diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/mm/mm-armv.c | |
download | kernel-crypto-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz kernel-crypto-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz kernel-crypto-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/mm/mm-armv.c')
-rw-r--r-- | arch/arm/mm/mm-armv.c | 760 |
1 files changed, 760 insertions, 0 deletions
diff --git a/arch/arm/mm/mm-armv.c b/arch/arm/mm/mm-armv.c new file mode 100644 index 00000000000..f5a87db8b49 --- /dev/null +++ b/arch/arm/mm/mm-armv.c @@ -0,0 +1,760 @@ +/* + * linux/arch/arm/mm/mm-armv.c + * + * Copyright (C) 1998-2002 Russell King + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Page table sludge for ARM v3 and v4 processor architectures. + */ +#include <linux/config.h> +#include <linux/module.h> +#include <linux/mm.h> +#include <linux/init.h> +#include <linux/bootmem.h> +#include <linux/highmem.h> +#include <linux/nodemask.h> + +#include <asm/pgalloc.h> +#include <asm/page.h> +#include <asm/io.h> +#include <asm/setup.h> +#include <asm/tlbflush.h> + +#include <asm/mach/map.h> + +#define CPOLICY_UNCACHED 0 +#define CPOLICY_BUFFERED 1 +#define CPOLICY_WRITETHROUGH 2 +#define CPOLICY_WRITEBACK 3 +#define CPOLICY_WRITEALLOC 4 + +static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; +static unsigned int ecc_mask __initdata = 0; +pgprot_t pgprot_kernel; + +EXPORT_SYMBOL(pgprot_kernel); + +struct cachepolicy { + const char policy[16]; + unsigned int cr_mask; + unsigned int pmd; + unsigned int pte; +}; + +static struct cachepolicy cache_policies[] __initdata = { + { + .policy = "uncached", + .cr_mask = CR_W|CR_C, + .pmd = PMD_SECT_UNCACHED, + .pte = 0, + }, { + .policy = "buffered", + .cr_mask = CR_C, + .pmd = PMD_SECT_BUFFERED, + .pte = PTE_BUFFERABLE, + }, { + .policy = "writethrough", + .cr_mask = 0, + .pmd = PMD_SECT_WT, + .pte = PTE_CACHEABLE, + }, { + .policy = "writeback", + .cr_mask = 0, + .pmd = PMD_SECT_WB, + .pte = PTE_BUFFERABLE|PTE_CACHEABLE, + }, { + .policy = "writealloc", + .cr_mask = 0, + .pmd = PMD_SECT_WBWA, + .pte = PTE_BUFFERABLE|PTE_CACHEABLE, + } +}; + +/* + * These are useful for identifing cache coherency + * problems by allowing the cache or the cache and + * writebuffer to be turned off. (Note: the write + * buffer should not be on and the cache off). + */ +static void __init early_cachepolicy(char **p) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { + int len = strlen(cache_policies[i].policy); + + if (memcmp(*p, cache_policies[i].policy, len) == 0) { + cachepolicy = i; + cr_alignment &= ~cache_policies[i].cr_mask; + cr_no_alignment &= ~cache_policies[i].cr_mask; + *p += len; + break; + } + } + if (i == ARRAY_SIZE(cache_policies)) + printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); + flush_cache_all(); + set_cr(cr_alignment); +} + +static void __init early_nocache(char **__unused) +{ + char *p = "buffered"; + printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); + early_cachepolicy(&p); +} + +static void __init early_nowrite(char **__unused) +{ + char *p = "uncached"; + printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); + early_cachepolicy(&p); +} + +static void __init early_ecc(char **p) +{ + if (memcmp(*p, "on", 2) == 0) { + ecc_mask = PMD_PROTECTION; + *p += 2; + } else if (memcmp(*p, "off", 3) == 0) { + ecc_mask = 0; + *p += 3; + } +} + +__early_param("nocache", early_nocache); +__early_param("nowb", early_nowrite); +__early_param("cachepolicy=", early_cachepolicy); +__early_param("ecc=", early_ecc); + +static int __init noalign_setup(char *__unused) +{ + cr_alignment &= ~CR_A; + cr_no_alignment &= ~CR_A; + set_cr(cr_alignment); + return 1; +} + +__setup("noalign", noalign_setup); + +#define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) + +/* + * need to get a 16k page for level 1 + */ +pgd_t *get_pgd_slow(struct mm_struct *mm) +{ + pgd_t *new_pgd, *init_pgd; + pmd_t *new_pmd, *init_pmd; + pte_t *new_pte, *init_pte; + + new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); + if (!new_pgd) + goto no_pgd; + + memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); + + init_pgd = pgd_offset_k(0); + + if (!vectors_high()) { + /* + * This lock is here just to satisfy pmd_alloc and pte_lock + */ + spin_lock(&mm->page_table_lock); + + /* + * On ARM, first page must always be allocated since it + * contains the machine vectors. + */ + new_pmd = pmd_alloc(mm, new_pgd, 0); + if (!new_pmd) + goto no_pmd; + + new_pte = pte_alloc_map(mm, new_pmd, 0); + if (!new_pte) + goto no_pte; + + init_pmd = pmd_offset(init_pgd, 0); + init_pte = pte_offset_map_nested(init_pmd, 0); + set_pte(new_pte, *init_pte); + pte_unmap_nested(init_pte); + pte_unmap(new_pte); + + spin_unlock(&mm->page_table_lock); + } + + /* + * Copy over the kernel and IO PGD entries + */ + memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, + (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); + + clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); + + return new_pgd; + +no_pte: + spin_unlock(&mm->page_table_lock); + pmd_free(new_pmd); + free_pages((unsigned long)new_pgd, 2); + return NULL; + +no_pmd: + spin_unlock(&mm->page_table_lock); + free_pages((unsigned long)new_pgd, 2); + return NULL; + +no_pgd: + return NULL; +} + +void free_pgd_slow(pgd_t *pgd) +{ + pmd_t *pmd; + struct page *pte; + + if (!pgd) + return; + + /* pgd is always present and good */ + pmd = (pmd_t *)pgd; + if (pmd_none(*pmd)) + goto free; + if (pmd_bad(*pmd)) { + pmd_ERROR(*pmd); + pmd_clear(pmd); + goto free; + } + + pte = pmd_page(*pmd); + pmd_clear(pmd); + dec_page_state(nr_page_table_pages); + pte_free(pte); + pmd_free(pmd); +free: + free_pages((unsigned long) pgd, 2); +} + +/* + * Create a SECTION PGD between VIRT and PHYS in domain + * DOMAIN with protection PROT. This operates on half- + * pgdir entry increments. + */ +static inline void +alloc_init_section(unsigned long virt, unsigned long phys, int prot) +{ + pmd_t *pmdp; + + pmdp = pmd_offset(pgd_offset_k(virt), virt); + if (virt & (1 << 20)) + pmdp++; + + *pmdp = __pmd(phys | prot); + flush_pmd_entry(pmdp); +} + +/* + * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT + */ +static inline void +alloc_init_supersection(unsigned long virt, unsigned long phys, int prot) +{ + int i; + + for (i = 0; i < 16; i += 1) { + alloc_init_section(virt, phys & SUPERSECTION_MASK, + prot | PMD_SECT_SUPER); + + virt += (PGDIR_SIZE / 2); + phys += (PGDIR_SIZE / 2); + } +} + +/* + * Add a PAGE mapping between VIRT and PHYS in domain + * DOMAIN with protection PROT. Note that due to the + * way we map the PTEs, we must allocate two PTE_SIZE'd + * blocks - one for the Linux pte table, and one for + * the hardware pte table. + */ +static inline void +alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot) +{ + pmd_t *pmdp; + pte_t *ptep; + + pmdp = pmd_offset(pgd_offset_k(virt), virt); + + if (pmd_none(*pmdp)) { + unsigned long pmdval; + ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * + sizeof(pte_t)); + + pmdval = __pa(ptep) | prot_l1; + pmdp[0] = __pmd(pmdval); + pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t)); + flush_pmd_entry(pmdp); + } + ptep = pte_offset_kernel(pmdp, virt); + + set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); +} + +/* + * Clear any PGD mapping. On a two-level page table system, + * the clearance is done by the middle-level functions (pmd) + * rather than the top-level (pgd) functions. + */ +static inline void clear_mapping(unsigned long virt) +{ + pmd_clear(pmd_offset(pgd_offset_k(virt), virt)); +} + +struct mem_types { + unsigned int prot_pte; + unsigned int prot_l1; + unsigned int prot_sect; + unsigned int domain; +}; + +static struct mem_types mem_types[] __initdata = { + [MT_DEVICE] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_WRITE, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | + PMD_SECT_AP_WRITE, + .domain = DOMAIN_IO, + }, + [MT_CACHECLEAN] = { + .prot_sect = PMD_TYPE_SECT, + .domain = DOMAIN_KERNEL, + }, + [MT_MINICLEAN] = { + .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE, + .domain = DOMAIN_KERNEL, + }, + [MT_LOW_VECTORS] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_EXEC, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_USER, + }, + [MT_HIGH_VECTORS] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_USER | L_PTE_EXEC, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_USER, + }, + [MT_MEMORY] = { + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, + .domain = DOMAIN_KERNEL, + }, + [MT_ROM] = { + .prot_sect = PMD_TYPE_SECT, + .domain = DOMAIN_KERNEL, + }, + [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */ + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_WRITE, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | + PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE | + PMD_SECT_TEX(1), + .domain = DOMAIN_IO, + } +}; + +/* + * Adjust the PMD section entries according to the CPU in use. + */ +static void __init build_mem_type_table(void) +{ + struct cachepolicy *cp; + unsigned int cr = get_cr(); + int cpu_arch = cpu_architecture(); + int i; + +#if defined(CONFIG_CPU_DCACHE_DISABLE) + if (cachepolicy > CPOLICY_BUFFERED) + cachepolicy = CPOLICY_BUFFERED; +#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) + if (cachepolicy > CPOLICY_WRITETHROUGH) + cachepolicy = CPOLICY_WRITETHROUGH; +#endif + if (cpu_arch < CPU_ARCH_ARMv5) { + if (cachepolicy >= CPOLICY_WRITEALLOC) + cachepolicy = CPOLICY_WRITEBACK; + ecc_mask = 0; + } + + if (cpu_arch <= CPU_ARCH_ARMv5) { + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + if (mem_types[i].prot_l1) + mem_types[i].prot_l1 |= PMD_BIT4; + if (mem_types[i].prot_sect) + mem_types[i].prot_sect |= PMD_BIT4; + } + } + + /* + * ARMv6 and above have extended page tables. + */ + if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { + /* + * bit 4 becomes XN which we must clear for the + * kernel memory mapping. + */ + mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4; + mem_types[MT_ROM].prot_sect &= ~PMD_BIT4; + /* + * Mark cache clean areas read only from SVC mode + * and no access from userspace. + */ + mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + } + + cp = &cache_policies[cachepolicy]; + + if (cpu_arch >= CPU_ARCH_ARMv5) { + mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; + mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; + } else { + mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte; + mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte; + mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); + } + + mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; + mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; + mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; + mem_types[MT_ROM].prot_sect |= cp->pmd; + + for (i = 0; i < 16; i++) { + unsigned long v = pgprot_val(protection_map[i]); + v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte; + protection_map[i] = __pgprot(v); + } + + pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | + L_PTE_DIRTY | L_PTE_WRITE | + L_PTE_EXEC | cp->pte); + + switch (cp->pmd) { + case PMD_SECT_WT: + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; + break; + case PMD_SECT_WB: + case PMD_SECT_WBWA: + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; + break; + } + printk("Memory policy: ECC %sabled, Data cache %s\n", + ecc_mask ? "en" : "dis", cp->policy); +} + +#define vectors_base() (vectors_high() ? 0xffff0000 : 0) + +/* + * Create the page directory entries and any necessary + * page tables for the mapping specified by `md'. We + * are able to cope here with varying sizes and address + * offsets, and we take full advantage of sections and + * supersections. + */ +static void __init create_mapping(struct map_desc *md) +{ + unsigned long virt, length; + int prot_sect, prot_l1, domain; + pgprot_t prot_pte; + long off; + + if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { + printk(KERN_WARNING "BUG: not creating mapping for " + "0x%08lx at 0x%08lx in user region\n", + md->physical, md->virtual); + return; + } + + if ((md->type == MT_DEVICE || md->type == MT_ROM) && + md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { + printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx " + "overlaps vmalloc space\n", + md->physical, md->virtual); + } + + domain = mem_types[md->type].domain; + prot_pte = __pgprot(mem_types[md->type].prot_pte); + prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain); + prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain); + + virt = md->virtual; + off = md->physical - virt; + length = md->length; + + if (mem_types[md->type].prot_l1 == 0 && + (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) { + printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " + "be mapped using pages, ignoring.\n", + md->physical, md->virtual); + return; + } + + while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { + alloc_init_page(virt, virt + off, prot_l1, prot_pte); + + virt += PAGE_SIZE; + length -= PAGE_SIZE; + } + + /* N.B. ARMv6 supersections are only defined to work with domain 0. + * Since domain assignments can in fact be arbitrary, the + * 'domain == 0' check below is required to insure that ARMv6 + * supersections are only allocated for domain 0 regardless + * of the actual domain assignments in use. + */ + if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) { + /* Align to supersection boundary */ + while ((virt & ~SUPERSECTION_MASK || (virt + off) & + ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) { + alloc_init_section(virt, virt + off, prot_sect); + + virt += (PGDIR_SIZE / 2); + length -= (PGDIR_SIZE / 2); + } + + while (length >= SUPERSECTION_SIZE) { + alloc_init_supersection(virt, virt + off, prot_sect); + + virt += SUPERSECTION_SIZE; + length -= SUPERSECTION_SIZE; + } + } + + /* + * A section mapping covers half a "pgdir" entry. + */ + while (length >= (PGDIR_SIZE / 2)) { + alloc_init_section(virt, virt + off, prot_sect); + + virt += (PGDIR_SIZE / 2); + length -= (PGDIR_SIZE / 2); + } + + while (length >= PAGE_SIZE) { + alloc_init_page(virt, virt + off, prot_l1, prot_pte); + + virt += PAGE_SIZE; + length -= PAGE_SIZE; + } +} + +/* + * In order to soft-boot, we need to insert a 1:1 mapping in place of + * the user-mode pages. This will then ensure that we have predictable + * results when turning the mmu off + */ +void setup_mm_for_reboot(char mode) +{ + unsigned long pmdval; + pgd_t *pgd; + pmd_t *pmd; + int i; + int cpu_arch = cpu_architecture(); + + if (current->mm && current->mm->pgd) + pgd = current->mm->pgd; + else + pgd = init_mm.pgd; + + for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) { + pmdval = (i << PGDIR_SHIFT) | + PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | + PMD_TYPE_SECT; + if (cpu_arch <= CPU_ARCH_ARMv5) + pmdval |= PMD_BIT4; + pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT); + pmd[0] = __pmd(pmdval); + pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); + flush_pmd_entry(pmd); + } +} + +extern void _stext, _etext; + +/* + * Setup initial mappings. We use the page we allocated for zero page to hold + * the mappings, which will get overwritten by the vectors in traps_init(). + * The mappings must be in virtual address order. + */ +void __init memtable_init(struct meminfo *mi) +{ + struct map_desc *init_maps, *p, *q; + unsigned long address = 0; + int i; + + build_mem_type_table(); + + init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE); + +#ifdef CONFIG_XIP_KERNEL + p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK; + p->virtual = (unsigned long)&_stext & PMD_MASK; + p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK; + p->type = MT_ROM; + p ++; +#endif + + for (i = 0; i < mi->nr_banks; i++) { + if (mi->bank[i].size == 0) + continue; + + p->physical = mi->bank[i].start; + p->virtual = __phys_to_virt(p->physical); + p->length = mi->bank[i].size; + p->type = MT_MEMORY; + p ++; + } + +#ifdef FLUSH_BASE + p->physical = FLUSH_BASE_PHYS; + p->virtual = FLUSH_BASE; + p->length = PGDIR_SIZE; + p->type = MT_CACHECLEAN; + p ++; +#endif + +#ifdef FLUSH_BASE_MINICACHE + p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE; + p->virtual = FLUSH_BASE_MINICACHE; + p->length = PGDIR_SIZE; + p->type = MT_MINICLEAN; + p ++; +#endif + + /* + * Go through the initial mappings, but clear out any + * pgdir entries that are not in the description. + */ + q = init_maps; + do { + if (address < q->virtual || q == p) { + clear_mapping(address); + address += PGDIR_SIZE; + } else { + create_mapping(q); + + address = q->virtual + q->length; + address = (address + PGDIR_SIZE - 1) & PGDIR_MASK; + + q ++; + } + } while (address != 0); + + /* + * Create a mapping for the machine vectors at the high-vectors + * location (0xffff0000). If we aren't using high-vectors, also + * create a mapping at the low-vectors virtual address. + */ + init_maps->physical = virt_to_phys(init_maps); + init_maps->virtual = 0xffff0000; + init_maps->length = PAGE_SIZE; + init_maps->type = MT_HIGH_VECTORS; + create_mapping(init_maps); + + if (!vectors_high()) { + init_maps->virtual = 0; + init_maps->type = MT_LOW_VECTORS; + create_mapping(init_maps); + } + + flush_cache_all(); + flush_tlb_all(); +} + +/* + * Create the architecture specific mappings + */ +void __init iotable_init(struct map_desc *io_desc, int nr) +{ + int i; + + for (i = 0; i < nr; i++) + create_mapping(io_desc + i); +} + +static inline void +free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) +{ + struct page *start_pg, *end_pg; + unsigned long pg, pgend; + + /* + * Convert start_pfn/end_pfn to a struct page pointer. + */ + start_pg = pfn_to_page(start_pfn); + end_pg = pfn_to_page(end_pfn); + + /* + * Convert to physical addresses, and + * round start upwards and end downwards. + */ + pg = PAGE_ALIGN(__pa(start_pg)); + pgend = __pa(end_pg) & PAGE_MASK; + + /* + * If there are free pages between these, + * free the section of the memmap array. + */ + if (pg < pgend) + free_bootmem_node(NODE_DATA(node), pg, pgend - pg); +} + +static inline void free_unused_memmap_node(int node, struct meminfo *mi) +{ + unsigned long bank_start, prev_bank_end = 0; + unsigned int i; + + /* + * [FIXME] This relies on each bank being in address order. This + * may not be the case, especially if the user has provided the + * information on the command line. + */ + for (i = 0; i < mi->nr_banks; i++) { + if (mi->bank[i].size == 0 || mi->bank[i].node != node) + continue; + + bank_start = mi->bank[i].start >> PAGE_SHIFT; + if (bank_start < prev_bank_end) { + printk(KERN_ERR "MEM: unordered memory banks. " + "Not freeing memmap.\n"); + break; + } + + /* + * If we had a previous bank, and there is a space + * between the current bank and the previous, free it. + */ + if (prev_bank_end && prev_bank_end != bank_start) + free_memmap(node, prev_bank_end, bank_start); + + prev_bank_end = PAGE_ALIGN(mi->bank[i].start + + mi->bank[i].size) >> PAGE_SHIFT; + } +} + +/* + * The mem_map array can get very big. Free + * the unused area of the memory map. + */ +void __init create_memmap_holes(struct meminfo *mi) +{ + int node; + + for_each_online_node(node) + free_unused_memmap_node(node, mi); +} |