summaryrefslogtreecommitdiffstats
path: root/crypto/proc.c
Commit message (Collapse)AuthorAgeFilesLines
* [CRYPTO] api: Added crypto_type supportHerbert Xu2006-09-211-1/+4
| | | | | | | | | | | This patch adds the crypto_type structure which will be used for all new crypto algorithm types, beginning with block ciphers. The primary purpose of this abstraction is to allow different crypto_type objects for crypto algorithms of the same type, in particular, there will be a different crypto_type objects for asynchronous algorithms. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* [CRYPTO] api: Split out low-level APIHerbert Xu2006-09-211-0/+5
| | | | | | | | | | The crypto API is made up of the part facing users such as IPsec and the low-level part which is used by cryptographic entities such as algorithms. This patch splits out the latter so that the two APIs are more clearly delineated. As a bonus the low-level API can now be modularised if all algorithms are built as modules. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* [CRYPTO] api: Add crypto_alg reference countingHerbert Xu2006-09-211-0/+3
| | | | | | | | | | | | | Up until now we've relied on module reference counting to ensure that the crypto_alg structures don't disappear from under us. This was good enough as long as each crypto_alg came from exactly one module. However, with parameterised crypto algorithms a crypto_alg object may need two or more modules to operate. This means that we need to count the references to the crypto_alg object directly. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
* [CRYPTO] Allow multiple implementations of the same algorithmHerbert Xu2006-01-091-3/+3
| | | | | | | | | | | | | | | | | | | | | | This is the first step on the road towards asynchronous support in the Crypto API. It adds support for having multiple crypto_alg objects for the same algorithm registered in the system. For example, each device driver would register a crypto_alg object for each algorithm that it supports. While at the same time the user may load software implementations of those same algorithms. Users of the Crypto API may then select a specific implementation by name, or choose any implementation for a given algorithm with the highest priority. The priority field is a 32-bit signed integer. In future it will be possible to modify it from user-space. This also provides a solution to the problem of selecting amongst various AES implementations, that is, aes vs. aes-i586 vs. aes-padlock. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-161-0/+112
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!