summaryrefslogtreecommitdiffstats
path: root/Documentation/sched-design-CFS.txt
diff options
context:
space:
mode:
authorJ. Bruce Fields <bfields@citi.umich.edu>2008-02-07 00:13:37 -0800
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2008-02-07 08:42:17 -0800
commit9b8eae7248dad42091204f83ed3448e661456af1 (patch)
tree1e300d41f8aaa9c258c179024ba63799a79f5a6f /Documentation/sched-design-CFS.txt
parentd3cf91d0e201962a6367191e5926f5b0920b0339 (diff)
downloadkernel-crypto-9b8eae7248dad42091204f83ed3448e661456af1.tar.gz
kernel-crypto-9b8eae7248dad42091204f83ed3448e661456af1.tar.xz
kernel-crypto-9b8eae7248dad42091204f83ed3448e661456af1.zip
Documentation: create new scheduler/ subdirectory
The top-level Documentation/ directory is unmanageably large, so we should take any obvious opportunities to move stuff into subdirectories. These sched-*.txt files seem an obvious easy case. Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu> Cc: Ingo Molnar <mingo@elte.hu> Acked-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/sched-design-CFS.txt')
-rw-r--r--Documentation/sched-design-CFS.txt186
1 files changed, 0 insertions, 186 deletions
diff --git a/Documentation/sched-design-CFS.txt b/Documentation/sched-design-CFS.txt
deleted file mode 100644
index 88bcb876733..00000000000
--- a/Documentation/sched-design-CFS.txt
+++ /dev/null
@@ -1,186 +0,0 @@
-
-This is the CFS scheduler.
-
-80% of CFS's design can be summed up in a single sentence: CFS basically
-models an "ideal, precise multi-tasking CPU" on real hardware.
-
-"Ideal multi-tasking CPU" is a (non-existent :-)) CPU that has 100%
-physical power and which can run each task at precise equal speed, in
-parallel, each at 1/nr_running speed. For example: if there are 2 tasks
-running then it runs each at 50% physical power - totally in parallel.
-
-On real hardware, we can run only a single task at once, so while that
-one task runs, the other tasks that are waiting for the CPU are at a
-disadvantage - the current task gets an unfair amount of CPU time. In
-CFS this fairness imbalance is expressed and tracked via the per-task
-p->wait_runtime (nanosec-unit) value. "wait_runtime" is the amount of
-time the task should now run on the CPU for it to become completely fair
-and balanced.
-
-( small detail: on 'ideal' hardware, the p->wait_runtime value would
- always be zero - no task would ever get 'out of balance' from the
- 'ideal' share of CPU time. )
-
-CFS's task picking logic is based on this p->wait_runtime value and it
-is thus very simple: it always tries to run the task with the largest
-p->wait_runtime value. In other words, CFS tries to run the task with
-the 'gravest need' for more CPU time. So CFS always tries to split up
-CPU time between runnable tasks as close to 'ideal multitasking
-hardware' as possible.
-
-Most of the rest of CFS's design just falls out of this really simple
-concept, with a few add-on embellishments like nice levels,
-multiprocessing and various algorithm variants to recognize sleepers.
-
-In practice it works like this: the system runs a task a bit, and when
-the task schedules (or a scheduler tick happens) the task's CPU usage is
-'accounted for': the (small) time it just spent using the physical CPU
-is deducted from p->wait_runtime. [minus the 'fair share' it would have
-gotten anyway]. Once p->wait_runtime gets low enough so that another
-task becomes the 'leftmost task' of the time-ordered rbtree it maintains
-(plus a small amount of 'granularity' distance relative to the leftmost
-task so that we do not over-schedule tasks and trash the cache) then the
-new leftmost task is picked and the current task is preempted.
-
-The rq->fair_clock value tracks the 'CPU time a runnable task would have
-fairly gotten, had it been runnable during that time'. So by using
-rq->fair_clock values we can accurately timestamp and measure the
-'expected CPU time' a task should have gotten. All runnable tasks are
-sorted in the rbtree by the "rq->fair_clock - p->wait_runtime" key, and
-CFS picks the 'leftmost' task and sticks to it. As the system progresses
-forwards, newly woken tasks are put into the tree more and more to the
-right - slowly but surely giving a chance for every task to become the
-'leftmost task' and thus get on the CPU within a deterministic amount of
-time.
-
-Some implementation details:
-
- - the introduction of Scheduling Classes: an extensible hierarchy of
- scheduler modules. These modules encapsulate scheduling policy
- details and are handled by the scheduler core without the core
- code assuming about them too much.
-
- - sched_fair.c implements the 'CFS desktop scheduler': it is a
- replacement for the vanilla scheduler's SCHED_OTHER interactivity
- code.
-
- I'd like to give credit to Con Kolivas for the general approach here:
- he has proven via RSDL/SD that 'fair scheduling' is possible and that
- it results in better desktop scheduling. Kudos Con!
-
- The CFS patch uses a completely different approach and implementation
- from RSDL/SD. My goal was to make CFS's interactivity quality exceed
- that of RSDL/SD, which is a high standard to meet :-) Testing
- feedback is welcome to decide this one way or another. [ and, in any
- case, all of SD's logic could be added via a kernel/sched_sd.c module
- as well, if Con is interested in such an approach. ]
-
- CFS's design is quite radical: it does not use runqueues, it uses a
- time-ordered rbtree to build a 'timeline' of future task execution,
- and thus has no 'array switch' artifacts (by which both the vanilla
- scheduler and RSDL/SD are affected).
-
- CFS uses nanosecond granularity accounting and does not rely on any
- jiffies or other HZ detail. Thus the CFS scheduler has no notion of
- 'timeslices' and has no heuristics whatsoever. There is only one
- central tunable (you have to switch on CONFIG_SCHED_DEBUG):
-
- /proc/sys/kernel/sched_granularity_ns
-
- which can be used to tune the scheduler from 'desktop' (low
- latencies) to 'server' (good batching) workloads. It defaults to a
- setting suitable for desktop workloads. SCHED_BATCH is handled by the
- CFS scheduler module too.
-
- Due to its design, the CFS scheduler is not prone to any of the
- 'attacks' that exist today against the heuristics of the stock
- scheduler: fiftyp.c, thud.c, chew.c, ring-test.c, massive_intr.c all
- work fine and do not impact interactivity and produce the expected
- behavior.
-
- the CFS scheduler has a much stronger handling of nice levels and
- SCHED_BATCH: both types of workloads should be isolated much more
- agressively than under the vanilla scheduler.
-
- ( another detail: due to nanosec accounting and timeline sorting,
- sched_yield() support is very simple under CFS, and in fact under
- CFS sched_yield() behaves much better than under any other
- scheduler i have tested so far. )
-
- - sched_rt.c implements SCHED_FIFO and SCHED_RR semantics, in a simpler
- way than the vanilla scheduler does. It uses 100 runqueues (for all
- 100 RT priority levels, instead of 140 in the vanilla scheduler)
- and it needs no expired array.
-
- - reworked/sanitized SMP load-balancing: the runqueue-walking
- assumptions are gone from the load-balancing code now, and
- iterators of the scheduling modules are used. The balancing code got
- quite a bit simpler as a result.
-
-
-Group scheduler extension to CFS
-================================
-
-Normally the scheduler operates on individual tasks and strives to provide
-fair CPU time to each task. Sometimes, it may be desirable to group tasks
-and provide fair CPU time to each such task group. For example, it may
-be desirable to first provide fair CPU time to each user on the system
-and then to each task belonging to a user.
-
-CONFIG_FAIR_GROUP_SCHED strives to achieve exactly that. It lets
-SCHED_NORMAL/BATCH tasks be be grouped and divides CPU time fairly among such
-groups. At present, there are two (mutually exclusive) mechanisms to group
-tasks for CPU bandwidth control purpose:
-
- - Based on user id (CONFIG_FAIR_USER_SCHED)
- In this option, tasks are grouped according to their user id.
- - Based on "cgroup" pseudo filesystem (CONFIG_FAIR_CGROUP_SCHED)
- This options lets the administrator create arbitrary groups
- of tasks, using the "cgroup" pseudo filesystem. See
- Documentation/cgroups.txt for more information about this
- filesystem.
-
-Only one of these options to group tasks can be chosen and not both.
-
-Group scheduler tunables:
-
-When CONFIG_FAIR_USER_SCHED is defined, a directory is created in sysfs for
-each new user and a "cpu_share" file is added in that directory.
-
- # cd /sys/kernel/uids
- # cat 512/cpu_share # Display user 512's CPU share
- 1024
- # echo 2048 > 512/cpu_share # Modify user 512's CPU share
- # cat 512/cpu_share # Display user 512's CPU share
- 2048
- #
-
-CPU bandwidth between two users are divided in the ratio of their CPU shares.
-For ex: if you would like user "root" to get twice the bandwidth of user
-"guest", then set the cpu_share for both the users such that "root"'s
-cpu_share is twice "guest"'s cpu_share
-
-
-When CONFIG_FAIR_CGROUP_SCHED is defined, a "cpu.shares" file is created
-for each group created using the pseudo filesystem. See example steps
-below to create task groups and modify their CPU share using the "cgroups"
-pseudo filesystem
-
- # mkdir /dev/cpuctl
- # mount -t cgroup -ocpu none /dev/cpuctl
- # cd /dev/cpuctl
-
- # mkdir multimedia # create "multimedia" group of tasks
- # mkdir browser # create "browser" group of tasks
-
- # #Configure the multimedia group to receive twice the CPU bandwidth
- # #that of browser group
-
- # echo 2048 > multimedia/cpu.shares
- # echo 1024 > browser/cpu.shares
-
- # firefox & # Launch firefox and move it to "browser" group
- # echo <firefox_pid> > browser/tasks
-
- # #Launch gmplayer (or your favourite movie player)
- # echo <movie_player_pid> > multimedia/tasks