/* * Demo on how to use /dev/crypto device for HMAC. * * Placed under public domain. * */ #include #include #include #include #include #include #include #include #include #include #include #include "../ncr.h" #include #include "utils.h" #define DATA_SIZE 4096 #define ALG_AES_CBC "cbc(aes)" #define ALG_AES_ECB "ecb(aes)" static void randomize_data(uint8_t * data, size_t data_size) { int i; srand(time(0) * getpid()); for (i = 0; i < data_size; i++) { data[i] = rand() & 0xff; } } #define KEY_DATA_SIZE 16 #define WRAPPED_KEY_DATA_SIZE 32 static int test_ncr_key(int cfd) { NCR_STRUCT(ncr_key_generate) kgen; NCR_STRUCT(ncr_key_get_info) kinfo; struct nlattr *nla; ncr_key_t key; NCR_STRUCT(ncr_key_import) kimport; struct ncr_key_export kexport; uint8_t data[KEY_DATA_SIZE]; uint8_t data_bak[KEY_DATA_SIZE]; uint16_t *attr_p; int got_algo, got_flags, got_type; fprintf(stdout, "Tests on Keys:\n"); /* test 1: generate a key in userspace import it * to kernel via data and export it. */ fprintf(stdout, "\tKey generation...\n"); randomize_data(data, sizeof(data)); memcpy(data_bak, data, sizeof(data)); /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = data; kimport.f.data_size = sizeof(data); ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* now try to read it */ fprintf(stdout, "\tKey export...\n"); memset(&kexport, 0, sizeof(kexport)); kexport.key = key; kexport.buffer = data; kexport.buffer_size = sizeof(data); if (ioctl(cfd, NCRIO_KEY_EXPORT, &kexport) != sizeof(data)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } if (memcmp(data, data_bak, sizeof(data)) != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "data returned but differ!\n"); return 1; } if (ioctl(cfd, NCRIO_KEY_DEINIT, &key)) { perror("ioctl(NCRIO_KEY_DEINIT)"); return 1; } /* finished, we keep data for next test */ /* test 2: generate a key in kernel space and * export it. */ fprintf(stdout, "\tKey import...\n"); /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kgen); kgen.f.key = key; ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE); ncr_put_u32(&nla, NCR_ATTR_SECRET_KEY_BITS, 128); /* 16 bytes */ NCR_FINISH(kgen, nla); if (ioctl(cfd, NCRIO_KEY_GENERATE, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE)"); return 1; } memset(data, 0, sizeof(data)); memset(&kexport, 0, sizeof(kexport)); kexport.key = key; kexport.buffer = data; kexport.buffer_size = sizeof(data); if (ioctl(cfd, NCRIO_KEY_EXPORT, &kexport) != sizeof(data)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } if (data[0] == 0 && data[1] == 0 && data[2] == 0 && data[4] == 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "Generated key: %.2x.%.2x.%.2x.%.2x.%.2x.%.2x.%.2x.%.2x." "%.2x.%.2x.%.2x.%.2x.%.2x.%.2x.%.2x.%.2x\n", data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10], data[11], data[12], data[13], data[14], data[15]); return 1; } nla = NCR_INIT(kinfo); kinfo.f.output_size = sizeof(kinfo); kinfo.f.key = key; attr_p = ncr_reserve(&nla, NCR_ATTR_WANTED_ATTRS, 3 * sizeof(*attr_p)); *attr_p++ = NCR_ATTR_ALGORITHM; *attr_p++ = NCR_ATTR_KEY_FLAGS; *attr_p++ = NCR_ATTR_KEY_TYPE; NCR_FINISH(kinfo, nla); if (ioctl(cfd, NCRIO_KEY_GET_INFO, &kinfo)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GET_INFO)"); return 1; } got_algo = got_flags = got_type = 0; if (kinfo.f.output_size < sizeof (kinfo.f)) { fprintf(stderr, "No nlattr returned\n"); return 1; } nla = (struct nlattr *)(&kinfo.f + 1); for (;;) { void *data; if (nla->nla_len > kinfo.f.output_size - ((char *)nla - (char *)&kinfo)) { fprintf(stderr, "Attributes overflow\n"); return 1; } data = (char *)nla + NLA_HDRLEN; switch (nla->nla_type) { case NCR_ATTR_ALGORITHM: if (nla->nla_len < NLA_HDRLEN + 1) { fprintf(stderr, "Attribute too small\n"); return 1; } if (((char *)data)[nla->nla_len - NLA_HDRLEN - 1] != 0) { fprintf(stderr, "NUL missing\n"); return 1; } if (strcmp(data, ALG_AES_CBC) != 0) { fprintf(stderr, "Unexpected algorithm\n"); return 1; } got_algo++; break; case NCR_ATTR_KEY_FLAGS: if (nla->nla_len < NLA_HDRLEN + sizeof(uint32_t)) { fprintf(stderr, "Attribute too small\n"); return 1; } if (*(uint32_t *) data != NCR_KEY_FLAG_EXPORTABLE) { fprintf(stderr, "Unexpected key flags\n"); return 1; } got_flags++; break; case NCR_ATTR_KEY_TYPE: if (nla->nla_len < NLA_HDRLEN + sizeof(uint32_t)) { fprintf(stderr, "Attribute too small\n"); return 1; } if (*(uint32_t *) data != NCR_KEY_TYPE_SECRET) { fprintf(stderr, "Unexpected key type\n"); return 1; } got_type++; break; } if (NLA_ALIGN(nla->nla_len) + NLA_HDRLEN > kinfo.f.output_size - ((char *)nla - (char *)&kinfo)) break; nla = (struct nlattr *)((char *)nla + NLA_ALIGN(nla->nla_len)); } if (got_algo != 1 || got_flags != 1 || got_type != 1) { fprintf(stderr, "Unexpected attrs - %d, %d, %d\n", got_algo, got_flags, got_type); return 1; } if (ioctl(cfd, NCRIO_KEY_DEINIT, &key)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_DEINIT)"); return 1; } /* test 3: generate an unexportable key in kernel space and * try to export it. */ fprintf(stdout, "\tKey protection of non-exportable keys...\n"); key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kgen); kgen.f.key = key; ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, 0); ncr_put_u32(&nla, NCR_ATTR_SECRET_KEY_BITS, 128); /* 16 bytes */ NCR_FINISH(kgen, nla); if (ioctl(cfd, NCRIO_KEY_GENERATE, &kgen)) { perror("ioctl(NCRIO_KEY_GENERATE)"); return 1; } memset(data, 0, sizeof(data)); memset(&kexport, 0, sizeof(kexport)); kexport.key = key; kexport.buffer = data; kexport.buffer_size = sizeof(data); /* try to get the output data - should fail */ if (ioctl(cfd, NCRIO_KEY_EXPORT, &kexport) >= 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "Data were exported, but shouldn't be!\n"); return 1; } if (ioctl(cfd, NCRIO_KEY_DEINIT, &key)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_DEINIT)"); return 1; } return 0; } /* Key wrapping */ static int test_ncr_wrap_key(int cfd) { int i, ret; ncr_key_t key, key2; NCR_STRUCT(ncr_key_import) kimport; NCR_STRUCT(ncr_key_wrap) kwrap; NCR_STRUCT(ncr_key_unwrap) kunwrap; struct nlattr *nla; uint8_t data[WRAPPED_KEY_DATA_SIZE]; int data_size; fprintf(stdout, "Tests on Keys:\n"); /* test 1: generate a key in userspace import it * to kernel via data and export it. */ fprintf(stdout, "\tKey Wrap test...\n"); /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; kimport.f.data_size = 16; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_WRAPPING | NCR_KEY_FLAG_UNWRAPPING); NCR_FINISH(kimport, nla); ret = ioctl(cfd, NCRIO_KEY_IMPORT, &kimport); if (geteuid() == 0 && ret) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } if (geteuid() != 0) { /* cannot test further */ fprintf(stdout, "\t(Wrapping test not completed. Run as root)\n"); return 0; } /* convert it to key */ key2 = ioctl(cfd, NCRIO_KEY_INIT); if (key2 == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kimport); kimport.f.key = key2; #define DKEY "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF" kimport.f.data = DKEY; kimport.f.data_size = 16; ncr_put(&nla, NCR_ATTR_KEY_ID, "ba", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_WRAPPABLE); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* now try wrapping key2 using key */ nla = NCR_INIT(kwrap); kwrap.f.wrapping_key = key; kwrap.f.source_key = key2; kwrap.f.buffer = data; kwrap.f.buffer_size = sizeof(data); ncr_put_string(&nla, NCR_ATTR_WRAPPING_ALGORITHM, NCR_WALG_AES_RFC3394); NCR_FINISH(kwrap, nla); data_size = ioctl(cfd, NCRIO_KEY_WRAP, &kwrap); if (data_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_WRAP)"); return 1; } if (data_size != 24 || memcmp(data, "\x1F\xA6\x8B\x0A\x81\x12\xB4\x47\xAE\xF3\x4B\xD8\xFB\x5A\x7B\x82\x9D\x3E\x86\x23\x71\xD2\xCF\xE5", 24) != 0) { fprintf(stderr, "Wrapped data do not match.\n"); fprintf(stderr, "Data[%d]: ", (int)data_size); for (i = 0; i < data_size; i++) fprintf(stderr, "%.2x:", data[i]); fprintf(stderr, "\n"); return 1; } /* test unwrapping */ fprintf(stdout, "\tKey Unwrap test...\n"); /* reset key2 */ if (ioctl(cfd, NCRIO_KEY_DEINIT, &key2)) { perror("ioctl(NCRIO_KEY_DEINIT)"); return 1; } key2 = ioctl(cfd, NCRIO_KEY_INIT); if (key2 == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kunwrap); kunwrap.f.wrapping_key = key; kunwrap.f.dest_key = key2; kunwrap.f.data = data; kunwrap.f.data_size = data_size; ncr_put_string(&nla, NCR_ATTR_WRAPPING_ALGORITHM, NCR_WALG_AES_RFC3394); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_WRAPPABLE); NCR_FINISH(kunwrap, nla); if (ioctl(cfd, NCRIO_KEY_UNWRAP, &kunwrap)) { perror("ioctl(NCRIO_KEY_UNWRAP)"); return 1; } /* now export the unwrapped */ #if 0 /* this cannot be performed like that, because unwrap * always sets keys as unexportable. Maybe we can implement * a data comparison ioctl(). */ memset(&keydata, 0, sizeof(keydata)); keydata.key = key2; keydata.data = kdata.desc; if (ioctl(cfd, NCRIO_KEY_EXPORT, &keydata)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } if (ioctl(cfd, NCRIO_DATA_GET, &kdata)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_DATA_GET)"); return 1; } if (kdata.data_size != 16 || memcmp(kdata.data, DKEY, 16) != 0) { fprintf(stderr, "Unwrapped data do not match.\n"); fprintf(stderr, "Data[%d]: ", (int)kdata.data_size); for (i = 0; i < kdata.data_size; i++) fprintf(stderr, "%.2x:", data[i]); fprintf(stderr, "\n"); return 1; } #endif return 0; } /* check whether wrapping of long keys is not allowed with * shorted wrapping keys */ static int test_ncr_wrap_key2(int cfd) { int ret; ncr_key_t key, key2; NCR_STRUCT(ncr_key_import) kimport; NCR_STRUCT(ncr_key_wrap) kwrap; struct nlattr *nla; uint8_t data[WRAPPED_KEY_DATA_SIZE]; /* test 1: generate a key in userspace import it * to kernel via data and export it. */ fprintf(stdout, "\tKey Wrap test II...\n"); if (geteuid() != 0) { /* cannot test further */ fprintf(stdout, "\t(Wrapping test not completed. Run as root)\n"); return 0; } /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; kimport.f.data_size = 16; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_WRAPPING | NCR_KEY_FLAG_UNWRAPPING); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* convert it to key */ key2 = ioctl(cfd, NCRIO_KEY_INIT); if (key2 == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kimport); kimport.f.key = key2; kimport.f.data = "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF"; kimport.f.data_size = 32; ncr_put(&nla, NCR_ATTR_KEY_ID, "ba", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_WRAPPABLE); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* now try wrapping key2 using key */ nla = NCR_INIT(kwrap); kwrap.f.wrapping_key = key; kwrap.f.source_key = key2; kwrap.f.buffer = data; kwrap.f.buffer_size = sizeof(data); ncr_put_string(&nla, NCR_ATTR_WRAPPING_ALGORITHM, NCR_WALG_AES_RFC3394); NCR_FINISH(kwrap, nla); ret = ioctl(cfd, NCRIO_KEY_WRAP, &kwrap); if (ret >= 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); /* wrapping shouldn't have been allowed */ return 1; } return 0; } static int test_ncr_store_wrap_key(int cfd) { int i; ncr_key_t key2; NCR_STRUCT(ncr_key_import) kimport; struct ncr_key_export kexport; struct ncr_key_storage_wrap kwrap; struct ncr_key_storage_unwrap kunwrap; struct nlattr *nla; uint8_t data[DATA_SIZE]; int data_size; fprintf(stdout, "Tests on Key storage:\n"); /* test 1: generate a key in userspace import it * to kernel via data and export it. */ fprintf(stdout, "\tKey Storage wrap test...\n"); /* convert it to key */ key2 = ioctl(cfd, NCRIO_KEY_INIT); if (key2 == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } nla = NCR_INIT(kimport); kimport.f.key = key2; #define DKEY "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF" kimport.f.data = DKEY; kimport.f.data_size = 16; ncr_put(&nla, NCR_ATTR_KEY_ID, "ba", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_WRAPPABLE); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* now try wrapping key2 using key */ memset(&kwrap, 0, sizeof(kwrap)); kwrap.key = key2; kwrap.buffer = data; kwrap.buffer_size = sizeof(data); data_size = ioctl(cfd, NCRIO_KEY_STORAGE_WRAP, &kwrap); if (data_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_STORAGE_WRAP)"); return 1; } /* test unwrapping */ fprintf(stdout, "\tKey Storage Unwrap test...\n"); /* reset key2 */ if (ioctl(cfd, NCRIO_KEY_DEINIT, &key2)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_DEINIT)"); return 1; } key2 = ioctl(cfd, NCRIO_KEY_INIT); if (key2 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kunwrap, 0, sizeof(kunwrap)); kunwrap.key = key2; kunwrap.data = data; kunwrap.data_size = data_size; if (ioctl(cfd, NCRIO_KEY_STORAGE_UNWRAP, &kunwrap)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_STORAGE_UNWRAP)"); return 1; } /* now export the unwrapped */ memset(&kexport, 0, sizeof(kexport)); kexport.key = key2; kexport.buffer = data; kexport.buffer_size = sizeof(data); data_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (data_size != 16) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } if (memcmp(data, DKEY, 16) != 0) { fprintf(stderr, "Unwrapped data do not match.\n"); fprintf(stderr, "Data[%d]: ", (int)data_size); for (i = 0; i < data_size; i++) fprintf(stderr, "%.2x:", data[i]); fprintf(stderr, "\n"); return 1; } return 0; } struct aes_vectors_st { const uint8_t *key; const uint8_t *plaintext; const uint8_t *ciphertext; } aes_vectors[] = { { .key = (uint8_t *) "\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",. plaintext = (uint8_t *) "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",. ciphertext = (uint8_t *) "\x4b\xc3\xf8\x83\x45\x0c\x11\x3c\x64\xca\x42\xe1\x11\x2a\x9e\x87",}, { .key = (uint8_t *) "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",. plaintext = (uint8_t *) "\xf3\x44\x81\xec\x3c\xc6\x27\xba\xcd\x5d\xc3\xfb\x08\xf2\x73\xe6",. ciphertext = (uint8_t *) "\x03\x36\x76\x3e\x96\x6d\x92\x59\x5a\x56\x7c\xc9\xce\x53\x7f\x5e",}, { .key = (uint8_t *) "\x10\xa5\x88\x69\xd7\x4b\xe5\xa3\x74\xcf\x86\x7c\xfb\x47\x38\x59",. plaintext = (uint8_t *) "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",. ciphertext = (uint8_t *) "\x6d\x25\x1e\x69\x44\xb0\x51\xe0\x4e\xaa\x6f\xb4\xdb\xf7\x84\x65",}, { .key = (uint8_t *) "\xca\xea\x65\xcd\xbb\x75\xe9\x16\x9e\xcd\x22\xeb\xe6\xe5\x46\x75",. plaintext = (uint8_t *) "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",. ciphertext = (uint8_t *) "\x6e\x29\x20\x11\x90\x15\x2d\xf4\xee\x05\x81\x39\xde\xf6\x10\xbb",}, { .key = (uint8_t *) "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfe",. plaintext = (uint8_t *) "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",. ciphertext = (uint8_t *) "\x9b\xa4\xa9\x14\x3f\x4e\x5d\x40\x48\x52\x1c\x4f\x88\x77\xd8\x8e",},}; /* AES cipher */ static int test_ncr_aes(int cfd) { ncr_key_t key; NCR_STRUCT(ncr_key_import) kimport; uint8_t data[KEY_DATA_SIZE]; int i, j; NCR_STRUCT(ncr_session_once) op; struct nlattr *nla; size_t data_size; /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } fprintf(stdout, "Tests on AES Encryption\n"); for (i = 0; i < sizeof(aes_vectors) / sizeof(aes_vectors[0]); i++) { nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = aes_vectors[i].key; kimport.f.data_size = 16; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_ECB); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* encrypt */ nla = NCR_INIT(op); op.f.op = NCR_OP_ENCRYPT; ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_ECB); ncr_put_u32(&nla, NCR_ATTR_KEY, key); ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, aes_vectors[i].plaintext, 16); ncr_put_session_output_buffer(&nla, NCR_ATTR_UPDATE_OUTPUT_BUFFER, data, sizeof(data), &data_size); NCR_FINISH(op, nla); if (ioctl(cfd, NCRIO_SESSION_ONCE, &op)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } /* verify */ if (data_size != 16 || memcmp(data, aes_vectors[i].ciphertext, 16) != 0) { fprintf(stderr, "AES test vector %d failed!\n", i); fprintf(stderr, "Cipher[%d]: ", (int)data_size); for (j = 0; j < data_size; j++) fprintf(stderr, "%.2x:", (int)data[j]); fprintf(stderr, "\n"); fprintf(stderr, "Expected[%d]: ", 16); for (j = 0; j < 16; j++) fprintf(stderr, "%.2x:", (int)aes_vectors[i].ciphertext[j]); fprintf(stderr, "\n"); return 1; } } fprintf(stdout, "Tests on AES Decryption\n"); for (i = 0; i < sizeof(aes_vectors) / sizeof(aes_vectors[0]); i++) { nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = aes_vectors[i].key; kimport.f.data_size = 16; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_CBC); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } /* decrypt */ nla = NCR_INIT(op); op.f.op = NCR_OP_DECRYPT; ncr_put_string(&nla, NCR_ATTR_ALGORITHM, ALG_AES_ECB); ncr_put_u32(&nla, NCR_ATTR_KEY, key); ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, aes_vectors[i].ciphertext, 16); ncr_put_session_output_buffer(&nla, NCR_ATTR_UPDATE_OUTPUT_BUFFER, data, sizeof(data), &data_size); NCR_FINISH(op, nla); if (ioctl(cfd, NCRIO_SESSION_ONCE, &op)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } if (data_size != 16 || memcmp(data, aes_vectors[i].plaintext, 16) != 0) { fprintf(stderr, "AES test vector %d failed!\n", i); fprintf(stderr, "Plain[%d]: ", (int)data_size); for (j = 0; j < data_size; j++) fprintf(stderr, "%.2x:", (int)data[j]); fprintf(stderr, "\n"); fprintf(stderr, "Expected[%d]: ", 16); for (j = 0; j < 16; j++) fprintf(stderr, "%.2x:", (int)aes_vectors[i].plaintext[j]); fprintf(stderr, "\n"); return 1; } } fprintf(stdout, "\n"); return 0; } struct hash_vectors_st { const char *algorithm; const uint8_t *key; /* if hmac */ int key_size; const uint8_t *plaintext; int plaintext_size; const uint8_t *output; int output_size; ncr_crypto_op_t op; } hash_vectors[] = { { .algorithm = "sha1",.key = NULL,.plaintext = (uint8_t *) "what do ya want for nothing?",. plaintext_size = sizeof("what do ya want for nothing?") - 1,.output = (uint8_t *) "\x8f\x82\x03\x94\xf9\x53\x35\x18\x20\x45\xda\x24\xf3\x4d\xe5\x2b\xf8\xbc\x34\x32",. output_size = 20,.op = NCR_OP_SIGN,} , { .algorithm = "hmac(md5)",.key = (uint8_t *) "Jefe",.key_size = 4,.plaintext = (uint8_t *) "what do ya want for nothing?",. plaintext_size = sizeof("what do ya want for nothing?") - 1,.output = (uint8_t *) "\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38",. output_size = 16,.op = NCR_OP_SIGN,} , /* from rfc4231 */ { .algorithm = "hmac(sha224)",.key = (uint8_t *) "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",. key_size = 20,.plaintext = (uint8_t *) "Hi There",.plaintext_size = sizeof("Hi There") - 1,.output = (uint8_t *) "\x89\x6f\xb1\x12\x8a\xbb\xdf\x19\x68\x32\x10\x7c\xd4\x9d\xf3\x3f\x47\xb4\xb1\x16\x99\x12\xba\x4f\x53\x68\x4b\x22",. output_size = 28,.op = NCR_OP_SIGN,} , { .algorithm = "hmac(sha256)",.key = (uint8_t *) "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",. key_size = 20,.plaintext = (uint8_t *) "Hi There",.plaintext_size = sizeof("Hi There") - 1,.output = (uint8_t *) "\xb0\x34\x4c\x61\xd8\xdb\x38\x53\x5c\xa8\xaf\xce\xaf\x0b\xf1\x2b\x88\x1d\xc2\x00\xc9\x83\x3d\xa7\x26\xe9\x37\x6c\x2e\x32\xcf\xf7",. output_size = 32,.op = NCR_OP_SIGN,} , { .algorithm = "hmac(sha384)",.key = (uint8_t *) "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",. key_size = 20,.plaintext = (uint8_t *) "Hi There",.plaintext_size = sizeof("Hi There") - 1,.output = (uint8_t *) "\xaf\xd0\x39\x44\xd8\x48\x95\x62\x6b\x08\x25\xf4\xab\x46\x90\x7f\x15\xf9\xda\xdb\xe4\x10\x1e\xc6\x82\xaa\x03\x4c\x7c\xeb\xc5\x9c\xfa\xea\x9e\xa9\x07\x6e\xde\x7f\x4a\xf1\x52\xe8\xb2\xfa\x9c\xb6",. output_size = 48,.op = NCR_OP_SIGN,} , { .algorithm = "hmac(sha512)",.key = (uint8_t *) "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",. key_size = 20,.plaintext = (uint8_t *) "Hi There",.plaintext_size = sizeof("Hi There") - 1,.output = (uint8_t *) "\x87\xaa\x7c\xde\xa5\xef\x61\x9d\x4f\xf0\xb4\x24\x1a\x1d\x6c\xb0\x23\x79\xf4\xe2\xce\x4e\xc2\x78\x7a\xd0\xb3\x05\x45\xe1\x7c\xde\xda\xa8\x33\xb7\xd6\xb8\xa7\x02\x03\x8b\x27\x4e\xae\xa3\xf4\xe4\xbe\x9d\x91\x4e\xeb\x61\xf1\x70\x2e\x69\x6c\x20\x3a\x12\x68\x54",. output_size = 64,.op = NCR_OP_SIGN,} ,}; #define HASH_DATA_SIZE 64 /* SHA1 and other hashes */ static int test_ncr_hash(int cfd) { ncr_key_t key; NCR_STRUCT(ncr_key_import) kimport; uint8_t data[HASH_DATA_SIZE]; int i, j; size_t data_size; NCR_STRUCT(ncr_session_once) op; struct nlattr *nla; /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } fprintf(stdout, "Tests on Hashes\n"); for (i = 0; i < sizeof(hash_vectors) / sizeof(hash_vectors[0]); i++) { size_t algo_size; algo_size = strlen(hash_vectors[i].algorithm) + 1; fprintf(stdout, "\t%s:\n", hash_vectors[i].algorithm); /* import key */ if (hash_vectors[i].key != NULL) { nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = hash_vectors[i].key; kimport.f.data_size = hash_vectors[i].key_size; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE); ncr_put(&nla, NCR_ATTR_ALGORITHM, hash_vectors[i].algorithm, algo_size); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } } nla = NCR_INIT(op); op.f.op = hash_vectors[i].op; ncr_put_u32(&nla, NCR_ATTR_KEY, hash_vectors[i].key != NULL ? key : NCR_KEY_INVALID); ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, hash_vectors[i].plaintext, hash_vectors[i].plaintext_size); ncr_put_session_output_buffer(&nla, NCR_ATTR_FINAL_OUTPUT_BUFFER, data, sizeof(data), &data_size); ncr_put(&nla, NCR_ATTR_ALGORITHM, hash_vectors[i].algorithm, algo_size); NCR_FINISH(op, nla); if (ioctl(cfd, NCRIO_SESSION_ONCE, &op)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } if (data_size != hash_vectors[i].output_size || memcmp(data, hash_vectors[i].output, hash_vectors[i].output_size) != 0) { fprintf(stderr, "HASH test vector %d failed!\n", i); fprintf(stderr, "Output[%d]: ", (int)data_size); for (j = 0; j < data_size; j++) fprintf(stderr, "%.2x:", (int)data[j]); fprintf(stderr, "\n"); fprintf(stderr, "Expected[%d]: ", hash_vectors[i].output_size); for (j = 0; j < hash_vectors[i].output_size; j++) fprintf(stderr, "%.2x:", (int)hash_vectors[i].output[j]); fprintf(stderr, "\n"); return 1; } } fprintf(stdout, "\n"); return 0; } static int test_ncr_hash_clone(int cfd) { ncr_key_t key; NCR_STRUCT(ncr_key_import) kimport; uint8_t data[HASH_DATA_SIZE]; const struct hash_vectors_st *hv; int j; size_t data_size; NCR_STRUCT(ncr_session_init) kinit; NCR_STRUCT(ncr_session_update) kupdate; NCR_STRUCT(ncr_session_final) kfinal; NCR_STRUCT(ncr_session_once) kclone; struct nlattr *nla; ncr_session_t ses; /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } fprintf(stdout, "Tests of hash cloning\n"); for (hv = hash_vectors; hv < hash_vectors + sizeof(hash_vectors) / sizeof(hash_vectors[0]); hv++) { size_t algo_size; algo_size = strlen(hv->algorithm) + 1; fprintf(stdout, "\t%s:\n", hv->algorithm); /* import key */ if (hv->key != NULL) { nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = hv->key; kimport.f.data_size = hv->key_size; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE); ncr_put(&nla, NCR_ATTR_ALGORITHM, hv->algorithm, algo_size); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } } /* Initialize a session */ nla = NCR_INIT(kinit); kinit.f.op = hv->op; ncr_put_u32(&nla, NCR_ATTR_KEY, hv->key != NULL ? key : NCR_KEY_INVALID); ncr_put(&nla, NCR_ATTR_ALGORITHM, hv->algorithm, algo_size); NCR_FINISH(kinit, nla); ses = ioctl(cfd, NCRIO_SESSION_INIT, &kinit); if (ses < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_INIT)"); return 1; } /* Submit half of the data */ nla = NCR_INIT(kupdate); kupdate.f.ses = ses; ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, hv->plaintext, hv->plaintext_size / 2); NCR_FINISH(kupdate, nla); if (ioctl(cfd, NCRIO_SESSION_UPDATE, &kupdate)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_UPDATE)"); return 1; } /* Clone a session, submit the other half, verify. */ nla = NCR_INIT(kclone); kclone.f.op = hv->op; ncr_put_u32(&nla, NCR_ATTR_SESSION_CLONE_FROM, ses); ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, hv->plaintext + hv->plaintext_size / 2, hv->plaintext_size - hv->plaintext_size / 2); ncr_put_session_output_buffer(&nla, NCR_ATTR_FINAL_OUTPUT_BUFFER, data, sizeof(data), &data_size); NCR_FINISH(kclone, nla); if (ioctl(cfd, NCRIO_SESSION_ONCE, &kclone)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } if (data_size != hv->output_size || memcmp(data, hv->output, hv->output_size) != 0) { fprintf(stderr, "HASH test vector %td failed!\n", hv - hash_vectors); fprintf(stderr, "Output[%zu]: ", data_size); for (j = 0; j < data_size; j++) fprintf(stderr, "%.2x:", (int)data[j]); fprintf(stderr, "\n"); fprintf(stderr, "Expected[%d]: ", hv->output_size); for (j = 0; j < hv->output_size; j++) fprintf(stderr, "%.2x:", (int)hv->output[j]); fprintf(stderr, "\n"); return 1; } /* Submit the other half to the original session, verify. */ nla = NCR_INIT(kfinal); kfinal.f.ses = ses; ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, hv->plaintext + hv->plaintext_size / 2, hv->plaintext_size - hv->plaintext_size / 2); ncr_put_session_output_buffer(&nla, NCR_ATTR_FINAL_OUTPUT_BUFFER, data, sizeof(data), &data_size); NCR_FINISH(kfinal, nla); if (ioctl(cfd, NCRIO_SESSION_FINAL, &kfinal)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_FINAL)"); return 1; } if (data_size != hv->output_size || memcmp(data, hv->output, hv->output_size) != 0) { fprintf(stderr, "HASH test vector %td failed!\n", hv - hash_vectors); fprintf(stderr, "Output[%zu]: ", data_size); for (j = 0; j < data_size; j++) fprintf(stderr, "%.2x:", (int)data[j]); fprintf(stderr, "\n"); fprintf(stderr, "Expected[%d]: ", hv->output_size); for (j = 0; j < hv->output_size; j++) fprintf(stderr, "%.2x:", (int)hv->output[j]); fprintf(stderr, "\n"); return 1; } } fprintf(stdout, "\n"); return 0; } static int test_ncr_hash_key(int cfd) { ncr_key_t key; ncr_session_t ses; NCR_STRUCT(ncr_key_import) kimport; uint8_t data[HASH_DATA_SIZE]; int j; size_t data_size, algo_size; NCR_STRUCT(ncr_session_init) op_init; NCR_STRUCT(ncr_session_update) op_up_data; NCR_STRUCT(ncr_session_update) op_up_key; NCR_STRUCT(ncr_session_final) op_final; struct nlattr *nla; const uint8_t *output = (void *) "\xe2\xd7\x2c\x2e\x14\xad\x97\xc8\xd2\xdb\xce\xd8\xb3\x52\x9f\x1c\xb3\x2c\x5c\xec"; /* convert it to key */ key = ioctl(cfd, NCRIO_KEY_INIT); if (key == -1) { perror("ioctl(NCRIO_KEY_INIT)"); return 1; } fprintf(stdout, "Tests on Hashes of Keys\n"); fprintf(stdout, "\t%s:\n", hash_vectors[0].algorithm); algo_size = strlen(hash_vectors[0].algorithm) + 1; /* import key */ nla = NCR_INIT(kimport); kimport.f.key = key; kimport.f.data = hash_vectors[0].plaintext; kimport.f.data_size = hash_vectors[0].plaintext_size; ncr_put(&nla, NCR_ATTR_KEY_ID, "ab", 2); ncr_put_u32(&nla, NCR_ATTR_KEY_TYPE, NCR_KEY_TYPE_SECRET); ncr_put_u32(&nla, NCR_ATTR_KEY_FLAGS, NCR_KEY_FLAG_EXPORTABLE | NCR_KEY_FLAG_HASHABLE); ncr_put(&nla, NCR_ATTR_ALGORITHM, hash_vectors[0].algorithm, algo_size); NCR_FINISH(kimport, nla); if (ioctl(cfd, NCRIO_KEY_IMPORT, &kimport)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_IMPORT)"); return 1; } nla = NCR_INIT(op_init); op_init.f.op = hash_vectors[0].op; ncr_put(&nla, NCR_ATTR_ALGORITHM, hash_vectors[0].algorithm, algo_size); NCR_FINISH(op_init, nla); ses = ioctl(cfd, NCRIO_SESSION_INIT, &op_init); if (ses < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_INIT)"); return 1; } nla = NCR_INIT(op_up_data); op_up_data.f.ses = ses; ncr_put_session_input_data(&nla, NCR_ATTR_UPDATE_INPUT_DATA, hash_vectors[0].plaintext, hash_vectors[0].plaintext_size); NCR_FINISH(op_up_data, nla); if (ioctl(cfd, NCRIO_SESSION_UPDATE, &op_up_data)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_UPDATE)"); return 1; } nla = NCR_INIT(op_up_key); op_up_key.f.ses = ses; ncr_put_u32(&nla, NCR_ATTR_UPDATE_INPUT_KEY_AS_DATA, key); NCR_FINISH(op_up_key, nla); if (ioctl(cfd, NCRIO_SESSION_UPDATE, &op_up_key)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_UPDATE)"); return 1; } nla = NCR_INIT(op_final); op_final.f.ses = ses; ncr_put_session_output_buffer(&nla, NCR_ATTR_FINAL_OUTPUT_BUFFER, data, sizeof(data), &data_size); NCR_FINISH(op_final, nla); if (ioctl(cfd, NCRIO_SESSION_FINAL, &op_final)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_FINAL)"); return 1; } if (data_size != hash_vectors[0].output_size || memcmp(data, output, hash_vectors[0].output_size) != 0) { fprintf(stderr, "HASH test vector %d failed!\n", 0); fprintf(stderr, "Output[%d]: ", (int)data_size); for (j = 0; j < data_size; j++) fprintf(stderr, "%.2x:", (int)data[j]); fprintf(stderr, "\n"); fprintf(stderr, "Expected[%d]: ", hash_vectors[0].output_size); for (j = 0; j < hash_vectors[0].output_size; j++) fprintf(stderr, "%.2x:", (int)output[j]); fprintf(stderr, "\n"); return 1; } fprintf(stdout, "\n"); return 0; } int main() { int fd = -1; /* Open the crypto device */ fd = open("/dev/crypto", O_RDWR, 0); if (fd < 0) { perror("open(/dev/crypto)"); return 1; } if (test_ncr_key(fd)) return 1; if (test_ncr_aes(fd)) return 1; if (test_ncr_hash(fd)) return 1; if (test_ncr_hash_clone(fd)) return 1; if (test_ncr_hash_key(fd)) return 1; if (test_ncr_wrap_key(fd)) return 1; if (test_ncr_wrap_key2(fd)) return 1; if (test_ncr_store_wrap_key(fd)) return 1; /* Close the original descriptor */ if (close(fd)) { perror("close(fd)"); return 1; } return 0; }