summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/ia64/mca.txt194
-rw-r--r--arch/ia64/kernel/acpi.c2
-rw-r--r--arch/ia64/kernel/entry.S2
-rw-r--r--arch/ia64/kernel/mca_drv.c114
-rw-r--r--arch/ia64/kernel/mca_drv.h2
-rw-r--r--arch/ia64/kernel/mca_drv_asm.S48
-rw-r--r--arch/ia64/kernel/perfmon.c2
-rw-r--r--drivers/char/agp/hp-agp.c2
8 files changed, 292 insertions, 74 deletions
diff --git a/Documentation/ia64/mca.txt b/Documentation/ia64/mca.txt
new file mode 100644
index 00000000000..a71cc6a67ef
--- /dev/null
+++ b/Documentation/ia64/mca.txt
@@ -0,0 +1,194 @@
+An ad-hoc collection of notes on IA64 MCA and INIT processing. Feel
+free to update it with notes about any area that is not clear.
+
+---
+
+MCA/INIT are completely asynchronous. They can occur at any time, when
+the OS is in any state. Including when one of the cpus is already
+holding a spinlock. Trying to get any lock from MCA/INIT state is
+asking for deadlock. Also the state of structures that are protected
+by locks is indeterminate, including linked lists.
+
+---
+
+The complicated ia64 MCA process. All of this is mandated by Intel's
+specification for ia64 SAL, error recovery and and unwind, it is not as
+if we have a choice here.
+
+* MCA occurs on one cpu, usually due to a double bit memory error.
+ This is the monarch cpu.
+
+* SAL sends an MCA rendezvous interrupt (which is a normal interrupt)
+ to all the other cpus, the slaves.
+
+* Slave cpus that receive the MCA interrupt call down into SAL, they
+ end up spinning disabled while the MCA is being serviced.
+
+* If any slave cpu was already spinning disabled when the MCA occurred
+ then it cannot service the MCA interrupt. SAL waits ~20 seconds then
+ sends an unmaskable INIT event to the slave cpus that have not
+ already rendezvoused.
+
+* Because MCA/INIT can be delivered at any time, including when the cpu
+ is down in PAL in physical mode, the registers at the time of the
+ event are _completely_ undefined. In particular the MCA/INIT
+ handlers cannot rely on the thread pointer, PAL physical mode can
+ (and does) modify TP. It is allowed to do that as long as it resets
+ TP on return. However MCA/INIT events expose us to these PAL
+ internal TP changes. Hence curr_task().
+
+* If an MCA/INIT event occurs while the kernel was running (not user
+ space) and the kernel has called PAL then the MCA/INIT handler cannot
+ assume that the kernel stack is in a fit state to be used. Mainly
+ because PAL may or may not maintain the stack pointer internally.
+ Because the MCA/INIT handlers cannot trust the kernel stack, they
+ have to use their own, per-cpu stacks. The MCA/INIT stacks are
+ preformatted with just enough task state to let the relevant handlers
+ do their job.
+
+* Unlike most other architectures, the ia64 struct task is embedded in
+ the kernel stack[1]. So switching to a new kernel stack means that
+ we switch to a new task as well. Because various bits of the kernel
+ assume that current points into the struct task, switching to a new
+ stack also means a new value for current.
+
+* Once all slaves have rendezvoused and are spinning disabled, the
+ monarch is entered. The monarch now tries to diagnose the problem
+ and decide if it can recover or not.
+
+* Part of the monarch's job is to look at the state of all the other
+ tasks. The only way to do that on ia64 is to call the unwinder,
+ as mandated by Intel.
+
+* The starting point for the unwind depends on whether a task is
+ running or not. That is, whether it is on a cpu or is blocked. The
+ monarch has to determine whether or not a task is on a cpu before it
+ knows how to start unwinding it. The tasks that received an MCA or
+ INIT event are no longer running, they have been converted to blocked
+ tasks. But (and its a big but), the cpus that received the MCA
+ rendezvous interrupt are still running on their normal kernel stacks!
+
+* To distinguish between these two cases, the monarch must know which
+ tasks are on a cpu and which are not. Hence each slave cpu that
+ switches to an MCA/INIT stack, registers its new stack using
+ set_curr_task(), so the monarch can tell that the _original_ task is
+ no longer running on that cpu. That gives us a decent chance of
+ getting a valid backtrace of the _original_ task.
+
+* MCA/INIT can be nested, to a depth of 2 on any cpu. In the case of a
+ nested error, we want diagnostics on the MCA/INIT handler that
+ failed, not on the task that was originally running. Again this
+ requires set_curr_task() so the MCA/INIT handlers can register their
+ own stack as running on that cpu. Then a recursive error gets a
+ trace of the failing handler's "task".
+
+[1] My (Keith Owens) original design called for ia64 to separate its
+ struct task and the kernel stacks. Then the MCA/INIT data would be
+ chained stacks like i386 interrupt stacks. But that required
+ radical surgery on the rest of ia64, plus extra hard wired TLB
+ entries with its associated performance degradation. David
+ Mosberger vetoed that approach. Which meant that separate kernel
+ stacks meant separate "tasks" for the MCA/INIT handlers.
+
+---
+
+INIT is less complicated than MCA. Pressing the nmi button or using
+the equivalent command on the management console sends INIT to all
+cpus. SAL picks one one of the cpus as the monarch and the rest are
+slaves. All the OS INIT handlers are entered at approximately the same
+time. The OS monarch prints the state of all tasks and returns, after
+which the slaves return and the system resumes.
+
+At least that is what is supposed to happen. Alas there are broken
+versions of SAL out there. Some drive all the cpus as monarchs. Some
+drive them all as slaves. Some drive one cpu as monarch, wait for that
+cpu to return from the OS then drive the rest as slaves. Some versions
+of SAL cannot even cope with returning from the OS, they spin inside
+SAL on resume. The OS INIT code has workarounds for some of these
+broken SAL symptoms, but some simply cannot be fixed from the OS side.
+
+---
+
+The scheduler hooks used by ia64 (curr_task, set_curr_task) are layer
+violations. Unfortunately MCA/INIT start off as massive layer
+violations (can occur at _any_ time) and they build from there.
+
+At least ia64 makes an attempt at recovering from hardware errors, but
+it is a difficult problem because of the asynchronous nature of these
+errors. When processing an unmaskable interrupt we sometimes need
+special code to cope with our inability to take any locks.
+
+---
+
+How is ia64 MCA/INIT different from x86 NMI?
+
+* x86 NMI typically gets delivered to one cpu. MCA/INIT gets sent to
+ all cpus.
+
+* x86 NMI cannot be nested. MCA/INIT can be nested, to a depth of 2
+ per cpu.
+
+* x86 has a separate struct task which points to one of multiple kernel
+ stacks. ia64 has the struct task embedded in the single kernel
+ stack, so switching stack means switching task.
+
+* x86 does not call the BIOS so the NMI handler does not have to worry
+ about any registers having changed. MCA/INIT can occur while the cpu
+ is in PAL in physical mode, with undefined registers and an undefined
+ kernel stack.
+
+* i386 backtrace is not very sensitive to whether a process is running
+ or not. ia64 unwind is very, very sensitive to whether a process is
+ running or not.
+
+---
+
+What happens when MCA/INIT is delivered what a cpu is running user
+space code?
+
+The user mode registers are stored in the RSE area of the MCA/INIT on
+entry to the OS and are restored from there on return to SAL, so user
+mode registers are preserved across a recoverable MCA/INIT. Since the
+OS has no idea what unwind data is available for the user space stack,
+MCA/INIT never tries to backtrace user space. Which means that the OS
+does not bother making the user space process look like a blocked task,
+i.e. the OS does not copy pt_regs and switch_stack to the user space
+stack. Also the OS has no idea how big the user space RSE and memory
+stacks are, which makes it too risky to copy the saved state to a user
+mode stack.
+
+---
+
+How do we get a backtrace on the tasks that were running when MCA/INIT
+was delivered?
+
+mca.c:::ia64_mca_modify_original_stack(). That identifies and
+verifies the original kernel stack, copies the dirty registers from
+the MCA/INIT stack's RSE to the original stack's RSE, copies the
+skeleton struct pt_regs and switch_stack to the original stack, fills
+in the skeleton structures from the PAL minstate area and updates the
+original stack's thread.ksp. That makes the original stack look
+exactly like any other blocked task, i.e. it now appears to be
+sleeping. To get a backtrace, just start with thread.ksp for the
+original task and unwind like any other sleeping task.
+
+---
+
+How do we identify the tasks that were running when MCA/INIT was
+delivered?
+
+If the previous task has been verified and converted to a blocked
+state, then sos->prev_task on the MCA/INIT stack is updated to point to
+the previous task. You can look at that field in dumps or debuggers.
+To help distinguish between the handler and the original tasks,
+handlers have _TIF_MCA_INIT set in thread_info.flags.
+
+The sos data is always in the MCA/INIT handler stack, at offset
+MCA_SOS_OFFSET. You can get that value from mca_asm.h or calculate it
+as KERNEL_STACK_SIZE - sizeof(struct pt_regs) - sizeof(struct
+ia64_sal_os_state), with 16 byte alignment for all structures.
+
+Also the comm field of the MCA/INIT task is modified to include the pid
+of the original task, for humans to use. For example, a comm field of
+'MCA 12159' means that pid 12159 was running when the MCA was
+delivered.
diff --git a/arch/ia64/kernel/acpi.c b/arch/ia64/kernel/acpi.c
index 28a4529fdd6..7e926471e4e 100644
--- a/arch/ia64/kernel/acpi.c
+++ b/arch/ia64/kernel/acpi.c
@@ -899,7 +899,7 @@ int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base)
if ((err = iosapic_init(phys_addr, gsi_base)))
return err;
-#if CONFIG_ACPI_NUMA
+#ifdef CONFIG_ACPI_NUMA
acpi_map_iosapic(handle, 0, NULL, NULL);
#endif /* CONFIG_ACPI_NUMA */
diff --git a/arch/ia64/kernel/entry.S b/arch/ia64/kernel/entry.S
index ba0b6a1f429..0741b066b98 100644
--- a/arch/ia64/kernel/entry.S
+++ b/arch/ia64/kernel/entry.S
@@ -491,7 +491,7 @@ GLOBAL_ENTRY(prefetch_stack)
;;
lfetch.fault [r16], 128
br.ret.sptk.many rp
-END(prefetch_switch_stack)
+END(prefetch_stack)
GLOBAL_ENTRY(execve)
mov r15=__NR_execve // put syscall number in place
diff --git a/arch/ia64/kernel/mca_drv.c b/arch/ia64/kernel/mca_drv.c
index 6e683745af4..80f83d6cdbf 100644
--- a/arch/ia64/kernel/mca_drv.c
+++ b/arch/ia64/kernel/mca_drv.c
@@ -84,23 +84,23 @@ mca_page_isolate(unsigned long paddr)
struct page *p;
/* whether physical address is valid or not */
- if ( !ia64_phys_addr_valid(paddr) )
+ if (!ia64_phys_addr_valid(paddr))
return ISOLATE_NG;
/* convert physical address to physical page number */
p = pfn_to_page(paddr>>PAGE_SHIFT);
/* check whether a page number have been already registered or not */
- for( i = 0; i < num_page_isolate; i++ )
- if( page_isolate[i] == p )
+ for (i = 0; i < num_page_isolate; i++)
+ if (page_isolate[i] == p)
return ISOLATE_OK; /* already listed */
/* limitation check */
- if( num_page_isolate == MAX_PAGE_ISOLATE )
+ if (num_page_isolate == MAX_PAGE_ISOLATE)
return ISOLATE_NG;
/* kick pages having attribute 'SLAB' or 'Reserved' */
- if( PageSlab(p) || PageReserved(p) )
+ if (PageSlab(p) || PageReserved(p))
return ISOLATE_NG;
/* add attribute 'Reserved' and register the page */
@@ -139,10 +139,10 @@ mca_handler_bh(unsigned long paddr)
* @peidx: pointer to index of processor error section
*/
-static void
+static void
mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
{
- /*
+ /*
* calculate the start address of
* "struct cpuid_info" and "sal_processor_static_info_t".
*/
@@ -164,7 +164,7 @@ mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
}
/**
- * mca_make_slidx - Make index of SAL error record
+ * mca_make_slidx - Make index of SAL error record
* @buffer: pointer to SAL error record
* @slidx: pointer to index of SAL error record
*
@@ -172,12 +172,12 @@ mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
* 1 if record has platform error / 0 if not
*/
#define LOG_INDEX_ADD_SECT_PTR(sect, ptr) \
- { slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \
- hl->hdr = ptr; \
- list_add(&hl->list, &(sect)); \
- slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; }
+ {slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \
+ hl->hdr = ptr; \
+ list_add(&hl->list, &(sect)); \
+ slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; }
-static int
+static int
mca_make_slidx(void *buffer, slidx_table_t *slidx)
{
int platform_err = 0;
@@ -214,28 +214,36 @@ mca_make_slidx(void *buffer, slidx_table_t *slidx)
sp = (sal_log_section_hdr_t *)((char*)buffer + ercd_pos);
if (!efi_guidcmp(sp->guid, SAL_PROC_DEV_ERR_SECT_GUID)) {
LOG_INDEX_ADD_SECT_PTR(slidx->proc_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->mem_dev_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->sel_dev_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->pci_bus_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->smbios_dev_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->pci_comp_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->plat_specific_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->host_ctlr_err, sp);
- } else if (!efi_guidcmp(sp->guid, SAL_PLAT_BUS_ERR_SECT_GUID)) {
+ } else if (!efi_guidcmp(sp->guid,
+ SAL_PLAT_BUS_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->plat_bus_err, sp);
} else {
@@ -253,15 +261,16 @@ mca_make_slidx(void *buffer, slidx_table_t *slidx)
* Return value:
* 0 on Success / -ENOMEM on Failure
*/
-static int
+static int
init_record_index_pools(void)
{
int i;
int rec_max_size; /* Maximum size of SAL error records */
int sect_min_size; /* Minimum size of SAL error sections */
/* minimum size table of each section */
- static int sal_log_sect_min_sizes[] = {
- sizeof(sal_log_processor_info_t) + sizeof(sal_processor_static_info_t),
+ static int sal_log_sect_min_sizes[] = {
+ sizeof(sal_log_processor_info_t)
+ + sizeof(sal_processor_static_info_t),
sizeof(sal_log_mem_dev_err_info_t),
sizeof(sal_log_sel_dev_err_info_t),
sizeof(sal_log_pci_bus_err_info_t),
@@ -294,7 +303,8 @@ init_record_index_pools(void)
/* - 3 - */
slidx_pool.max_idx = (rec_max_size/sect_min_size) * 2 + 1;
- slidx_pool.buffer = (slidx_list_t *) kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL);
+ slidx_pool.buffer = (slidx_list_t *)
+ kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL);
return slidx_pool.buffer ? 0 : -ENOMEM;
}
@@ -308,6 +318,7 @@ init_record_index_pools(void)
* is_mca_global - Check whether this MCA is global or not
* @peidx: pointer of index of processor error section
* @pbci: pointer to pal_bus_check_info_t
+ * @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* MCA_IS_LOCAL / MCA_IS_GLOBAL
@@ -317,11 +328,12 @@ static mca_type_t
is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
- pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
+ pal_processor_state_info_t *psp =
+ (pal_processor_state_info_t*)peidx_psp(peidx);
- /*
+ /*
* PAL can request a rendezvous, if the MCA has a global scope.
- * If "rz_always" flag is set, SAL requests MCA rendezvous
+ * If "rz_always" flag is set, SAL requests MCA rendezvous
* in spite of global MCA.
* Therefore it is local MCA when rendezvous has not been requested.
* Failed to rendezvous, the system must be down.
@@ -381,13 +393,15 @@ is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci,
* @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info
+ * @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
-recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci,
+recover_from_read_error(slidx_table_t *slidx,
+ peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
sal_log_mod_error_info_t *smei;
@@ -453,24 +467,28 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec
* @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info
+ * @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
-recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci,
+recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx,
+ pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
int status = 0;
- pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
+ pal_processor_state_info_t *psp =
+ (pal_processor_state_info_t*)peidx_psp(peidx);
if (psp->bc && pbci->eb && pbci->bsi == 0) {
switch(pbci->type) {
case 1: /* partial read */
case 3: /* full line(cpu) read */
case 9: /* I/O space read */
- status = recover_from_read_error(slidx, peidx, pbci, sos);
+ status = recover_from_read_error(slidx, peidx, pbci,
+ sos);
break;
case 0: /* unknown */
case 2: /* partial write */
@@ -481,7 +499,8 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
case 8: /* write coalescing transactions */
case 10: /* I/O space write */
case 11: /* inter-processor interrupt message(IPI) */
- case 12: /* interrupt acknowledge or external task priority cycle */
+ case 12: /* interrupt acknowledge or
+ external task priority cycle */
default:
break;
}
@@ -496,6 +515,7 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
* @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info
+ * @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
@@ -509,15 +529,17 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
*/
static int
-recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci,
+recover_from_processor_error(int platform, slidx_table_t *slidx,
+ peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
- pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx);
+ pal_processor_state_info_t *psp =
+ (pal_processor_state_info_t*)peidx_psp(peidx);
- /*
+ /*
* We cannot recover errors with other than bus_check.
*/
- if (psp->cc || psp->rc || psp->uc)
+ if (psp->cc || psp->rc || psp->uc)
return 0;
/*
@@ -546,10 +568,10 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *
* (e.g. a load from poisoned memory)
* This means "there are some platform errors".
*/
- if (platform)
+ if (platform)
return recover_from_platform_error(slidx, peidx, pbci, sos);
- /*
- * On account of strange SAL error record, we cannot recover.
+ /*
+ * On account of strange SAL error record, we cannot recover.
*/
return 0;
}
@@ -557,14 +579,14 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *
/**
* mca_try_to_recover - Try to recover from MCA
* @rec: pointer to a SAL error record
+ * @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
-mca_try_to_recover(void *rec,
- struct ia64_sal_os_state *sos)
+mca_try_to_recover(void *rec, struct ia64_sal_os_state *sos)
{
int platform_err;
int n_proc_err;
@@ -588,7 +610,8 @@ mca_try_to_recover(void *rec,
}
/* Make index of processor error section */
- mca_make_peidx((sal_log_processor_info_t*)slidx_first_entry(&slidx.proc_err)->hdr, &peidx);
+ mca_make_peidx((sal_log_processor_info_t*)
+ slidx_first_entry(&slidx.proc_err)->hdr, &peidx);
/* Extract Processor BUS_CHECK[0] */
*((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0);
@@ -598,7 +621,8 @@ mca_try_to_recover(void *rec,
return 0;
/* Try to recover a processor error */
- return recover_from_processor_error(platform_err, &slidx, &peidx, &pbci, sos);
+ return recover_from_processor_error(platform_err, &slidx, &peidx,
+ &pbci, sos);
}
/*
@@ -611,7 +635,7 @@ int __init mca_external_handler_init(void)
return -ENOMEM;
/* register external mca handlers */
- if (ia64_reg_MCA_extension(mca_try_to_recover)){
+ if (ia64_reg_MCA_extension(mca_try_to_recover)) {
printk(KERN_ERR "ia64_reg_MCA_extension failed.\n");
kfree(slidx_pool.buffer);
return -EFAULT;
diff --git a/arch/ia64/kernel/mca_drv.h b/arch/ia64/kernel/mca_drv.h
index 0227b761f2c..e2f6fa1e0ef 100644
--- a/arch/ia64/kernel/mca_drv.h
+++ b/arch/ia64/kernel/mca_drv.h
@@ -6,7 +6,7 @@
* Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com)
*/
/*
- * Processor error section:
+ * Processor error section:
*
* +-sal_log_processor_info_t *info-------------+
* | sal_log_section_hdr_t header; |
diff --git a/arch/ia64/kernel/mca_drv_asm.S b/arch/ia64/kernel/mca_drv_asm.S
index 2d7e0217638..3f298ee4d00 100644
--- a/arch/ia64/kernel/mca_drv_asm.S
+++ b/arch/ia64/kernel/mca_drv_asm.S
@@ -13,45 +13,45 @@
#include <asm/ptrace.h>
GLOBAL_ENTRY(mca_handler_bhhook)
- invala // clear RSE ?
- ;; //
- cover //
- ;; //
- clrrrb //
+ invala // clear RSE ?
+ ;;
+ cover
+ ;;
+ clrrrb
;;
- alloc r16=ar.pfs,0,2,1,0 // make a new frame
+ alloc r16=ar.pfs,0,2,1,0 // make a new frame
;;
- mov ar.rsc=0
+ mov ar.rsc=0
;;
- mov r13=IA64_KR(CURRENT) // current task pointer
+ mov r13=IA64_KR(CURRENT) // current task pointer
;;
- mov r2=r13
+ mov r2=r13
;;
- addl r22=IA64_RBS_OFFSET,r2
+ addl r22=IA64_RBS_OFFSET,r2
;;
- mov ar.bspstore=r22
+ mov ar.bspstore=r22
;;
- addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2
+ addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2
;;
- adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
+ adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
;;
- st1 [r2]=r0 // clear current->thread.on_ustack flag
- mov loc0=r16
- movl loc1=mca_handler_bh // recovery C function
+ st1 [r2]=r0 // clear current->thread.on_ustack flag
+ mov loc0=r16
+ movl loc1=mca_handler_bh // recovery C function
;;
- mov out0=r8 // poisoned address
- mov b6=loc1
+ mov out0=r8 // poisoned address
+ mov b6=loc1
;;
- mov loc1=rp
+ mov loc1=rp
;;
- ssm psr.i
+ ssm psr.i
;;
- br.call.sptk.many rp=b6 // does not return ...
+ br.call.sptk.many rp=b6 // does not return ...
;;
- mov ar.pfs=loc0
- mov rp=loc1
+ mov ar.pfs=loc0
+ mov rp=loc1
;;
- mov r8=r0
+ mov r8=r0
br.ret.sptk.many rp
;;
END(mca_handler_bhhook)
diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c
index 1650353e3f7..af42cda6be8 100644
--- a/arch/ia64/kernel/perfmon.c
+++ b/arch/ia64/kernel/perfmon.c
@@ -574,7 +574,7 @@ pfm_protect_ctx_ctxsw(pfm_context_t *x)
return 0UL;
}
-static inline unsigned long
+static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
{
spin_unlock(&(x)->ctx_lock);
diff --git a/drivers/char/agp/hp-agp.c b/drivers/char/agp/hp-agp.c
index 99762b6c19a..de5d6d21267 100644
--- a/drivers/char/agp/hp-agp.c
+++ b/drivers/char/agp/hp-agp.c
@@ -252,7 +252,7 @@ hp_zx1_configure (void)
readl(hp->ioc_regs+HP_ZX1_PDIR_BASE);
writel(hp->io_tlb_ps, hp->ioc_regs+HP_ZX1_TCNFG);
readl(hp->ioc_regs+HP_ZX1_TCNFG);
- writel(~(HP_ZX1_IOVA_SIZE-1), hp->ioc_regs+HP_ZX1_IMASK);
+ writel((unsigned int)(~(HP_ZX1_IOVA_SIZE-1)), hp->ioc_regs+HP_ZX1_IMASK);
readl(hp->ioc_regs+HP_ZX1_IMASK);
writel(hp->iova_base|1, hp->ioc_regs+HP_ZX1_IBASE);
readl(hp->ioc_regs+HP_ZX1_IBASE);