summaryrefslogtreecommitdiffstats
path: root/fs/ocfs2/aops.c
diff options
context:
space:
mode:
authorMark Fasheh <mark.fasheh@oracle.com>2007-02-09 20:24:12 -0800
committerMark Fasheh <mark.fasheh@oracle.com>2007-04-26 15:02:08 -0700
commit9517bac6cc7a7aa4fee63cb38a32cb6014e264c7 (patch)
tree3cac0c18d0cacc316e0e8a60f483282d6f991779 /fs/ocfs2/aops.c
parent89488984ac23b0580f959b9ee549f2fcb1c2f194 (diff)
downloadkernel-crypto-9517bac6cc7a7aa4fee63cb38a32cb6014e264c7.tar.gz
kernel-crypto-9517bac6cc7a7aa4fee63cb38a32cb6014e264c7.tar.xz
kernel-crypto-9517bac6cc7a7aa4fee63cb38a32cb6014e264c7.zip
ocfs2: teach ocfs2_file_aio_write() about sparse files
Unfortunately, ocfs2 can no longer make use of generic_file_aio_write_nlock() because allocating writes will require zeroing of pages adjacent to the I/O for cluster sizes greater than page size. Implement a custom file write here, which can order page locks for zeroing. This also has the advantage that cluster locks can easily be ordered outside of the page locks. Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Diffstat (limited to 'fs/ocfs2/aops.c')
-rw-r--r--fs/ocfs2/aops.c679
1 files changed, 663 insertions, 16 deletions
diff --git a/fs/ocfs2/aops.c b/fs/ocfs2/aops.c
index f3b0cc5cba1..5ffb3702b5e 100644
--- a/fs/ocfs2/aops.c
+++ b/fs/ocfs2/aops.c
@@ -24,6 +24,7 @@
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <asm/byteorder.h>
+#include <linux/swap.h>
#define MLOG_MASK_PREFIX ML_FILE_IO
#include <cluster/masklog.h>
@@ -37,6 +38,7 @@
#include "file.h"
#include "inode.h"
#include "journal.h"
+#include "suballoc.h"
#include "super.h"
#include "symlink.h"
@@ -645,23 +647,27 @@ static ssize_t ocfs2_direct_IO(int rw,
mlog_entry_void();
- /*
- * We get PR data locks even for O_DIRECT. This allows
- * concurrent O_DIRECT I/O but doesn't let O_DIRECT with
- * extending and buffered zeroing writes race. If they did
- * race then the buffered zeroing could be written back after
- * the O_DIRECT I/O. It's one thing to tell people not to mix
- * buffered and O_DIRECT writes, but expecting them to
- * understand that file extension is also an implicit buffered
- * write is too much. By getting the PR we force writeback of
- * the buffered zeroing before proceeding.
- */
- ret = ocfs2_data_lock(inode, 0);
- if (ret < 0) {
- mlog_errno(ret);
- goto out;
+ if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
+ /*
+ * We get PR data locks even for O_DIRECT. This
+ * allows concurrent O_DIRECT I/O but doesn't let
+ * O_DIRECT with extending and buffered zeroing writes
+ * race. If they did race then the buffered zeroing
+ * could be written back after the O_DIRECT I/O. It's
+ * one thing to tell people not to mix buffered and
+ * O_DIRECT writes, but expecting them to understand
+ * that file extension is also an implicit buffered
+ * write is too much. By getting the PR we force
+ * writeback of the buffered zeroing before
+ * proceeding.
+ */
+ ret = ocfs2_data_lock(inode, 0);
+ if (ret < 0) {
+ mlog_errno(ret);
+ goto out;
+ }
+ ocfs2_data_unlock(inode, 0);
}
- ocfs2_data_unlock(inode, 0);
ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
inode->i_sb->s_bdev, iov, offset,
@@ -673,6 +679,647 @@ out:
return ret;
}
+static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
+ u32 cpos,
+ unsigned int *start,
+ unsigned int *end)
+{
+ unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
+
+ if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
+ unsigned int cpp;
+
+ cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
+
+ cluster_start = cpos % cpp;
+ cluster_start = cluster_start << osb->s_clustersize_bits;
+
+ cluster_end = cluster_start + osb->s_clustersize;
+ }
+
+ BUG_ON(cluster_start > PAGE_SIZE);
+ BUG_ON(cluster_end > PAGE_SIZE);
+
+ if (start)
+ *start = cluster_start;
+ if (end)
+ *end = cluster_end;
+}
+
+/*
+ * 'from' and 'to' are the region in the page to avoid zeroing.
+ *
+ * If pagesize > clustersize, this function will avoid zeroing outside
+ * of the cluster boundary.
+ *
+ * from == to == 0 is code for "zero the entire cluster region"
+ */
+static void ocfs2_clear_page_regions(struct page *page,
+ struct ocfs2_super *osb, u32 cpos,
+ unsigned from, unsigned to)
+{
+ void *kaddr;
+ unsigned int cluster_start, cluster_end;
+
+ ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
+
+ kaddr = kmap_atomic(page, KM_USER0);
+
+ if (from || to) {
+ if (from > cluster_start)
+ memset(kaddr + cluster_start, 0, from - cluster_start);
+ if (to < cluster_end)
+ memset(kaddr + to, 0, cluster_end - to);
+ } else {
+ memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
+ }
+
+ kunmap_atomic(kaddr, KM_USER0);
+}
+
+/*
+ * Some of this taken from block_prepare_write(). We already have our
+ * mapping by now though, and the entire write will be allocating or
+ * it won't, so not much need to use BH_New.
+ *
+ * This will also skip zeroing, which is handled externally.
+ */
+static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
+ struct inode *inode, unsigned int from,
+ unsigned int to, int new)
+{
+ int ret = 0;
+ struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
+ unsigned int block_end, block_start;
+ unsigned int bsize = 1 << inode->i_blkbits;
+
+ if (!page_has_buffers(page))
+ create_empty_buffers(page, bsize, 0);
+
+ head = page_buffers(page);
+ for (bh = head, block_start = 0; bh != head || !block_start;
+ bh = bh->b_this_page, block_start += bsize) {
+ block_end = block_start + bsize;
+
+ /*
+ * Ignore blocks outside of our i/o range -
+ * they may belong to unallocated clusters.
+ */
+ if (block_start >= to ||
+ (block_start + bsize) <= from) {
+ if (PageUptodate(page))
+ set_buffer_uptodate(bh);
+ continue;
+ }
+
+ /*
+ * For an allocating write with cluster size >= page
+ * size, we always write the entire page.
+ */
+
+ if (buffer_new(bh))
+ clear_buffer_new(bh);
+
+ if (!buffer_mapped(bh)) {
+ map_bh(bh, inode->i_sb, *p_blkno);
+ unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
+ }
+
+ if (PageUptodate(page)) {
+ if (!buffer_uptodate(bh))
+ set_buffer_uptodate(bh);
+ } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
+ (block_start < from || block_end > to)) {
+ ll_rw_block(READ, 1, &bh);
+ *wait_bh++=bh;
+ }
+
+ *p_blkno = *p_blkno + 1;
+ }
+
+ /*
+ * If we issued read requests - let them complete.
+ */
+ while(wait_bh > wait) {
+ wait_on_buffer(*--wait_bh);
+ if (!buffer_uptodate(*wait_bh))
+ ret = -EIO;
+ }
+
+ if (ret == 0 || !new)
+ return ret;
+
+ /*
+ * If we get -EIO above, zero out any newly allocated blocks
+ * to avoid exposing stale data.
+ */
+ bh = head;
+ block_start = 0;
+ do {
+ void *kaddr;
+
+ block_end = block_start + bsize;
+ if (block_end <= from)
+ goto next_bh;
+ if (block_start >= to)
+ break;
+
+ kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr+block_start, 0, bh->b_size);
+ flush_dcache_page(page);
+ kunmap_atomic(kaddr, KM_USER0);
+ set_buffer_uptodate(bh);
+ mark_buffer_dirty(bh);
+
+next_bh:
+ block_start = block_end;
+ bh = bh->b_this_page;
+ } while (bh != head);
+
+ return ret;
+}
+
+/*
+ * This will copy user data from the iovec in the buffered write
+ * context.
+ */
+int ocfs2_map_and_write_user_data(struct inode *inode,
+ struct ocfs2_write_ctxt *wc, u64 *p_blkno,
+ unsigned int *ret_from, unsigned int *ret_to)
+{
+ int ret;
+ unsigned int to, from, cluster_start, cluster_end;
+ unsigned long bytes, src_from;
+ char *dst;
+ struct ocfs2_buffered_write_priv *bp = wc->w_private;
+ const struct iovec *cur_iov = bp->b_cur_iov;
+ char __user *buf;
+ struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+
+ ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
+ &cluster_end);
+
+ buf = cur_iov->iov_base + bp->b_cur_off;
+ src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
+
+ from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
+
+ /*
+ * This is a lot of comparisons, but it reads quite
+ * easily, which is important here.
+ */
+ /* Stay within the src page */
+ bytes = PAGE_SIZE - src_from;
+ /* Stay within the vector */
+ bytes = min(bytes,
+ (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
+ /* Stay within count */
+ bytes = min(bytes, (unsigned long)wc->w_count);
+ /*
+ * For clustersize > page size, just stay within
+ * target page, otherwise we have to calculate pos
+ * within the cluster and obey the rightmost
+ * boundary.
+ */
+ if (wc->w_large_pages) {
+ /*
+ * For cluster size < page size, we have to
+ * calculate pos within the cluster and obey
+ * the rightmost boundary.
+ */
+ bytes = min(bytes, (unsigned long)(osb->s_clustersize
+ - (wc->w_pos & (osb->s_clustersize - 1))));
+ } else {
+ /*
+ * cluster size > page size is the most common
+ * case - we just stay within the target page
+ * boundary.
+ */
+ bytes = min(bytes, PAGE_CACHE_SIZE - from);
+ }
+
+ to = from + bytes;
+
+ if (wc->w_this_page_new)
+ ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
+ cluster_start, cluster_end, 1);
+ else
+ ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
+ from, to, 0);
+ if (ret) {
+ mlog_errno(ret);
+ goto out;
+ }
+
+ BUG_ON(from > PAGE_CACHE_SIZE);
+ BUG_ON(to > PAGE_CACHE_SIZE);
+ BUG_ON(from > osb->s_clustersize);
+ BUG_ON(to > osb->s_clustersize);
+
+ dst = kmap(wc->w_this_page);
+ memcpy(dst + from, bp->b_src_buf + src_from, bytes);
+ kunmap(wc->w_this_page);
+
+ /*
+ * XXX: This is slow, but simple. The caller of
+ * ocfs2_buffered_write_cluster() is responsible for
+ * passing through the iovecs, so it's difficult to
+ * predict what our next step is in here after our
+ * initial write. A future version should be pushing
+ * that iovec manipulation further down.
+ *
+ * By setting this, we indicate that a copy from user
+ * data was done, and subsequent calls for this
+ * cluster will skip copying more data.
+ */
+ wc->w_finished_copy = 1;
+
+ *ret_from = from;
+ *ret_to = to;
+out:
+
+ return bytes ? (unsigned int)bytes : ret;
+}
+
+/*
+ * Map, fill and write a page to disk.
+ *
+ * The work of copying data is done via callback. Newly allocated
+ * pages which don't take user data will be zero'd (set 'new' to
+ * indicate an allocating write)
+ *
+ * Returns a negative error code or the number of bytes copied into
+ * the page.
+ */
+int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
+ u64 *p_blkno, struct page *page,
+ struct ocfs2_write_ctxt *wc, int new)
+{
+ int ret, copied = 0;
+ unsigned int from = 0, to = 0;
+ unsigned int cluster_start, cluster_end;
+ unsigned int zero_from = 0, zero_to = 0;
+
+ ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
+ &cluster_start, &cluster_end);
+
+ if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
+ && !wc->w_finished_copy) {
+
+ wc->w_this_page = page;
+ wc->w_this_page_new = new;
+ ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
+ if (ret < 0) {
+ mlog_errno(ret);
+ goto out;
+ }
+
+ copied = ret;
+
+ zero_from = from;
+ zero_to = to;
+ if (new) {
+ from = cluster_start;
+ to = cluster_end;
+ }
+ } else {
+ /*
+ * If we haven't allocated the new page yet, we
+ * shouldn't be writing it out without copying user
+ * data. This is likely a math error from the caller.
+ */
+ BUG_ON(!new);
+
+ from = cluster_start;
+ to = cluster_end;
+
+ ret = ocfs2_map_page_blocks(page, p_blkno, inode,
+ cluster_start, cluster_end, 1);
+ if (ret) {
+ mlog_errno(ret);
+ goto out;
+ }
+ }
+
+ /*
+ * Parts of newly allocated pages need to be zero'd.
+ *
+ * Above, we have also rewritten 'to' and 'from' - as far as
+ * the rest of the function is concerned, the entire cluster
+ * range inside of a page needs to be written.
+ *
+ * We can skip this if the page is up to date - it's already
+ * been zero'd from being read in as a hole.
+ */
+ if (new && !PageUptodate(page))
+ ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
+ wc->w_cpos, zero_from, zero_to);
+
+ flush_dcache_page(page);
+
+ if (ocfs2_should_order_data(inode)) {
+ ret = walk_page_buffers(handle,
+ page_buffers(page),
+ from, to, NULL,
+ ocfs2_journal_dirty_data);
+ if (ret < 0)
+ mlog_errno(ret);
+ }
+
+ /*
+ * We don't use generic_commit_write() because we need to
+ * handle our own i_size update.
+ */
+ ret = block_commit_write(page, from, to);
+ if (ret)
+ mlog_errno(ret);
+out:
+
+ return copied ? copied : ret;
+}
+
+/*
+ * Do the actual write of some data into an inode. Optionally allocate
+ * in order to fulfill the write.
+ *
+ * cpos is the logical cluster offset within the file to write at
+ *
+ * 'phys' is the physical mapping of that offset. a 'phys' value of
+ * zero indicates that allocation is required. In this case, data_ac
+ * and meta_ac should be valid (meta_ac can be null if metadata
+ * allocation isn't required).
+ */
+static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
+ struct buffer_head *di_bh,
+ struct ocfs2_alloc_context *data_ac,
+ struct ocfs2_alloc_context *meta_ac,
+ struct ocfs2_write_ctxt *wc)
+{
+ int ret, i, numpages = 1, new;
+ unsigned int copied = 0;
+ u32 tmp_pos;
+ u64 v_blkno, p_blkno;
+ struct address_space *mapping = file->f_mapping;
+ struct inode *inode = mapping->host;
+ unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits;
+ unsigned long index, start;
+ struct page **cpages;
+
+ new = phys == 0 ? 1 : 0;
+
+ /*
+ * Figure out how many pages we'll be manipulating here. For
+ * non-allocating write, or any writes where cluster size is
+ * less than page size, we only need one page. Otherwise,
+ * allocating writes of cluster size larger than page size
+ * need cluster size pages.
+ */
+ if (new && !wc->w_large_pages)
+ numpages = (1 << cbits) / PAGE_SIZE;
+
+ cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
+ if (!cpages) {
+ ret = -ENOMEM;
+ mlog_errno(ret);
+ return ret;
+ }
+
+ /*
+ * Fill our page array first. That way we've grabbed enough so
+ * that we can zero and flush if we error after adding the
+ * extent.
+ */
+ if (new) {
+ start = ocfs2_align_clusters_to_page_index(inode->i_sb,
+ wc->w_cpos);
+ v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
+ } else {
+ start = wc->w_pos >> PAGE_CACHE_SHIFT;
+ v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
+ }
+
+ for(i = 0; i < numpages; i++) {
+ index = start + i;
+
+ cpages[i] = grab_cache_page(mapping, index);
+ if (!cpages[i]) {
+ ret = -ENOMEM;
+ mlog_errno(ret);
+ goto out;
+ }
+ }
+
+ if (new) {
+ /*
+ * This is safe to call with the page locks - it won't take
+ * any additional semaphores or cluster locks.
+ */
+ tmp_pos = wc->w_cpos;
+ ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
+ &tmp_pos, 1, di_bh, handle,
+ data_ac, meta_ac, NULL);
+ /*
+ * This shouldn't happen because we must have already
+ * calculated the correct meta data allocation required. The
+ * internal tree allocation code should know how to increase
+ * transaction credits itself.
+ *
+ * If need be, we could handle -EAGAIN for a
+ * RESTART_TRANS here.
+ */
+ mlog_bug_on_msg(ret == -EAGAIN,
+ "Inode %llu: EAGAIN return during allocation.\n",
+ (unsigned long long)OCFS2_I(inode)->ip_blkno);
+ if (ret < 0) {
+ mlog_errno(ret);
+ goto out;
+ }
+ }
+
+ ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
+ if (ret < 0) {
+
+ /*
+ * XXX: Should we go readonly here?
+ */
+
+ mlog_errno(ret);
+ goto out;
+ }
+
+ BUG_ON(p_blkno == 0);
+
+ for(i = 0; i < numpages; i++) {
+ ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
+ wc, new);
+ if (ret < 0) {
+ mlog_errno(ret);
+ goto out;
+ }
+
+ copied += ret;
+ }
+
+out:
+ for(i = 0; i < numpages; i++) {
+ unlock_page(cpages[i]);
+ mark_page_accessed(cpages[i]);
+ page_cache_release(cpages[i]);
+ }
+ kfree(cpages);
+
+ return copied ? copied : ret;
+}
+
+static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
+ struct ocfs2_super *osb, loff_t pos,
+ size_t count, ocfs2_page_writer *cb,
+ void *cb_priv)
+{
+ wc->w_count = count;
+ wc->w_pos = pos;
+ wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
+ wc->w_finished_copy = 0;
+
+ if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
+ wc->w_large_pages = 1;
+ else
+ wc->w_large_pages = 0;
+
+ wc->w_write_data_page = cb;
+ wc->w_private = cb_priv;
+}
+
+/*
+ * Write a cluster to an inode. The cluster may not be allocated yet,
+ * in which case it will be. This only exists for buffered writes -
+ * O_DIRECT takes a more "traditional" path through the kernel.
+ *
+ * The caller is responsible for incrementing pos, written counts, etc
+ *
+ * For file systems that don't support sparse files, pre-allocation
+ * and page zeroing up until cpos should be done prior to this
+ * function call.
+ *
+ * Callers should be holding i_sem, and the rw cluster lock.
+ *
+ * Returns the number of user bytes written, or less than zero for
+ * error.
+ */
+ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
+ size_t count, ocfs2_page_writer *actor,
+ void *priv)
+{
+ int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
+ ssize_t written = 0;
+ u32 phys;
+ struct inode *inode = file->f_mapping->host;
+ struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+ struct buffer_head *di_bh = NULL;
+ struct ocfs2_dinode *di;
+ struct ocfs2_alloc_context *data_ac = NULL;
+ struct ocfs2_alloc_context *meta_ac = NULL;
+ handle_t *handle;
+ struct ocfs2_write_ctxt wc;
+
+ ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
+
+ ret = ocfs2_meta_lock(inode, &di_bh, 1);
+ if (ret) {
+ mlog_errno(ret);
+ goto out;
+ }
+ di = (struct ocfs2_dinode *)di_bh->b_data;
+
+ /*
+ * Take alloc sem here to prevent concurrent lookups. That way
+ * the mapping, zeroing and tree manipulation within
+ * ocfs2_write() will be safe against ->readpage(). This
+ * should also serve to lock out allocation from a shared
+ * writeable region.
+ */
+ down_write(&OCFS2_I(inode)->ip_alloc_sem);
+
+ ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
+ if (ret) {
+ mlog_errno(ret);
+ goto out_meta;
+ }
+
+ /* phys == 0 means that allocation is required. */
+ if (phys == 0) {
+ ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
+ if (ret) {
+ mlog_errno(ret);
+ goto out_meta;
+ }
+
+ credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
+ }
+
+ ret = ocfs2_data_lock(inode, 1);
+ if (ret) {
+ mlog_errno(ret);
+ goto out_meta;
+ }
+
+ handle = ocfs2_start_trans(osb, credits);
+ if (IS_ERR(handle)) {
+ ret = PTR_ERR(handle);
+ mlog_errno(ret);
+ goto out_data;
+ }
+
+ written = ocfs2_write(file, phys, handle, di_bh, data_ac,
+ meta_ac, &wc);
+ if (written < 0) {
+ ret = written;
+ mlog_errno(ret);
+ goto out_commit;
+ }
+
+ ret = ocfs2_journal_access(handle, inode, di_bh,
+ OCFS2_JOURNAL_ACCESS_WRITE);
+ if (ret) {
+ mlog_errno(ret);
+ goto out_commit;
+ }
+
+ pos += written;
+ if (pos > inode->i_size) {
+ i_size_write(inode, pos);
+ mark_inode_dirty(inode);
+ }
+ inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
+ di->i_size = cpu_to_le64((u64)i_size_read(inode));
+ inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+ di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
+ di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
+
+ ret = ocfs2_journal_dirty(handle, di_bh);
+ if (ret)
+ mlog_errno(ret);
+
+out_commit:
+ ocfs2_commit_trans(osb, handle);
+
+out_data:
+ ocfs2_data_unlock(inode, 1);
+
+out_meta:
+ up_write(&OCFS2_I(inode)->ip_alloc_sem);
+ ocfs2_meta_unlock(inode, 1);
+
+out:
+ brelse(di_bh);
+ if (data_ac)
+ ocfs2_free_alloc_context(data_ac);
+ if (meta_ac)
+ ocfs2_free_alloc_context(meta_ac);
+
+ return written ? written : ret;
+}
+
const struct address_space_operations ocfs2_aops = {
.readpage = ocfs2_readpage,
.writepage = ocfs2_writepage,