| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Impact: Functional TSC is marked unstable on AMD family 0x10 and 0x11 CPUs.
This would be wrong because for those CPUs "invariant TSC" means:
"The TSC counts at the same rate in all P-states, all C states, S0,
or S1"
(See "Processor BIOS and Kernel Developer's Guides" for those CPUs.)
[ tglx: Changed C1E to AMD C1E in the printks to avoid confusion
with Intel C1E ]
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
|
|
|
|
|
|
|
|
| |
Impact: System hang when AMD C1E machines switch into C2/C3
AMD C1E enabled systems do not work with normal ACPI C-states
even if the BIOS is advertising them. Limit the C-states to
C1 for the ACPI processor idle code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Impact: hang which happens across CPU offline/online on AMD C1E systems.
When a CPU goes offline then the corresponding bit in the broadcast
mask is cleared. For AMD C1E enabled CPUs we do not reenable the
broadcast when the CPU comes online again as we do not clear the
corresponding bit in the c1e_mask, which keeps track which CPUs
have been switched to broadcast already. So on those !$@#& machines
we never switch back to broadcasting after a CPU offline/online cycle.
Clear the bit when the CPU plays dead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: completely disable NOPL on 32 bits
x86/paravirt: Remove duplicate paravirt_pagetable_setup_{start, done}()
xen: fix for xen guest with mem > 3.7G
x86: fix possible x86_64 and EFI regression
arch/x86/kernel/kdebugfs.c: introduce missing kfree
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Completely disable NOPL on 32 bits. It turns out that Microsoft
Virtual PC is so broken it can't even reliably *fail* in the presence
of NOPL.
This leaves the infrastructure in place but disables it
unconditionally.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
They were already called once in arch/x86/kernel/setup.c - we don't need to call them again.
fixes:
http://bugzilla.kernel.org/show_bug.cgi?id=11485
Signed-off-by: Alex Nixon <alex.nixon@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
PFN_PHYS() can truncate large addresses unless its passed a suitable
large type. This is fixed more generally in the patch series
introducing phys_addr_t, but we need a short-term fix to solve a
Xen regression reported by Roberto De Ioris.
Reported-by: Roberto De Ioris <roberto@unbit.it>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Russ Anderson reported a boot crash with EFI and latest mainline:
BIOS-e820: 00000000fffa0000 - 00000000fffac000 (reserved)
Pid: 0, comm: swapper Not tainted 2.6.27-rc5-00100-gec0c15a-dirty #5
Call Trace:
[<ffffffff80849195>] early_idt_handler+0x55/0x69
[<ffffffff80313e52>] __memcpy+0x12/0xa4
[<ffffffff80859015>] efi_init+0xce/0x932
[<ffffffff80869c83>] setup_early_serial8250_console+0x2d/0x36a
[<ffffffff80238688>] __insert_resource+0x18/0xc8
[<ffffffff8084f6de>] setup_arch+0x3a7/0x632
[<ffffffff808499ed>] start_kernel+0x91/0x367
[<ffffffff80849393>] x86_64_start_kernel+0xe3/0xe7
[<ffffffff808492b0>] x86_64_start_kernel+0x0/0xe7
RIP 0x10
Such a crash is possible if the CPU in this system is a 64-bit
processor which doesn't support NX (ie, old Intel P4 -based64-bit
processors).
Certainly, if we support such processors, then we should start with
_PAGE_NX initially clear in __supported_pte_flags, and then set it once
we've established that the processor does indeed support NX. That will
prevent early_ioremap - or anything else - from trying to set it.
The simple fix is to simply call check_efer() earlier.
Reported-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Error handling code following a kmalloc should free the allocated data.
Note that at the point of the change, node has not yet been stored in d, so
it is not affected by the existing cleanup code.
The semantic match that finds the problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@r exists@
local idexpression x;
statement S;
expression E;
identifier f,l;
position p1,p2;
expression *ptr != NULL;
@@
(
if ((x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...)) == NULL) S
|
x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...);
...
if (x == NULL) S
)
<... when != x
when != if (...) { <+...x...+> }
x->f = E
...>
(
return \(0\|<+...x...+>\|ptr\);
|
return@p2 ...;
)
@script:python@
p1 << r.p1;
p2 << r.p2;
@@
print "* file: %s kmalloc %s return %s" % (p1[0].file,p1[0].line,p2[0].line)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| | |
As well as discard fake accessed bit and dirty bit of EPT.
Signed-off-by: Sheng Yang <sheng.yang@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Accesses to CR4 are intercepted even with Nested Paging enabled. But the code
does not check if the guest wants to do a global TLB flush. So this flush gets
lost. This patch adds the check and the flush to svm_set_cr4.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
|
|/
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces a guest TLB flush on every NPF exit in KVM. This fixes
random segfaults and #UD exceptions in the guest seen under some workloads
(e.g. long running compile workloads or tbench). A kernbench run with and
without that fix showed that it has a slowdown lower than 0.5%
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@qumranet.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: fix memmap=exactmap boot argument
x86: disable static NOPLs on 32 bits
xen: fix 2.6.27-rc5 xen balloon driver warnings
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When using kdump modifying the e820 map is yielding strange results.
For example starting with
BIOS-provided physical RAM map:
BIOS-e820: 0000000000000100 - 0000000000093400 (usable)
BIOS-e820: 0000000000093400 - 00000000000a0000 (reserved)
BIOS-e820: 0000000000100000 - 000000003fee0000 (usable)
BIOS-e820: 000000003fee0000 - 000000003fef3000 (ACPI data)
BIOS-e820: 000000003fef3000 - 000000003ff80000 (ACPI NVS)
BIOS-e820: 000000003ff80000 - 0000000040000000 (reserved)
BIOS-e820: 00000000e0000000 - 00000000f0000000 (reserved)
BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)
BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved)
BIOS-e820: 00000000ff000000 - 0000000100000000 (reserved)
and booting with args
memmap=exactmap memmap=640K@0K memmap=5228K@16384K memmap=125188K@22252K memmap=76K#1047424K memmap=564K#1047500K
resulted in:
user-defined physical RAM map:
user: 0000000000000000 - 0000000000093400 (usable)
user: 0000000000093400 - 00000000000a0000 (reserved)
user: 0000000000100000 - 000000003fee0000 (usable)
user: 000000003fee0000 - 000000003fef3000 (ACPI data)
user: 000000003fef3000 - 000000003ff80000 (ACPI NVS)
user: 000000003ff80000 - 0000000040000000 (reserved)
user: 00000000e0000000 - 00000000f0000000 (reserved)
user: 00000000fec00000 - 00000000fec10000 (reserved)
user: 00000000fee00000 - 00000000fee01000 (reserved)
user: 00000000ff000000 - 0000000100000000 (reserved)
But should have resulted in:
user-defined physical RAM map:
user: 0000000000000000 - 00000000000a0000 (usable)
user: 0000000001000000 - 000000000151b000 (usable)
user: 00000000015bb000 - 0000000008ffc000 (usable)
user: 000000003fee0000 - 000000003ff80000 (ACPI data)
This is happening because of an improper usage of strcmp() in the
e820 parsing code. The strcmp() always returns !0 and never resets the
value for e820.nr_map and returns an incorrect user-defined map.
This patch fixes the problem.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On 32-bit, at least the generic nops are fairly reasonable, but the
default nops for 64-bit really look pretty sad, and the P6 nops really do
look better.
So I would suggest perhaps moving the static P6 nop selection into the
CONFIG_X86_64 thing.
The alternative is to just get rid of that static nop selection, and just
have two cases: 32-bit and 64-bit, and just pick obviously safe cases for
them.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|\|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: cpu_init(): fix memory leak when using CPU hotplug
x86: pda_init(): fix memory leak when using CPU hotplug
x86, xen: Use native_pte_flags instead of native_pte_val for .pte_flags
x86: move mtrr cpu cap setting early in early_init_xxxx
x86: delay early cpu initialization until cpuid is done
x86: use X86_FEATURE_NOPL in alternatives
x86: add NOPL as a synthetic CPU feature bit
x86: boot: stub out unimplemented CPU feature words
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Exception stacks are allocated each time a CPU is set online.
But the allocated space is never freed. Thus with one CPU hotplug
offline/online cycle there is a memory leak of 24K (6 pages) for
a CPU.
Fix is to allocate exception stacks only once -- when the CPU is
set online for the first time.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: akpm@linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
pda->irqstackptr is allocated whenever a CPU is set online.
But it is never freed. This results in a memory leak of 16K
for each CPU offline/online cycle.
Fix is to allocate pda->irqstackptr only once.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: akpm@linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Using native_pte_val triggers the BUG_ON() in the paravirt_ops
version of pte_flags().
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Krzysztof Helt found MTRR is not detected on k6-2
root cause:
we moved mtrr_bp_init() early for mtrr trimming,
and in early_detect we only read the CPU capability from cpuid,
so some cpu doesn't have that bit in cpuid.
So we need to add early_init_xxxx to preset those bit before mtrr_bp_init
for those earlier cpus.
this patch is for v2.6.27
Reported-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move early cpu initialization after cpu early get cap so the
early cpu initialization can fix up cpu caps.
Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| | |
Use X86_FEATURE_NOPL to determine if it is safe to use P6 NOPs in
alternatives. Also, replace table and loop with simple if statement.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The long noops ("NOPL") are supposed to be detected by family >= 6.
Unfortunately, several non-Intel x86 implementations, both hardware
and software, don't obey this dictum. Instead, probe for NOPL
directly by executing a NOPL instruction and see if we get #UD.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The CPU feature detection code in the boot code is somewhat minimal,
and doesn't include all possible CPUID words. In particular, it
doesn't contain the code for CPU feature words 2 (Transmeta),
3 (Linux-specific), 5 (VIA), or 7 (scattered). Zero them out, so we
can still set those bits as known at compile time; in particular, this
allows creating a Linux-specific NOPL flag and have it required (and
therefore resolvable at compile time) in 64-bit mode.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource, acpi_pm.c: check for monotonicity
clocksource, acpi_pm.c: use proper read function also in errata mode
ntp: fix calculation of the next jiffie to trigger RTC sync
x86: HPET: read back compare register before reading counter
x86: HPET fix moronic 32/64bit thinko
clockevents: broadcast fixup possible waiters
HPET: make minimum reprogramming delta useful
clockevents: prevent endless loop lockup
clockevents: prevent multiple init/shutdown
clockevents: enforce reprogram in oneshot setup
clockevents: prevent endless loop in periodic broadcast handler
clockevents: prevent clockevent event_handler ending up handler_noop
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
After fixing the u32 thinko I sill had occasional hickups on ATI chipsets
with small deltas. There seems to be a delay between writing the compare
register and the transffer to the internal register which triggers the
interrupt. Reading back the value makes sure, that it hit the internal
match register befor we compare against the counter value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We use the HPET only in 32bit mode because:
1) some HPETs are 32bit only
2) on i386 there is no way to read/write the HPET atomic 64bit wide
The HPET code unification done by the "moron of the year" did
not take into account that unsigned long is different on 32 and
64 bit.
This thinko results in a possible endless loop in the clockevents
code, when the return comparison fails due to the 64bit/332bit
unawareness.
unsigned long cnt = (u32) hpet_read() + delta can wrap over 32bit.
but the final compare will fail and return -ETIME causing endless
loops.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The minimum reprogramming delta was hardcoded in HPET ticks,
which is stupid as it does not work with faster running HPETs.
The C1E idle patches made this prominent on AMD/RS690 chipsets,
where the HPET runs with 25MHz. Set it to 5us which seems to be
a reasonable value and fixes the problems on the bug reporters
machines. We have a further sanity check now in the clock events,
which increases the delta when it is not sufficient.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Luiz Fernando N. Capitulino <lcapitulino@mandriva.com.br>
Tested-by: Dmitry Nezhevenko <dion@inhex.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \ \
| | |/
| |/|
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: add io delay quirk for Presario F700
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Manually adding "io_delay=0xed" fixes system lockups in ioapic
mode on this machine.
System Information
Manufacturer: Hewlett-Packard
Product Name: Presario F700 (KA695EA#ABF)
Base Board Information
Manufacturer: Quanta
Product Name: 30D3
Reference:
https://bugzilla.redhat.com/show_bug.cgi?id=459546
Signed-off-by: Chuck Ebbert <cebbert@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
When calibration against PIT fails, the warning that we print is misleading.
In a virtualized environment the VM may get descheduled while calibration
or, the check in PIT calibration may fail due to other virtualization
overheads.
The warning message explicitly assumes that calibration failed due to SMI's
which may not be the case. Change that to something proper.
Signed-off-by: Alok N Kataria <akataria@vmware.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
The TSC calibration function is still very complicated, but this makes
it at least a little bit less so by moving the PIT part out into a
helper function of its own.
Tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-of-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Larry Finger reported at http://lkml.org/lkml/2008/9/1/90:
An ancient laptop of mine started throwing errors from b43legacy when
I started using 2.6.27 on it. This has been bisected to commit bfc0f59
"x86: merge tsc calibration".
The unification of the TSC code adopted mostly the 64bit code, which
prefers PMTIMER/HPET over the PIT calibration.
Larrys system has an AMD K6 CPU. Such systems are known to have
PMTIMER incarnations which run at double speed. This results in a
miscalibration of the TSC by factor 0.5. So the resulting calibrated
CPU/TSC speed is half of the real CPU speed, which means that the TSC
based delay loop will run half the time it should run. That might
explain why the b43legacy driver went berserk.
On the other hand we know about systems, where the PIT based
calibration results in random crap due to heavy SMI/SMM
disturbance. On those systems the PMTIMER/HPET based calibration logic
with SMI detection shows better results.
According to Alok also virtualized systems suffer from the PIT
calibration method.
The solution is to use a more wreckage aware aproach than the current
either/or decision.
1) reimplement the retry loop which was dropped from the 32bit code
during the merge. It repeats the calibration and selects the lowest
frequency value as this is probably the closest estimate to the real
frequency
2) Monitor the delta of the TSC values in the delay loop which waits
for the PIT counter to reach zero. If the maximum value is
significantly different from the minimum, then we have a pretty safe
indicator that the loop was disturbed by an SMI.
3) keep the pmtimer/hpet reference as a backup solution for systems
where the SMI disturbance is a permanent point of failure for PIT
based calibration
4) do the loop iteration for both methods, record the lowest value and
decide after all iterations finished.
5) Set a clear preference to PIT based calibration when the result
makes sense.
The implementation does the reference calibration based on
HPET/PMTIMER around the delay, which is necessary for the PIT anyway,
but keeps separate TSC values to ensure the "independency" of the
resulting calibration values.
Tested on various 32bit/64bit machines including Geode 266Mhz, AMD K6
(affected machine with a double speed pmtimer which I grabbed out of
the dump), Pentium class machines and AMD/Intel 64 bit boxen.
Bisected-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Breaking lines due to some imaginary problem with a long line length is
often stupid and wrong, but never more so when it splits a string that
is printed out into multiple lines. This really ended up making it much
harder to find where some error strings were printed out, because a
simple 'grep' didn't work.
I'm sure there is tons more of this particular idiocy hiding in other
places, but this particular case hit me once more last week. So fix it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
BAR, v3"
This reverts commit a2bd7274b47124d2fc4dfdb8c0591f545ba749dd.
It wasn't really right to begin with (there's a better fix for the
problem with e820 reservations clashing with PCI BAR's pending), but it
also actually causes more regressions, so it should be reverted even
before the better fix is finalized.
Rafael reports that this commit broke AHCI detection, and thus causes
the kernel to not boot on his quad core test box.
Reported-and-bisected-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: David Witbrodt <dawitbro@sbcglobal.net>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: update defconfigs
x86: msr: fix bogus return values from rdmsr_safe/wrmsr_safe
x86: cpuid: correct return value on partial operations
x86: msr: correct return value on partial operations
x86: cpuid: propagate error from smp_call_function_single()
x86: msr: propagate errors from smp_call_function_single()
smp: have smp_call_function_single() detect invalid CPUs
|
| |
| |
| |
| |
| |
| |
| |
| | |
Enable some option commonly used by testers in defconfig, including
some very common device drivers and network boot support. defconfig
is still not meant to be a kitchen-sink configuration.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Return the correct return value when the CPUID driver partially
completes a request (we should return the number of bytes actually
read or written, instead of the error code.)
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Return the correct return value when the MSR driver partially
completes a request (we should return the number of bytes actually
read or written, instead of the error code.)
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Propagate error (-ENXIO) from smp_call_function_single() in the CPUID
driver. This can happen when a CPU is unplugged while the CPUID
driver is open.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Propagate error (-ENXIO) from smp_call_function_single(). These
errors can happen when a CPU is unplugged while the MSR driver is
open.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This fixes a regression that was indirectly caused by commit
1184dc2ffe2c8fb9afb766d870850f2c3165ef25 ("x86: modify Kconfig to allow
up to 4096 cpus").
Allowing 4k CPU's is not practical at this time, because we still have a
number of places that have several 'cpumask_t's on the stack, and a
4k-bit cpumask is 512 bytes of stack-space for each such variable. This
literally caused functions like 'smp_call_function_mask' to have a 2.5kB
stack frame, and several functions to have 2kB stackframes.
With an 8kB stack total, smashing the stack was simply much too likely.
At least bugzilla entry
http://bugzilla.kernel.org/show_bug.cgi?id=11342
was due to this.
The earlier commit to not inline load_module() into sys_init_module()
fixed the particular symptoms of this that Alan Brunelle saw in that
bugzilla entry, but the huge stack waste by cpumask_t's was the more
direct cause.
Some day we'll have allocation helpers that allocate large CPU masks
dynamically, but in the meantime we simply cannot allow cpumasks this
large.
Cc: Alan D. Brunelle <Alan.Brunelle@hp.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: add X86_FEATURE_XMM4_2 definitions
x86: fix cpufreq + sched_clock() regression
x86: fix HPET regression in 2.6.26 versus 2.6.25, check hpet against BAR, v3
x86: do not enable TSC notifier if we don't need it
x86 MCE: Fix CPU hotplug problem with multiple multicore AMD CPUs
x86: fix: make PCI ECS for AMD CPUs hotplug capable
x86: fix: do not run code in amd_bus.c on non-AMD CPUs
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I noticed that my sched_clock() was slow on a number of machine, so I
started looking at cpufreq.
The below seems to fix the problem for me.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
David Witbrodt tracked down (and bisected) a hpet bootup hang on his
system to the following problem: a BIOS bug made the hpet device
visible as a generic PCI device. If e820 reserved entries happen to
be registered first in the resource tree [which v2.6.26 started doing],
then the PCI code will reallocate that device's BAR to some other
address - breaking timer IRQs and hanging the system.
( Normally hpet devices are hidden by the BIOS from the OS's PCI
discovery via chipset magic. Sometimes the hpet is not a PCI device
at all. )
Solve this fundamental fragility by making non-PCI platform drivers
insert resources into the resource tree even if it overlaps the e820
reserved entry, to keep the resource manager from updating the BAR.
Also do these checks for the ioapic and mmconfig addresses, and emit
a warning if this happens.
Bisected-by: David Witbrodt <dawitbro@sbcglobal.net>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Tested-by: David Witbrodt <dawitbro@sbcglobal.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Impact: crash on non-TSC-equipped CPUs
Don't enable the TSC notifier if we *either*:
1. don't have a CPU, or
2. have a CPU with constant TSC.
In either of those cases, the notifier is either damaging (1) or useless(2).
From: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
During CPU hot-remove the sysfs directory created by
threshold_create_bank(), defined in
arch/x86/kernel/cpu/mcheck/mce_amd_64.c, has to be removed before
its parent directory, created by mce_create_device(), defined in
arch/x86/kernel/cpu/mcheck/mce_64.c . Moreover, when the CPU in
question is hotplugged again, obviously the latter has to be created
before the former. At present, the right ordering is not enforced,
because all of these operations are carried out by CPU hotplug
notifiers which are not appropriately ordered with respect to each
other. This leads to serious problems on systems with two or more
multicore AMD CPUs, among other things during suspend and hibernation.
Fix the problem by placing threshold bank CPU hotplug callbacks in
mce_cpu_callback(), so that they are invoked at the right places,
if defined. Additionally, use kobject_del() to remove the sysfs
directory associated with the kobject created by
kobject_create_and_add() in threshold_create_bank(), to prevent the
kernel from crashing during CPU hotplug operations on systems with
two or more multicore AMD CPUs.
This patch fixes bug #11337.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Andi Kleen <andi@firstfloor.org>
Tested-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Until now, PCI ECS setup was performed at boot time only and for cpus
that are enabled then. This patch fixes this and adds cpu hotplug.
Tests sequence (check if ECS bit is set when bringing cpu online again):
# ( perl -e 'sysseek(STDIN, 0xC001001F, 0)'; hexdump -n 8 -e '2/4 "%08x " "\n"' ) < /dev/cpu/1/msr
00000008 00404010
# ( perl -e 'sysseek(STDOUT, 0xC001001F, 0); print pack "l*", 8, 0x00400010' ) > /dev/cpu/1/msr
# ( perl -e 'sysseek(STDIN, 0xC001001F, 0)'; hexdump -n 8 -e '2/4 "%08x " "\n"' ) < /dev/cpu/1/msr
00000008 00400010
# echo 0 > /sys/devices/system/cpu/cpu1/online
# echo 1 > /sys/devices/system/cpu/cpu1/online
# ( perl -e 'sysseek(STDIN, 0xC001001F, 0)'; hexdump -n 8 -e '2/4 "%08x " "\n"' ) < /dev/cpu/1/msr
00000008 00404010
Reported-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Jan Beulich wrote:
> Even worse - this would even try to access the MSR on non-AMD CPUs
> (currently probably prevented just by the fact that only AMD ones use
> family values of 0x10 or higher).
This patch adds cpu vendor check to the postcore_initcalls.
Reported-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|