl_value(regval); omap_writew(regval, ARM_CKCTL); clk->rate = clk->parent->rate / (1 << dsor_exp); ret = 0; } if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) propagate_rate(clk); return ret; } /*------------------------------------------------------------------------- * Omap1 clock reset and init functions *-------------------------------------------------------------------------*/ #ifdef CONFIG_OMAP_RESET_CLOCKS static void __init omap1_clk_disable_unused(struct clk *clk) { __u32 regval32; /* Clocks in the DSP domain need api_ck. Just assume bootloader * has not enabled any DSP clocks */ if ((u32)clk->enable_reg == DSP_IDLECT2) { printk(KERN_INFO "Skipping reset check for DSP domain " "clock \"%s\"\n", clk->name); return; } /* Is the clock already disabled? */ if (clk->flags & ENABLE_REG_32BIT) { if (clk->flags & VIRTUAL_IO_ADDRESS) regval32 = __raw_readl(clk->enable_reg); else regval32 = omap_readl(clk->enable_reg); } else { if (clk->flags & VIRTUAL_IO_ADDRESS) regval32 = __raw_readw(clk->enable_reg); else regval32 = omap_readw(clk->enable_reg); } if ((regval32 & (1 << clk->enable_bit)) == 0) return; /* FIXME: This clock seems to be necessary but no-one * has asked for its activation. */ if (clk == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera || clk == &ck_dpll1out.clk // FIX: SoSSI, SSR || clk == &arm_gpio_ck // FIX: GPIO code for 1510 ) { printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n", clk->name); return; } printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name); clk->disable(clk); printk(" done\n"); } #else #define omap1_clk_disable_unused NULL #endif static struct clk_functions omap1_clk_functions = { .clk_enable = omap1_clk_enable, .clk_disable = omap1_clk_disable, .clk_round_rate = omap1_clk_round_rate, .clk_set_rate = omap1_clk_set_rate, .clk_disable_unused = omap1_clk_disable_unused, }; int __init omap1_clk_init(void) { struct clk ** clkp; const struct omap_clock_config *info; int crystal_type = 0; /* Default 12 MHz */ u32 reg; #ifdef CONFIG_DEBUG_LL /* Resets some clocks that may be left on from bootloader, * but leaves serial clocks on. */ omap_writel(0x3 << 29, MOD_CONF_CTRL_0); #endif /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */ reg = omap_readw(SOFT_REQ_REG) & (1 << 4); omap_writew(reg, SOFT_REQ_REG); if (!cpu_is_omap15xx()) omap_writew(0, SOFT_REQ_REG2); clk_init(&omap1_clk_functions); /* By default all idlect1 clocks are allowed to idle */ arm_idlect1_mask = ~0; for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) { if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) { clk_register(*clkp); continue; } if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) { clk_register(*clkp); continue; } if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) { clk_register(*clkp); continue; } if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) { clk_register(*clkp); continue; } } info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config); if (info != NULL) { if (!cpu_is_omap15xx()) crystal_type = info->system_clock_type; } #if defined(CONFIG_ARCH_OMAP730) ck_ref.rate = 13000000; #elif defined(CONFIG_ARCH_OMAP16XX) if (crystal_type == 2) ck_ref.rate = 19200000; #endif printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n", omap_readw(ARM_SYSST), omap_readw(DPLL_CTL), omap_readw(ARM_CKCTL)); /* We want to be in syncronous scalable mode */ omap_writew(0x1000, ARM_SYSST); #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER /* Use values set by bootloader. Determine PLL rate and recalculate * dependent clocks as if kernel had changed PLL or divisors. */ { unsigned pll_ctl_val = omap_readw(DPLL_CTL); ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */ if (pll_ctl_val & 0x10) { /* PLL enabled, apply multiplier and divisor */ if (pll_ctl_val & 0xf80) ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7; ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1; } else { /* PLL disabled, apply bypass divisor */ switch (pll_ctl_val & 0xc) { case 0: break; case 0x4: ck_dpll1.rate /= 2; break; default: ck_dpll1.rate /= 4; break; } } } propagate_rate(&ck_dpll1); #else /* Find the highest supported frequency and enable it */ if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) { printk(KERN_ERR "System frequencies not set. Check your config.\n"); /* Guess sane values (60MHz) */ omap_writew(0x2290, DPLL_CTL); omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL); ck_dpll1.rate = 60000000; propagate_rate(&ck_dpll1); } #endif /* Cache rates for clocks connected to ck_ref (not dpll1) */ propagate_rate(&ck_ref); printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): " "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n", ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10, ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10, arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10); #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE) /* Select slicer output as OMAP input clock */ omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL); #endif /* Amstrad Delta wants BCLK high when inactive */ if (machine_is_ams_delta()) omap_writel(omap_readl(ULPD_CLOCK_CTRL) | (1 << SDW_MCLK_INV_BIT), ULPD_CLOCK_CTRL); /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */ /* (on 730, bit 13 must not be cleared) */ if (cpu_is_omap730()) omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL); else omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL); /* Put DSP/MPUI into reset until needed */ omap_writew(0, ARM_RSTCT1); omap_writew(1, ARM_RSTCT2); omap_writew(0x400, ARM_IDLECT1); /* * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8) * of the ARM_IDLECT2 register must be set to zero. The power-on * default value of this bit is one. */ omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */ /* * Only enable those clocks we will need, let the drivers * enable other clocks as necessary */ clk_enable(&armper_ck.clk); clk_enable(&armxor_ck.clk); clk_enable(&armtim_ck.clk); /* This should be done by timer code */ if (cpu_is_omap15xx()) clk_enable(&arm_gpio_ck); return 0; }