summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/mtd/nand/Kconfig9
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/fsl_elbc_nand.c1244
3 files changed, 1254 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 0a840d5d75a..4a3c6759492 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -321,4 +321,13 @@ config MTD_NAND_ORION
No board specific support is done by this driver, each board
must advertise a platform_device for the driver to attach.
+config MTD_NAND_FSL_ELBC
+ tristate "NAND support for Freescale eLBC controllers"
+ depends on MTD_NAND && PPC_OF
+ help
+ Various Freescale chips, including the 8313, include a NAND Flash
+ Controller Module with built-in hardware ECC capabilities.
+ Enabling this option will enable you to use this to control
+ external NAND devices.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index e35f5ea3a7a..80d575eeee9 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -31,5 +31,6 @@ obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
obj-$(CONFIG_MTD_ALAUDA) += alauda.o
obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
nand-objs := nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
new file mode 100644
index 00000000000..b025dfe0b27
--- /dev/null
+++ b/drivers/mtd/nand/fsl_elbc_nand.c
@@ -0,0 +1,1244 @@
+/* Freescale Enhanced Local Bus Controller NAND driver
+ *
+ * Copyright (c) 2006-2007 Freescale Semiconductor
+ *
+ * Authors: Nick Spence <nick.spence@freescale.com>,
+ * Scott Wood <scottwood@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/of_platform.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+
+#define MAX_BANKS 8
+#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
+#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
+
+struct elbc_bank {
+ __be32 br; /**< Base Register */
+#define BR_BA 0xFFFF8000
+#define BR_BA_SHIFT 15
+#define BR_PS 0x00001800
+#define BR_PS_SHIFT 11
+#define BR_PS_8 0x00000800 /* Port Size 8 bit */
+#define BR_PS_16 0x00001000 /* Port Size 16 bit */
+#define BR_PS_32 0x00001800 /* Port Size 32 bit */
+#define BR_DECC 0x00000600
+#define BR_DECC_SHIFT 9
+#define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */
+#define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */
+#define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */
+#define BR_WP 0x00000100
+#define BR_WP_SHIFT 8
+#define BR_MSEL 0x000000E0
+#define BR_MSEL_SHIFT 5
+#define BR_MS_GPCM 0x00000000 /* GPCM */
+#define BR_MS_FCM 0x00000020 /* FCM */
+#define BR_MS_SDRAM 0x00000060 /* SDRAM */
+#define BR_MS_UPMA 0x00000080 /* UPMA */
+#define BR_MS_UPMB 0x000000A0 /* UPMB */
+#define BR_MS_UPMC 0x000000C0 /* UPMC */
+#define BR_V 0x00000001
+#define BR_V_SHIFT 0
+#define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
+
+ __be32 or; /**< Base Register */
+#define OR0 0x5004
+#define OR1 0x500C
+#define OR2 0x5014
+#define OR3 0x501C
+#define OR4 0x5024
+#define OR5 0x502C
+#define OR6 0x5034
+#define OR7 0x503C
+
+#define OR_FCM_AM 0xFFFF8000
+#define OR_FCM_AM_SHIFT 15
+#define OR_FCM_BCTLD 0x00001000
+#define OR_FCM_BCTLD_SHIFT 12
+#define OR_FCM_PGS 0x00000400
+#define OR_FCM_PGS_SHIFT 10
+#define OR_FCM_CSCT 0x00000200
+#define OR_FCM_CSCT_SHIFT 9
+#define OR_FCM_CST 0x00000100
+#define OR_FCM_CST_SHIFT 8
+#define OR_FCM_CHT 0x00000080
+#define OR_FCM_CHT_SHIFT 7
+#define OR_FCM_SCY 0x00000070
+#define OR_FCM_SCY_SHIFT 4
+#define OR_FCM_SCY_1 0x00000010
+#define OR_FCM_SCY_2 0x00000020
+#define OR_FCM_SCY_3 0x00000030
+#define OR_FCM_SCY_4 0x00000040
+#define OR_FCM_SCY_5 0x00000050
+#define OR_FCM_SCY_6 0x00000060
+#define OR_FCM_SCY_7 0x00000070
+#define OR_FCM_RST 0x00000008
+#define OR_FCM_RST_SHIFT 3
+#define OR_FCM_TRLX 0x00000004
+#define OR_FCM_TRLX_SHIFT 2
+#define OR_FCM_EHTR 0x00000002
+#define OR_FCM_EHTR_SHIFT 1
+};
+
+struct elbc_regs {
+ struct elbc_bank bank[8];
+ u8 res0[0x28];
+ __be32 mar; /**< UPM Address Register */
+ u8 res1[0x4];
+ __be32 mamr; /**< UPMA Mode Register */
+ __be32 mbmr; /**< UPMB Mode Register */
+ __be32 mcmr; /**< UPMC Mode Register */
+ u8 res2[0x8];
+ __be32 mrtpr; /**< Memory Refresh Timer Prescaler Register */
+ __be32 mdr; /**< UPM Data Register */
+ u8 res3[0x4];
+ __be32 lsor; /**< Special Operation Initiation Register */
+ __be32 lsdmr; /**< SDRAM Mode Register */
+ u8 res4[0x8];
+ __be32 lurt; /**< UPM Refresh Timer */
+ __be32 lsrt; /**< SDRAM Refresh Timer */
+ u8 res5[0x8];
+ __be32 ltesr; /**< Transfer Error Status Register */
+#define LTESR_BM 0x80000000
+#define LTESR_FCT 0x40000000
+#define LTESR_PAR 0x20000000
+#define LTESR_WP 0x04000000
+#define LTESR_ATMW 0x00800000
+#define LTESR_ATMR 0x00400000
+#define LTESR_CS 0x00080000
+#define LTESR_CC 0x00000001
+#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
+ __be32 ltedr; /**< Transfer Error Disable Register */
+ __be32 lteir; /**< Transfer Error Interrupt Register */
+ __be32 lteatr; /**< Transfer Error Attributes Register */
+ __be32 ltear; /**< Transfer Error Address Register */
+ u8 res6[0xC];
+ __be32 lbcr; /**< Configuration Register */
+#define LBCR_LDIS 0x80000000
+#define LBCR_LDIS_SHIFT 31
+#define LBCR_BCTLC 0x00C00000
+#define LBCR_BCTLC_SHIFT 22
+#define LBCR_AHD 0x00200000
+#define LBCR_LPBSE 0x00020000
+#define LBCR_LPBSE_SHIFT 17
+#define LBCR_EPAR 0x00010000
+#define LBCR_EPAR_SHIFT 16
+#define LBCR_BMT 0x0000FF00
+#define LBCR_BMT_SHIFT 8
+#define LBCR_INIT 0x00040000
+ __be32 lcrr; /**< Clock Ratio Register */
+#define LCRR_DBYP 0x80000000
+#define LCRR_DBYP_SHIFT 31
+#define LCRR_BUFCMDC 0x30000000
+#define LCRR_BUFCMDC_SHIFT 28
+#define LCRR_ECL 0x03000000
+#define LCRR_ECL_SHIFT 24
+#define LCRR_EADC 0x00030000
+#define LCRR_EADC_SHIFT 16
+#define LCRR_CLKDIV 0x0000000F
+#define LCRR_CLKDIV_SHIFT 0
+ u8 res7[0x8];
+ __be32 fmr; /**< Flash Mode Register */
+#define FMR_CWTO 0x0000F000
+#define FMR_CWTO_SHIFT 12
+#define FMR_BOOT 0x00000800
+#define FMR_ECCM 0x00000100
+#define FMR_AL 0x00000030
+#define FMR_AL_SHIFT 4
+#define FMR_OP 0x00000003
+#define FMR_OP_SHIFT 0
+ __be32 fir; /**< Flash Instruction Register */
+#define FIR_OP0 0xF0000000
+#define FIR_OP0_SHIFT 28
+#define FIR_OP1 0x0F000000
+#define FIR_OP1_SHIFT 24
+#define FIR_OP2 0x00F00000
+#define FIR_OP2_SHIFT 20
+#define FIR_OP3 0x000F0000
+#define FIR_OP3_SHIFT 16
+#define FIR_OP4 0x0000F000
+#define FIR_OP4_SHIFT 12
+#define FIR_OP5 0x00000F00
+#define FIR_OP5_SHIFT 8
+#define FIR_OP6 0x000000F0
+#define FIR_OP6_SHIFT 4
+#define FIR_OP7 0x0000000F
+#define FIR_OP7_SHIFT 0
+#define FIR_OP_NOP 0x0 /* No operation and end of sequence */
+#define FIR_OP_CA 0x1 /* Issue current column address */
+#define FIR_OP_PA 0x2 /* Issue current block+page address */
+#define FIR_OP_UA 0x3 /* Issue user defined address */
+#define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */
+#define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */
+#define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */
+#define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */
+#define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */
+#define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */
+#define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */
+#define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */
+#define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */
+#define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */
+#define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */
+#define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */
+ __be32 fcr; /**< Flash Command Register */
+#define FCR_CMD0 0xFF000000
+#define FCR_CMD0_SHIFT 24
+#define FCR_CMD1 0x00FF0000
+#define FCR_CMD1_SHIFT 16
+#define FCR_CMD2 0x0000FF00
+#define FCR_CMD2_SHIFT 8
+#define FCR_CMD3 0x000000FF
+#define FCR_CMD3_SHIFT 0
+ __be32 fbar; /**< Flash Block Address Register */
+#define FBAR_BLK 0x00FFFFFF
+ __be32 fpar; /**< Flash Page Address Register */
+#define FPAR_SP_PI 0x00007C00
+#define FPAR_SP_PI_SHIFT 10
+#define FPAR_SP_MS 0x00000200
+#define FPAR_SP_CI 0x000001FF
+#define FPAR_SP_CI_SHIFT 0
+#define FPAR_LP_PI 0x0003F000
+#define FPAR_LP_PI_SHIFT 12
+#define FPAR_LP_MS 0x00000800
+#define FPAR_LP_CI 0x000007FF
+#define FPAR_LP_CI_SHIFT 0
+ __be32 fbcr; /**< Flash Byte Count Register */
+#define FBCR_BC 0x00000FFF
+ u8 res11[0x8];
+ u8 res8[0xF00];
+};
+
+struct fsl_elbc_ctrl;
+
+/* mtd information per set */
+
+struct fsl_elbc_mtd {
+ struct mtd_info mtd;
+ struct nand_chip chip;
+ struct fsl_elbc_ctrl *ctrl;
+
+ struct device *dev;
+ int bank; /* Chip select bank number */
+ u8 __iomem *vbase; /* Chip select base virtual address */
+ int page_size; /* NAND page size (0=512, 1=2048) */
+ unsigned int fmr; /* FCM Flash Mode Register value */
+};
+
+/* overview of the fsl elbc controller */
+
+struct fsl_elbc_ctrl {
+ struct nand_hw_control controller;
+ struct fsl_elbc_mtd *chips[MAX_BANKS];
+
+ /* device info */
+ struct device *dev;
+ struct elbc_regs __iomem *regs;
+ int irq;
+ wait_queue_head_t irq_wait;
+ unsigned int irq_status; /* status read from LTESR by irq handler */
+ u8 __iomem *addr; /* Address of assigned FCM buffer */
+ unsigned int page; /* Last page written to / read from */
+ unsigned int read_bytes; /* Number of bytes read during command */
+ unsigned int column; /* Saved column from SEQIN */
+ unsigned int index; /* Pointer to next byte to 'read' */
+ unsigned int status; /* status read from LTESR after last op */
+ unsigned int mdr; /* UPM/FCM Data Register value */
+ unsigned int use_mdr; /* Non zero if the MDR is to be set */
+ unsigned int oob; /* Non zero if operating on OOB data */
+ char *oob_poi; /* Place to write ECC after read back */
+};
+
+/* These map to the positions used by the FCM hardware ECC generator */
+
+/* Small Page FLASH with FMR[ECCM] = 0 */
+static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
+ .eccbytes = 3,
+ .eccpos = {6, 7, 8},
+ .oobfree = { {0, 5}, {9, 7} },
+ .oobavail = 12,
+};
+
+/* Small Page FLASH with FMR[ECCM] = 1 */
+static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
+ .eccbytes = 3,
+ .eccpos = {8, 9, 10},
+ .oobfree = { {0, 5}, {6, 2}, {11, 5} },
+ .oobavail = 12,
+};
+
+/* Large Page FLASH with FMR[ECCM] = 0 */
+static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
+ .eccbytes = 12,
+ .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
+ .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
+ .oobavail = 48,
+};
+
+/* Large Page FLASH with FMR[ECCM] = 1 */
+static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
+ .eccbytes = 12,
+ .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
+ .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
+ .oobavail = 48,
+};
+
+/*=================================*/
+
+/*
+ * Set up the FCM hardware block and page address fields, and the fcm
+ * structure addr field to point to the correct FCM buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+ int buf_num;
+
+ ctrl->page = page_addr;
+
+ out_be32(&lbc->fbar,
+ page_addr >> (chip->phys_erase_shift - chip->page_shift));
+
+ if (priv->page_size) {
+ out_be32(&lbc->fpar,
+ ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
+ (oob ? FPAR_LP_MS : 0) | column);
+ buf_num = (page_addr & 1) << 2;
+ } else {
+ out_be32(&lbc->fpar,
+ ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
+ (oob ? FPAR_SP_MS : 0) | column);
+ buf_num = page_addr & 7;
+ }
+
+ ctrl->addr = priv->vbase + buf_num * 1024;
+ ctrl->index = column;
+
+ /* for OOB data point to the second half of the buffer */
+ if (oob)
+ ctrl->index += priv->page_size ? 2048 : 512;
+
+ dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
+ "index %x, pes %d ps %d\n",
+ buf_num, ctrl->addr, priv->vbase, ctrl->index,
+ chip->phys_erase_shift, chip->page_shift);
+}
+
+/*
+ * execute FCM command and wait for it to complete
+ */
+static int fsl_elbc_run_command(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+
+ /* Setup the FMR[OP] to execute without write protection */
+ out_be32(&lbc->fmr, priv->fmr | 3);
+ if (ctrl->use_mdr)
+ out_be32(&lbc->mdr, ctrl->mdr);
+
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
+ in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_run_command: fbar=%08x fpar=%08x "
+ "fbcr=%08x bank=%d\n",
+ in_be32(&lbc->fbar), in_be32(&lbc->fpar),
+ in_be32(&lbc->fbcr), priv->bank);
+
+ /* execute special operation */
+ out_be32(&lbc->lsor, priv->bank);
+
+ /* wait for FCM complete flag or timeout */
+ ctrl->irq_status = 0;
+ wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
+ FCM_TIMEOUT_MSECS * HZ/1000);
+ ctrl->status = ctrl->irq_status;
+
+ /* store mdr value in case it was needed */
+ if (ctrl->use_mdr)
+ ctrl->mdr = in_be32(&lbc->mdr);
+
+ ctrl->use_mdr = 0;
+
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
+ ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
+
+ /* returns 0 on success otherwise non-zero) */
+ return ctrl->status == LTESR_CC ? 0 : -EIO;
+}
+
+static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
+{
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+
+ if (priv->page_size) {
+ out_be32(&lbc->fir,
+ (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_CA << FIR_OP1_SHIFT) |
+ (FIR_OP_PA << FIR_OP2_SHIFT) |
+ (FIR_OP_CW1 << FIR_OP3_SHIFT) |
+ (FIR_OP_RBW << FIR_OP4_SHIFT));
+
+ out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
+ (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
+ } else {
+ out_be32(&lbc->fir,
+ (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_CA << FIR_OP1_SHIFT) |
+ (FIR_OP_PA << FIR_OP2_SHIFT) |
+ (FIR_OP_RBW << FIR_OP3_SHIFT));
+
+ if (oob)
+ out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
+ else
+ out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
+ }
+}
+
+/* cmdfunc send commands to the FCM */
+static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+
+ ctrl->use_mdr = 0;
+
+ /* clear the read buffer */
+ ctrl->read_bytes = 0;
+ if (command != NAND_CMD_PAGEPROG)
+ ctrl->index = 0;
+
+ switch (command) {
+ /* READ0 and READ1 read the entire buffer to use hardware ECC. */
+ case NAND_CMD_READ1:
+ column += 256;
+
+ /* fall-through */
+ case NAND_CMD_READ0:
+ dev_dbg(ctrl->dev,
+ "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
+ " 0x%x, column: 0x%x.\n", page_addr, column);
+
+
+ out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
+ set_addr(mtd, 0, page_addr, 0);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+ ctrl->index += column;
+
+ fsl_elbc_do_read(chip, 0);
+ fsl_elbc_run_command(mtd);
+ return;
+
+ /* READOOB reads only the OOB because no ECC is performed. */
+ case NAND_CMD_READOOB:
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
+ " 0x%x, column: 0x%x.\n", page_addr, column);
+
+ out_be32(&lbc->fbcr, mtd->oobsize - column);
+ set_addr(mtd, column, page_addr, 1);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+ fsl_elbc_do_read(chip, 1);
+ fsl_elbc_run_command(mtd);
+ return;
+
+ /* READID must read all 5 possible bytes while CEB is active */
+ case NAND_CMD_READID:
+ dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
+
+ out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_UA << FIR_OP1_SHIFT) |
+ (FIR_OP_RBW << FIR_OP2_SHIFT));
+ out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
+ /* 5 bytes for manuf, device and exts */
+ out_be32(&lbc->fbcr, 5);
+ ctrl->read_bytes = 5;
+ ctrl->use_mdr = 1;
+ ctrl->mdr = 0;
+
+ set_addr(mtd, 0, 0, 0);
+ fsl_elbc_run_command(mtd);
+ return;
+
+ /* ERASE1 stores the block and page address */
+ case NAND_CMD_ERASE1:
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
+ "page_addr: 0x%x.\n", page_addr);
+ set_addr(mtd, 0, page_addr, 0);
+ return;
+
+ /* ERASE2 uses the block and page address from ERASE1 */
+ case NAND_CMD_ERASE2:
+ dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
+
+ out_be32(&lbc->fir,
+ (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_PA << FIR_OP1_SHIFT) |
+ (FIR_OP_CM1 << FIR_OP2_SHIFT));
+
+ out_be32(&lbc->fcr,
+ (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
+ (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
+
+ out_be32(&lbc->fbcr, 0);
+ ctrl->read_bytes = 0;
+
+ fsl_elbc_run_command(mtd);
+ return;
+
+ /* SEQIN sets up the addr buffer and all registers except the length */
+ case NAND_CMD_SEQIN: {
+ __be32 fcr;
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
+ "page_addr: 0x%x, column: 0x%x.\n",
+ page_addr, column);
+
+ ctrl->column = column;
+ ctrl->oob = 0;
+
+ fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
+ (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
+
+ if (priv->page_size) {
+ out_be32(&lbc->fir,
+ (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_CA << FIR_OP1_SHIFT) |
+ (FIR_OP_PA << FIR_OP2_SHIFT) |
+ (FIR_OP_WB << FIR_OP3_SHIFT) |
+ (FIR_OP_CW1 << FIR_OP4_SHIFT));
+
+ fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+ } else {
+ out_be32(&lbc->fir,
+ (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_CM2 << FIR_OP1_SHIFT) |
+ (FIR_OP_CA << FIR_OP2_SHIFT) |
+ (FIR_OP_PA << FIR_OP3_SHIFT) |
+ (FIR_OP_WB << FIR_OP4_SHIFT) |
+ (FIR_OP_CW1 << FIR_OP5_SHIFT));
+
+ if (column >= mtd->writesize) {
+ /* OOB area --> READOOB */
+ column -= mtd->writesize;
+ fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
+ ctrl->oob = 1;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+ } else {
+ /* Second 256 bytes --> READ1 */
+ fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+ }
+ }
+
+ out_be32(&lbc->fcr, fcr);
+ set_addr(mtd, column, page_addr, ctrl->oob);
+ return;
+ }
+
+ /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+ case NAND_CMD_PAGEPROG: {
+ int full_page;
+ dev_vdbg(ctrl->dev,
+ "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
+ "writing %d bytes.\n", ctrl->index);
+
+ /* if the write did not start at 0 or is not a full page
+ * then set the exact length, otherwise use a full page
+ * write so the HW generates the ECC.
+ */
+ if (ctrl->oob || ctrl->column != 0 ||
+ ctrl->index != mtd->writesize + mtd->oobsize) {
+ out_be32(&lbc->fbcr, ctrl->index);
+ full_page = 0;
+ } else {
+ out_be32(&lbc->fbcr, 0);
+ full_page = 1;
+ }
+
+ fsl_elbc_run_command(mtd);
+
+ /* Read back the page in order to fill in the ECC for the
+ * caller. Is this really needed?
+ */
+ if (full_page && ctrl->oob_poi) {
+ out_be32(&lbc->fbcr, 3);
+ set_addr(mtd, 6, page_addr, 1);
+
+ ctrl->read_bytes = mtd->writesize + 9;
+
+ fsl_elbc_do_read(chip, 1);
+ fsl_elbc_run_command(mtd);
+
+ memcpy_fromio(ctrl->oob_poi + 6,
+ &ctrl->addr[ctrl->index], 3);
+ ctrl->index += 3;
+ }
+
+ ctrl->oob_poi = NULL;
+ return;
+ }
+
+ /* CMD_STATUS must read the status byte while CEB is active */
+ /* Note - it does not wait for the ready line */
+ case NAND_CMD_STATUS:
+ out_be32(&lbc->fir,
+ (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+ (FIR_OP_RBW << FIR_OP1_SHIFT));
+ out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+ out_be32(&lbc->fbcr, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_elbc_run_command(mtd);
+
+ /* The chip always seems to report that it is
+ * write-protected, even when it is not.
+ */
+ setbits8(ctrl->addr, NAND_STATUS_WP);
+ return;
+
+ /* RESET without waiting for the ready line */
+ case NAND_CMD_RESET:
+ dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
+ out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
+ out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
+ fsl_elbc_run_command(mtd);
+ return;
+
+ default:
+ dev_err(ctrl->dev,
+ "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
+ command);
+ }
+}
+
+static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
+{
+ /* The hardware does not seem to support multiple
+ * chips per bank.
+ */
+}
+
+/*
+ * Write buf to the FCM Controller Data Buffer
+ */
+static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+ if (len < 0) {
+ dev_err(ctrl->dev, "write_buf of %d bytes", len);
+ ctrl->status = 0;
+ return;
+ }
+
+ if ((unsigned int)len > bufsize - ctrl->index) {
+ dev_err(ctrl->dev,
+ "write_buf beyond end of buffer "
+ "(%d requested, %u available)\n",
+ len, bufsize - ctrl->index);
+ len = bufsize - ctrl->index;
+ }
+
+ memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+ ctrl->index += len;
+}
+
+/*
+ * read a byte from either the FCM hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+ /* If there are still bytes in the FCM, then use the next byte. */
+ if (ctrl->index < ctrl->read_bytes)
+ return in_8(&ctrl->addr[ctrl->index++]);
+
+ dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
+ return ERR_BYTE;
+}
+
+/*
+ * Read from the FCM Controller Data Buffer
+ */
+static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ int avail;
+
+ if (len < 0)
+ return;
+
+ avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+ memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+ ctrl->index += avail;
+
+ if (len > avail)
+ dev_err(ctrl->dev,
+ "read_buf beyond end of buffer "
+ "(%d requested, %d available)\n",
+ len, avail);
+}
+
+/*
+ * Verify buffer against the FCM Controller Data Buffer
+ */
+static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ int i;
+
+ if (len < 0) {
+ dev_err(ctrl->dev, "write_buf of %d bytes", len);
+ return -EINVAL;
+ }
+
+ if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
+ dev_err(ctrl->dev,
+ "verify_buf beyond end of buffer "
+ "(%d requested, %u available)\n",
+ len, ctrl->read_bytes - ctrl->index);
+
+ ctrl->index = ctrl->read_bytes;
+ return -EINVAL;
+ }
+
+ for (i = 0; i < len; i++)
+ if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
+ break;
+
+ ctrl->index += len;
+ return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+
+ if (ctrl->status != LTESR_CC)
+ return NAND_STATUS_FAIL;
+
+ /* Use READ_STATUS command, but wait for the device to be ready */
+ ctrl->use_mdr = 0;
+ out_be32(&lbc->fir,
+ (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+ (FIR_OP_RBW << FIR_OP1_SHIFT));
+ out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+ out_be32(&lbc->fbcr, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_elbc_run_command(mtd);
+
+ if (ctrl->status != LTESR_CC)
+ return NAND_STATUS_FAIL;
+
+ /* The chip always seems to report that it is
+ * write-protected, even when it is not.
+ */
+ setbits8(ctrl->addr, NAND_STATUS_WP);
+ return fsl_elbc_read_byte(mtd);
+}
+
+static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+ unsigned int al;
+
+ /* calculate FMR Address Length field */
+ al = 0;
+ if (chip->pagemask & 0xffff0000)
+ al++;
+ if (chip->pagemask & 0xff000000)
+ al++;
+
+ /* add to ECCM mode set in fsl_elbc_init */
+ priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
+ (al << FMR_AL_SHIFT);
+
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
+ chip->numchips);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
+ chip->chipsize);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
+ chip->pagemask);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
+ chip->chip_delay);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
+ chip->badblockpos);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
+ chip->chip_shift);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
+ chip->page_shift);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
+ chip->phys_erase_shift);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
+ chip->ecclayout);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
+ chip->ecc.mode);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
+ chip->ecc.steps);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
+ chip->ecc.bytes);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
+ chip->ecc.total);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
+ chip->ecc.layout);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
+ mtd->erasesize);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
+ mtd->writesize);
+ dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
+ mtd->oobsize);
+
+ /* adjust Option Register and ECC to match Flash page size */
+ if (mtd->writesize == 512) {
+ priv->page_size = 0;
+ clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
+ } else if (mtd->writesize == 2048) {
+ priv->page_size = 1;
+ setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
+ /* adjust ecc setup if needed */
+ if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
+ BR_DECC_CHK_GEN) {
+ chip->ecc.size = 512;
+ chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
+ &fsl_elbc_oob_lp_eccm1 :
+ &fsl_elbc_oob_lp_eccm0;
+ mtd->ecclayout = chip->ecc.layout;
+ mtd->oobavail = chip->ecc.layout->oobavail;
+ }
+ } else {
+ dev_err(ctrl->dev,
+ "fsl_elbc_init: page size %d is not supported\n",
+ mtd->writesize);
+ return -1;
+ }
+
+ /* The default u-boot configuration on MPC8313ERDB causes errors;
+ * more delay is needed. This should be safe for other boards
+ * as well.
+ */
+ setbits32(&lbc->bank[priv->bank].or, 0x70);
+ return 0;
+}
+
+static int fsl_elbc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf)
+{
+ fsl_elbc_read_buf(mtd, buf, mtd->writesize);
+ fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
+ mtd->ecc_stats.failed++;
+
+ return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static void fsl_elbc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ struct fsl_elbc_mtd *priv = chip->priv;
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+ fsl_elbc_write_buf(mtd, buf, mtd->writesize);
+ fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ ctrl->oob_poi = chip->oob_poi;
+}
+
+static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
+{
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+ struct nand_chip *chip = &priv->chip;
+
+ dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
+
+ /* Fill in fsl_elbc_mtd structure */
+ priv->mtd.priv = chip;
+ priv->mtd.owner = THIS_MODULE;
+ priv->fmr = 0; /* rest filled in later */
+
+ /* fill in nand_chip structure */
+ /* set up function call table */
+ chip->read_byte = fsl_elbc_read_byte;
+ chip->write_buf = fsl_elbc_write_buf;
+ chip->read_buf = fsl_elbc_read_buf;
+ chip->verify_buf = fsl_elbc_verify_buf;
+ chip->select_chip = fsl_elbc_select_chip;
+ chip->cmdfunc = fsl_elbc_cmdfunc;
+ chip->waitfunc = fsl_elbc_wait;
+
+ /* set up nand options */
+ chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
+
+ chip->controller = &ctrl->controller;
+ chip->priv = priv;
+
+ chip->ecc.read_page = fsl_elbc_read_page;
+ chip->ecc.write_page = fsl_elbc_write_page;
+
+ /* If CS Base Register selects full hardware ECC then use it */
+ if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
+ BR_DECC_CHK_GEN) {
+ chip->ecc.mode = NAND_ECC_HW;
+ /* put in small page settings and adjust later if needed */
+ chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
+ &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 3;
+ } else {
+ /* otherwise fall back to default software ECC */
+ chip->ecc.mode = NAND_ECC_SOFT;
+ }
+
+ return 0;
+}
+
+static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
+{
+ struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+ nand_release(&priv->mtd);
+
+ if (priv->vbase)
+ iounmap(priv->vbase);
+
+ ctrl->chips[priv->bank] = NULL;
+ kfree(priv);
+
+ return 0;
+}
+
+static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
+ struct device_node *node)
+{
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+ struct fsl_elbc_mtd *priv;
+ struct resource res;
+#ifdef CONFIG_MTD_PARTITIONS
+ static const char *part_probe_types[]
+ = { "cmdlinepart", "RedBoot", NULL };
+ struct mtd_partition *parts;
+#endif
+ int ret;
+ int bank;
+
+ /* get, allocate and map the memory resource */
+ ret = of_address_to_resource(node, 0, &res);
+ if (ret) {
+ dev_err(ctrl->dev, "failed to get resource\n");
+ return ret;
+ }
+
+ /* find which chip select it is connected to */
+ for (bank = 0; bank < MAX_BANKS; bank++)
+ if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
+ (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
+ (in_be32(&lbc->bank[bank].br) &
+ in_be32(&lbc->bank[bank].or) & BR_BA)
+ == res.start)
+ break;
+
+ if (bank >= MAX_BANKS) {
+ dev_err(ctrl->dev, "address did not match any chip selects\n");
+ return -ENODEV;
+ }
+
+ priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ ctrl->chips[bank] = priv;
+ priv->bank = bank;
+ priv->ctrl = ctrl;
+ priv->dev = ctrl->dev;
+
+ priv->vbase = ioremap(res.start, res.end - res.start + 1);
+ if (!priv->vbase) {
+ dev_err(ctrl->dev, "failed to map chip region\n");
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ ret = fsl_elbc_chip_init(priv);
+ if (ret)
+ goto err;
+
+ ret = nand_scan_ident(&priv->mtd, 1);
+ if (ret)
+ goto err;
+
+ ret = fsl_elbc_chip_init_tail(&priv->mtd);
+ if (ret)
+ goto err;
+
+ ret = nand_scan_tail(&priv->mtd);
+ if (ret)
+ goto err;
+
+#ifdef CONFIG_MTD_PARTITIONS
+ /* First look for RedBoot table or partitions on the command
+ * line, these take precedence over device tree information */
+ ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
+ if (ret < 0)
+ goto err;
+
+#ifdef CONFIG_MTD_OF_PARTS
+ if (ret == 0) {
+ ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
+ node, &parts);
+ if (ret < 0)
+ goto err;
+ }
+#endif
+
+ if (ret > 0)
+ add_mtd_partitions(&priv->mtd, parts, ret);
+ else
+#endif
+ add_mtd_device(&priv->mtd);
+
+ printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
+ res.start, priv->bank);
+ return 0;
+
+err:
+ fsl_elbc_chip_remove(priv);
+ return ret;
+}
+
+static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
+{
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+
+ /* clear event registers */
+ setbits32(&lbc->ltesr, LTESR_NAND_MASK);
+ out_be32(&lbc->lteatr, 0);
+
+ /* Enable interrupts for any detected events */
+ out_be32(&lbc->lteir, LTESR_NAND_MASK);
+
+ ctrl->read_bytes = 0;
+ ctrl->index = 0;
+ ctrl->addr = NULL;
+
+ return 0;
+}
+
+static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
+{
+ struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
+ int i;
+
+ for (i = 0; i < MAX_BANKS; i++)
+ if (ctrl->chips[i])
+ fsl_elbc_chip_remove(ctrl->chips[i]);
+
+ if (ctrl->irq)
+ free_irq(ctrl->irq, ctrl);
+
+ if (ctrl->regs)
+ iounmap(ctrl->regs);
+
+ dev_set_drvdata(&ofdev->dev, NULL);
+ kfree(ctrl);
+ return 0;
+}
+
+/* NOTE: This interrupt is also used to report other localbus events,
+ * such as transaction errors on other chipselects. If we want to
+ * capture those, we'll need to move the IRQ code into a shared
+ * LBC driver.
+ */
+
+static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
+{
+ struct fsl_elbc_ctrl *ctrl = data;
+ struct elbc_regs __iomem *lbc = ctrl->regs;
+ __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
+
+ if (status) {
+ out_be32(&lbc->ltesr, status);
+ out_be32(&lbc->lteatr, 0);
+
+ ctrl->irq_status = status;
+ smp_wmb();
+ wake_up(&ctrl->irq_wait);
+
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+/* fsl_elbc_ctrl_probe
+ *
+ * called by device layer when it finds a device matching
+ * one our driver can handled. This code allocates all of
+ * the resources needed for the controller only. The
+ * resources for the NAND banks themselves are allocated
+ * in the chip probe function.
+*/
+
+static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
+ const struct of_device_id *match)
+{
+ struct device_node *child;
+ struct fsl_elbc_ctrl *ctrl;
+ int ret;
+
+ ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return -ENOMEM;
+
+ dev_set_drvdata(&ofdev->dev, ctrl);
+
+ spin_lock_init(&ctrl->controller.lock);
+ init_waitqueue_head(&ctrl->controller.wq);
+ init_waitqueue_head(&ctrl->irq_wait);
+
+ ctrl->regs = of_iomap(ofdev->node, 0);
+ if (!ctrl->regs) {
+ dev_err(&ofdev->dev, "failed to get memory region\n");
+ ret = -ENODEV;
+ goto err;
+ }
+
+ ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
+ if (ctrl->irq == NO_IRQ) {
+ dev_err(&ofdev->dev, "failed to get irq resource\n");
+ ret = -ENODEV;
+ goto err;
+ }
+
+ ctrl->dev = &ofdev->dev;
+
+ ret = fsl_elbc_ctrl_init(ctrl);
+ if (ret < 0)
+ goto err;
+
+ ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
+ if (ret != 0) {
+ dev_err(&ofdev->dev, "failed to install irq (%d)\n",
+ ctrl->irq);
+ ret = ctrl->irq;
+ goto err;
+ }
+
+ for_each_child_of_node(ofdev->node, child)
+ if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
+ fsl_elbc_chip_probe(ctrl, child);
+
+ return 0;
+
+err:
+ fsl_elbc_ctrl_remove(ofdev);
+ return ret;
+}
+
+static const struct of_device_id fsl_elbc_match[] = {
+ {
+ .compatible = "fsl,elbc",
+ },
+ {}
+};
+
+static struct of_platform_driver fsl_elbc_ctrl_driver = {
+ .driver = {
+ .name = "fsl-elbc",
+ },
+ .match_table = fsl_elbc_match,
+ .probe = fsl_elbc_ctrl_probe,
+ .remove = __devexit_p(fsl_elbc_ctrl_remove),
+};
+
+static int __init fsl_elbc_init(void)
+{
+ return of_register_platform_driver(&fsl_elbc_ctrl_driver);
+}
+
+static void __exit fsl_elbc_exit(void)
+{
+ of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
+}
+
+module_init(fsl_elbc_init);
+module_exit(fsl_elbc_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Freescale");
+MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");