/* * Demo on how to use /dev/crypto device for HMAC. * * Placed under public domain. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../ncr.h" #include #include #include #if GNUTLS_VERSION_NUMBER >= 0x020b00 # include #endif #define DATA_SIZE 4096 #define ALIGN_NL __attribute__((aligned(NLA_ALIGNTO))) static void print_hex_datum (gnutls_datum_t * dat) { unsigned int j; #define SPACE "\t" fprintf (stdout, "\n" SPACE); for (j = 0; j < dat->size; j++) { fprintf (stdout, "%.2x:", (unsigned char) dat->data[j]); if ((j + 1) % 15 == 0) fprintf (stdout, "\n" SPACE); } fprintf (stdout, "\n"); } static void print_dsa_pkey (gnutls_datum_t * x, gnutls_datum_t * y, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g) { if (x) { fprintf (stdout, "private key:"); print_hex_datum (x); } fprintf (stdout, "public key:"); print_hex_datum (y); fprintf (stdout, "p:"); print_hex_datum (p); fprintf (stdout, "q:"); print_hex_datum (q); fprintf (stdout, "g:"); print_hex_datum (g); } static void print_rsa_pkey (gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * u, gnutls_datum_t * exp1, gnutls_datum_t *exp2) { fprintf (stdout, "modulus:"); print_hex_datum (m); fprintf (stdout, "public exponent:"); print_hex_datum (e); if (d) { fprintf (stdout, "private exponent:"); print_hex_datum (d); fprintf (stdout, "prime1:"); print_hex_datum (p); fprintf (stdout, "prime2:"); print_hex_datum (q); fprintf (stdout, "coefficient:"); print_hex_datum (u); if (exp1 && exp2) { fprintf (stdout, "exp1:"); print_hex_datum (exp1); fprintf (stdout, "exp2:"); print_hex_datum (exp2); } } } static const char * raw_to_string (const unsigned char *raw, size_t raw_size) { static char buf[1024]; size_t i; if (raw_size == 0) return NULL; if (raw_size * 3 + 1 >= sizeof (buf)) return NULL; for (i = 0; i < raw_size; i++) { sprintf (&(buf[i * 3]), "%02X%s", raw[i], (i == raw_size - 1) ? "" : ":"); } buf[sizeof (buf) - 1] = '\0'; return buf; } int privkey_info (void* data, int data_size, int verbose) { gnutls_x509_privkey_t key; size_t size; int ret; gnutls_datum_t der; unsigned char buffer[5*1024]; const char *cprint; ret = gnutls_x509_privkey_init (&key); if (ret < 0) { fprintf(stderr, "error in privkey_init\n"); return 1; } der.data = data; der.size = data_size; ret = gnutls_x509_privkey_import (key, &der, GNUTLS_X509_FMT_DER); if (ret < 0) { fprintf(stderr, "unable to import privkey\n"); return 1; } if (verbose > 0) { /* Public key algorithm */ fprintf (stdout, "Public Key Info:\n"); ret = gnutls_x509_privkey_get_pk_algorithm (key); fprintf (stdout, "\tPublic Key Algorithm: "); cprint = gnutls_pk_algorithm_get_name (ret); fprintf (stdout, "%s\n", cprint ? cprint : "Unknown"); /* Print the raw public and private keys */ if (ret == GNUTLS_PK_RSA) { gnutls_datum_t m, e, d, p, q, u, exp1={NULL,0}, exp2={NULL,0}; #if GNUTLS_VERSION_NUMBER >= 0x020b00 ret = gnutls_x509_privkey_export_rsa_raw2 (key, &m, &e, &d, &p, &q, &u, &exp1, &exp2); #else ret = gnutls_x509_privkey_export_rsa_raw (key, &m, &e, &d, &p, &q, &u); #endif if (ret < 0) fprintf (stderr, "Error in key RSA data export: %s\n", gnutls_strerror (ret)); else { print_rsa_pkey (&m, &e, &d, &p, &q, &u, &exp1, &exp2); gnutls_free (m.data); gnutls_free (e.data); gnutls_free (d.data); gnutls_free (p.data); gnutls_free (q.data); gnutls_free (u.data); gnutls_free (exp1.data); gnutls_free (exp2.data); } } else if (ret == GNUTLS_PK_DSA) { gnutls_datum_t p, q, g, y, x; ret = gnutls_x509_privkey_export_dsa_raw (key, &p, &q, &g, &y, &x); if (ret < 0) fprintf (stderr, "Error in key DSA data export: %s\n", gnutls_strerror (ret)); else { print_dsa_pkey (&x, &y, &p, &q, &g); gnutls_free (x.data); gnutls_free (y.data); gnutls_free (p.data); gnutls_free (q.data); gnutls_free (g.data); } } fprintf (stdout, "\n"); size = sizeof (buffer); if ((ret = gnutls_x509_privkey_get_key_id (key, 0, buffer, &size)) < 0) { fprintf (stderr, "Error in key id calculation: %s\n", gnutls_strerror (ret)); } else { fprintf (stdout, "Public Key ID: %s\n", raw_to_string (buffer, size)); } size = sizeof (buffer); ret = gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &size); if (ret < 0) { fprintf(stderr, "Error in privkey_export\n"); return 1; } fprintf (stdout, "\n%s\n", buffer); } gnutls_x509_privkey_deinit (key); return 0; } int pubkey_info(void* data, int data_size, int verbose) { #if GNUTLS_VERSION_NUMBER >= 0x020b00 gnutls_pubkey_t key; size_t size; int ret; gnutls_datum_t der; unsigned char buffer[5*1024]; const char *cprint; ret = gnutls_pubkey_init (&key); if (ret < 0) { fprintf(stderr, "error in pubkey_init\n"); return 1; } der.data = data; der.size = data_size; ret = gnutls_pubkey_import (key, &der, GNUTLS_X509_FMT_DER); if (ret < 0) { fprintf(stderr, "unable to import pubkey\n"); return 1; } if (verbose > 0) { /* Public key algorithm */ fprintf (stdout, "Public Key Info:\n"); ret = gnutls_pubkey_get_pk_algorithm (key, NULL); fprintf (stdout, "\tPublic Key Algorithm: "); cprint = gnutls_pk_algorithm_get_name (ret); fprintf (stdout, "%s\n", cprint ? cprint : "Unknown"); /* Print the raw public and private keys */ if (ret == GNUTLS_PK_RSA) { gnutls_datum_t m, e; ret = gnutls_pubkey_get_pk_rsa_raw (key, &m, &e); if (ret < 0) fprintf (stderr, "Error in key RSA data export: %s\n", gnutls_strerror (ret)); else { print_rsa_pkey (&m, &e, NULL, NULL, NULL, NULL, NULL, NULL); gnutls_free (m.data); gnutls_free (e.data); } } else if (ret == GNUTLS_PK_DSA) { gnutls_datum_t p, q, g, y; ret = gnutls_pubkey_get_pk_dsa_raw (key, &p, &q, &g, &y); if (ret < 0) fprintf (stderr, "Error in key DSA data export: %s\n", gnutls_strerror (ret)); else { print_dsa_pkey (NULL, &y, &p, &q, &g); gnutls_free (y.data); gnutls_free (p.data); gnutls_free (q.data); gnutls_free (g.data); } } fprintf (stdout, "\n"); size = sizeof (buffer); if ((ret = gnutls_pubkey_get_key_id (key, 0, buffer, &size)) < 0) { fprintf (stderr, "Error in key id calculation: %s\n", gnutls_strerror (ret)); } else { fprintf (stdout, "Public Key ID: %s\n", raw_to_string (buffer, size)); } size = sizeof (buffer); ret = gnutls_pubkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &size); if (ret < 0) { fprintf(stderr, "Error in privkey_export\n"); return 1; } fprintf (stdout, "\n%s\n", buffer); } gnutls_pubkey_deinit (key); #endif return 0; } /* Diffie Hellman */ const char dh_params_txt[] = "-----BEGIN DH PARAMETERS-----\n"\ "MIGHAoGBAKMox0/IjuGqSaGMJESYMhdmXiTe1pY8gkSzWZ/ktWaUdaYAzgAZp7r3\n"\ "OCh68YslS9Oi7/UQjmBbgGuOucMKgq3tYeYzY8G2epIuIzM4TAogaEqwkdSrXlth\n"\ "MMsP2FhLhHg8m6V6iItitnMOz9r8t3BEf04GRlfzgZraM0gUUwTjAgEF\n"\ "-----END DH PARAMETERS-----\n"; static int test_ncr_dh(int cfd) { struct __attribute__((packed)) { struct ncr_key_generate_pair f; struct nlattr algo_head ALIGN_NL; uint32_t algo ALIGN_NL; struct nlattr flags_head ALIGN_NL; uint32_t flags ALIGN_NL; unsigned char buffer[DATA_SIZE] ALIGN_NL; } kgen; struct nlattr *nla; ncr_key_t private1, public1, public2, private2; ncr_key_t z1, z2; int ret; gnutls_datum g, p, params; gnutls_dh_params_t dhp; unsigned char y1[1024], y2[1024]; ssize_t y1_size, y2_size; struct ncr_key_export kexport; struct __attribute__((packed)) { struct ncr_key_derive f; struct nlattr algo_head ALIGN_NL; uint32_t algo ALIGN_NL; struct nlattr flags_head ALIGN_NL; uint32_t flags ALIGN_NL; struct nlattr public_head ALIGN_NL; unsigned char public[DATA_SIZE] ALIGN_NL; } kderive; fprintf(stdout, "Tests on DH key exchange:"); fflush(stdout); params.data = (void*)dh_params_txt; params.size = sizeof(dh_params_txt)-1; ret = gnutls_dh_params_init(&dhp); if (ret < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "gnutls: %s\n", gnutls_strerror(ret)); return 1; } ret = gnutls_dh_params_import_pkcs3(dhp, ¶ms, GNUTLS_X509_FMT_PEM); if (ret < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "gnutls: %s\n", gnutls_strerror(ret)); return 1; } ret = gnutls_dh_params_export_raw(dhp, &p, &g, NULL); if (ret < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "gnutls: %s\n", gnutls_strerror(ret)); return 1; } /* generate a DH key */ private1 = ioctl(cfd, NCRIO_KEY_INIT); if (private1 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } public1 = ioctl(cfd, NCRIO_KEY_INIT); if (public1 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kgen.f, 0, sizeof(kgen.f)); kgen.f.private_key = private1; kgen.f.public_key = public1; kgen.algo_head.nla_len = NLA_HDRLEN + sizeof(kgen.algo); kgen.algo_head.nla_type = NCR_ATTR_ALGORITHM; kgen.algo = NCR_ALG_DH; kgen.flags_head.nla_len = NLA_HDRLEN + sizeof(kgen.flags); kgen.flags_head.nla_type = NCR_ATTR_KEY_FLAGS; kgen.flags = NCR_KEY_FLAG_EXPORTABLE; nla = (struct nlattr *)kgen.buffer; nla->nla_len = NLA_HDRLEN + p.size; nla->nla_type = NCR_ATTR_DH_PRIME; memcpy((char *)nla + NLA_HDRLEN, p.data, p.size); nla = (struct nlattr *)((char *)nla + NLA_ALIGN(nla->nla_len)); nla->nla_len = NLA_HDRLEN + g.size; nla->nla_type = NCR_ATTR_DH_BASE; memcpy((char *)nla + NLA_HDRLEN, g.data, g.size); nla = (struct nlattr *)((char *)nla + NLA_ALIGN(nla->nla_len)); kgen.f.input_size = (char *)nla - (char *)&kgen; assert(kgen.f.input_size <= sizeof(kgen)); if (ioctl(cfd, NCRIO_KEY_GENERATE_PAIR, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE_PAIR)"); return 1; } /* generate another DH key */ private2 = ioctl(cfd, NCRIO_KEY_INIT); if (private2 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } public2 = ioctl(cfd, NCRIO_KEY_INIT); if (public2 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kgen.f, 0, sizeof(kgen.f)); kgen.f.private_key = private2; kgen.f.public_key = public2; kgen.algo_head.nla_len = NLA_HDRLEN + sizeof(kgen.algo); kgen.algo_head.nla_type = NCR_ATTR_ALGORITHM; kgen.algo = NCR_ALG_DH; kgen.flags_head.nla_len = NLA_HDRLEN + sizeof(kgen.flags); kgen.flags_head.nla_type = NCR_ATTR_KEY_FLAGS; kgen.flags = NCR_KEY_FLAG_EXPORTABLE; nla = (struct nlattr *)kgen.buffer; nla->nla_len = NLA_HDRLEN + p.size; nla->nla_type = NCR_ATTR_DH_PRIME; memcpy((char *)nla + NLA_HDRLEN, p.data, p.size); nla = (struct nlattr *)((char *)nla + NLA_ALIGN(nla->nla_len)); nla->nla_len = NLA_HDRLEN + g.size; nla->nla_type = NCR_ATTR_DH_BASE; memcpy((char *)nla + NLA_HDRLEN, g.data, g.size); nla = (struct nlattr *)((char *)nla + NLA_ALIGN(nla->nla_len)); kgen.f.input_size = (char *)nla - (char *)&kgen; assert(kgen.f.input_size <= sizeof(kgen)); if (ioctl(cfd, NCRIO_KEY_GENERATE_PAIR, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE_PAIR)"); return 1; } /* export y1=g^x1 */ memset(&kexport, 0, sizeof(kexport)); kexport.key = public1; kexport.buffer = y1; kexport.buffer_size = sizeof(y1); y1_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (y1_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } /* export y2=g^x2 */ memset(&kexport, 0, sizeof(kexport)); kexport.key = public2; kexport.buffer = y2; kexport.buffer_size = sizeof(y2); y2_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (y2_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } /* z1=y1^x2 */ z1 = ioctl(cfd, NCRIO_KEY_INIT); if (z1 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kderive.f, 0, sizeof(kderive.f)); kderive.f.input_key = private1; kderive.f.new_key = z1; kderive.algo_head.nla_len = NLA_HDRLEN + sizeof(kderive.algo); kderive.algo_head.nla_type = NCR_ATTR_DERIVATION_ALGORITHM; kderive.algo = NCR_DERIVE_DH; kderive.flags_head.nla_len = NLA_HDRLEN + sizeof(kderive.flags); kderive.flags_head.nla_type = NCR_ATTR_KEY_FLAGS; kderive.flags = NCR_KEY_FLAG_EXPORTABLE; kderive.public_head.nla_len = NLA_HDRLEN + y2_size; kderive.public_head.nla_type = NCR_ATTR_DH_PUBLIC; memcpy(kderive.public, y2, y2_size); nla = (struct nlattr *)((char *)&kderive.public_head + NLA_ALIGN(kderive.public_head.nla_len)); kderive.f.input_size = (char *)nla - (char *)&kderive; assert(kderive.f.input_size <= sizeof(kderive)); if (ioctl(cfd, NCRIO_KEY_DERIVE, &kderive)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_DERIVE)"); return 1; } /* z2=y2^x1 */ z2 = ioctl(cfd, NCRIO_KEY_INIT); if (z2 == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kderive.f, 0, sizeof(kderive.f)); kderive.f.input_key = private2; kderive.f.new_key = z2; kderive.algo_head.nla_len = NLA_HDRLEN + sizeof(kderive.algo); kderive.algo_head.nla_type = NCR_ATTR_DERIVATION_ALGORITHM; kderive.algo = NCR_DERIVE_DH; kderive.flags_head.nla_len = NLA_HDRLEN + sizeof(kderive.flags); kderive.flags_head.nla_type = NCR_ATTR_KEY_FLAGS; kderive.flags = NCR_KEY_FLAG_EXPORTABLE; kderive.public_head.nla_len = NLA_HDRLEN + y2_size; kderive.public_head.nla_type = NCR_ATTR_DH_PUBLIC; memcpy(kderive.public, y1, y1_size); nla = (struct nlattr *)((char *)&kderive.public_head + NLA_ALIGN(kderive.public_head.nla_len)); kderive.f.input_size = (char *)nla - (char *)&kderive; assert(kderive.f.input_size <= sizeof(kderive)); if (ioctl(cfd, NCRIO_KEY_DERIVE, &kderive)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_DERIVE)"); return 1; } /* z1==z2 */ memset(&kexport, 0, sizeof(kexport)); kexport.key = z1; kexport.buffer = y1; kexport.buffer_size = sizeof(y1); y1_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (y1_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } memset(&kexport, 0, sizeof(kexport)); kexport.key = z2; kexport.buffer = y2; kexport.buffer_size = sizeof(y2); y2_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (y2_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } if (y1_size == 0 || y1_size != y2_size || memcmp(y1, y2, y1_size) != 0) { int i; fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "Output in DH does not match (%d, %d)!\n", (int)y1_size, (int)y2_size); fprintf(stderr, "Key1[%d]: ", (int) y1_size); for(i=0;i= 0 && i == 2) { fprintf(stderr, "Error[%d-%d]: %s:%d\n", i, sizes[i], __func__, __LINE__); /* wrapping shouldn't have been allowed */ return 1; } if (ret >= 0) { data_size = ret; /* try unwrapping */ memset(&kunwrap.f, 0, sizeof(kunwrap.f)); kunwrap.f.input_size = sizeof(kunwrap); kunwrap.f.wrapping_key = key; kunwrap.f.dest_key = privkey; kunwrap.f.data = data; kunwrap.f.data_size = data_size; kunwrap.wrap_algo_head.nla_len = NLA_HDRLEN + sizeof(kunwrap.wrap_algo); kunwrap.wrap_algo_head.nla_type = NCR_ATTR_WRAPPING_ALGORITHM; kunwrap.wrap_algo = NCR_WALG_AES_RFC5649; kunwrap.algo_head.nla_len = NLA_HDRLEN + sizeof(kunwrap.algo); kunwrap.algo_head.nla_type = NCR_ATTR_ALGORITHM; kunwrap.algo = NCR_ALG_RSA; ret = ioctl(cfd, NCRIO_KEY_UNWRAP, &kunwrap); if (ret) { fprintf(stderr, "Error[%d-%d]: %s:%d\n", i, sizes[i], __func__, __LINE__); return 1; } } fprintf(stdout, "*"); fflush(stdout); } fprintf(stdout, " Success\n"); return 0; } #define RSA_ENCRYPT_SIZE 32 static int rsa_key_encrypt(int cfd, ncr_key_t privkey, ncr_key_t pubkey, int oaep) { struct ncr_session_once_op_st nop; uint8_t data[DATA_SIZE]; uint8_t vdata[RSA_ENCRYPT_SIZE]; int enc_size; fprintf(stdout, "Tests on RSA (%s) key encryption:", (oaep!=0)?"OAEP":"PKCS V1.5"); fflush(stdout); memset(data, 0x3, sizeof(data)); memcpy(vdata, data, sizeof(vdata)); /* do encryption */ memset(&nop, 0, sizeof(nop)); nop.init.algorithm = NCR_ALG_RSA; nop.init.key = pubkey; if (oaep) { nop.init.params.params.rsa.type = RSA_PKCS1_OAEP; nop.init.params.params.rsa.oaep_hash = NCR_ALG_SHA1; } else { nop.init.params.params.rsa.type = RSA_PKCS1_V1_5; } nop.init.op = NCR_OP_ENCRYPT; nop.op.data.udata.input = data; nop.op.data.udata.input_size = RSA_ENCRYPT_SIZE; nop.op.data.udata.output = data; nop.op.data.udata.output_size = sizeof(data); nop.op.type = NCR_DIRECT_DATA; if (ioctl(cfd, NCRIO_SESSION_ONCE, &nop)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } enc_size = nop.op.data.udata.output_size; /* decrypt data */ memset(&nop, 0, sizeof(nop)); nop.init.algorithm = NCR_ALG_RSA; nop.init.key = privkey; nop.init.op = NCR_OP_DECRYPT; if (oaep) { nop.init.params.params.rsa.type = RSA_PKCS1_OAEP; nop.init.params.params.rsa.oaep_hash = NCR_ALG_SHA1; } else { nop.init.params.params.rsa.type = RSA_PKCS1_V1_5; } nop.op.data.udata.input = data; nop.op.data.udata.input_size = enc_size; nop.op.data.udata.output = data; nop.op.data.udata.output_size = sizeof(data); nop.op.type = NCR_DIRECT_DATA; if (ioctl(cfd, NCRIO_SESSION_ONCE, &nop)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } if (memcmp(vdata, data, sizeof(vdata)) != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); fprintf(stderr, "Decrypted data do not match!\n"); return 1; } fprintf(stdout, " Success\n"); return 0; } #define DATA_TO_SIGN 52 static int rsa_key_sign_verify(int cfd, ncr_key_t privkey, ncr_key_t pubkey, int pss) { struct ncr_session_once_op_st nop; uint8_t data[DATA_SIZE]; uint8_t sig[DATA_SIZE]; int sig_size; fprintf(stdout, "Tests on RSA (%s) key signature:", (pss!=0)?"PSS":"PKCS V1.5"); fflush(stdout); memset(data, 0x3, sizeof(data)); /* sign datad */ memset(&nop, 0, sizeof(nop)); nop.init.algorithm = NCR_ALG_RSA; nop.init.key = privkey; nop.init.params.params.rsa.type = (pss!=0)?RSA_PKCS1_PSS:RSA_PKCS1_V1_5; nop.init.params.params.rsa.sign_hash = NCR_ALG_SHA1; nop.init.op = NCR_OP_SIGN; nop.op.data.udata.input = data; nop.op.data.udata.input_size = DATA_TO_SIGN; nop.op.data.udata.output = sig; nop.op.data.udata.output_size = sizeof(sig); nop.op.type = NCR_DIRECT_DATA; if (ioctl(cfd, NCRIO_SESSION_ONCE, &nop)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } sig_size = nop.op.data.udata.output_size; /* verify signature */ memset(&nop, 0, sizeof(nop)); nop.init.algorithm = NCR_ALG_RSA; nop.init.key = pubkey; nop.init.params.params.rsa.type = (pss!=0)?RSA_PKCS1_PSS:RSA_PKCS1_V1_5; nop.init.params.params.rsa.sign_hash = NCR_ALG_SHA1; memset(data, 0x3, sizeof(data)); nop.init.op = NCR_OP_VERIFY; nop.op.data.udata.input = data; nop.op.data.udata.input_size = DATA_TO_SIGN; nop.op.data.udata.output = sig; nop.op.data.udata.output_size = sig_size; nop.op.type = NCR_DIRECT_DATA; if (ioctl(cfd, NCRIO_SESSION_ONCE, &nop)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } if (nop.op.err == NCR_SUCCESS) fprintf(stdout, " Success\n"); else { fprintf(stdout, " Verification Failed!\n"); return 1; } return 0; } static int dsa_key_sign_verify(int cfd, ncr_key_t privkey, ncr_key_t pubkey) { struct ncr_session_once_op_st nop; uint8_t data[DATA_SIZE]; uint8_t sig[DATA_SIZE]; int sig_size; fprintf(stdout, "Tests on DSA key signature:"); fflush(stdout); memset(data, 0x3, sizeof(data)); /* sign datad */ memset(&nop, 0, sizeof(nop)); nop.init.algorithm = NCR_ALG_DSA; nop.init.key = privkey; nop.init.params.params.dsa.sign_hash = NCR_ALG_SHA1; nop.init.op = NCR_OP_SIGN; nop.op.data.udata.input = data; nop.op.data.udata.input_size = DATA_TO_SIGN; nop.op.data.udata.output = sig; nop.op.data.udata.output_size = sizeof(sig); nop.op.type = NCR_DIRECT_DATA; if (ioctl(cfd, NCRIO_SESSION_ONCE, &nop)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } sig_size = nop.op.data.udata.output_size; /* verify signature */ memset(&nop, 0, sizeof(nop)); nop.init.algorithm = NCR_ALG_DSA; nop.init.key = pubkey; nop.init.params.params.dsa.sign_hash = NCR_ALG_SHA1; nop.init.op = NCR_OP_VERIFY; nop.op.data.udata.input = data; nop.op.data.udata.input_size = DATA_TO_SIGN; nop.op.data.udata.output = sig; nop.op.data.udata.output_size = sizeof(sig); nop.op.type = NCR_DIRECT_DATA; if (ioctl(cfd, NCRIO_SESSION_ONCE, &nop)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_SESSION_ONCE)"); return 1; } if (nop.op.err == NCR_SUCCESS) fprintf(stdout, " Success\n"); else { fprintf(stdout, " Verification Failed!\n"); return 1; } return 0; } static int test_ncr_rsa(int cfd) { int ret; struct __attribute__((packed)) { struct ncr_key_generate_pair f; struct nlattr algo_head ALIGN_NL; uint32_t algo ALIGN_NL; struct nlattr flags_head ALIGN_NL; uint32_t flags ALIGN_NL; struct nlattr bits_head ALIGN_NL; uint32_t bits ALIGN_NL; } kgen; ncr_key_t pubkey, privkey; struct ncr_key_export kexport; uint8_t data[DATA_SIZE]; int data_size; fprintf(stdout, "Tests on RSA key generation:"); fflush(stdout); /* convert it to key */ privkey = ioctl(cfd, NCRIO_KEY_INIT); if (privkey == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } pubkey = ioctl(cfd, NCRIO_KEY_INIT); if (pubkey == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kgen, 0, sizeof(kgen)); kgen.f.input_size = sizeof(kgen); kgen.f.private_key = privkey; kgen.f.public_key = pubkey; kgen.algo_head.nla_len = NLA_HDRLEN + sizeof(kgen.algo); kgen.algo_head.nla_type = NCR_ATTR_ALGORITHM; kgen.algo = NCR_ALG_RSA; kgen.flags_head.nla_len = NLA_HDRLEN + sizeof(kgen.flags); kgen.flags_head.nla_type = NCR_ATTR_KEY_FLAGS; kgen.flags = NCR_KEY_FLAG_EXPORTABLE|NCR_KEY_FLAG_WRAPPABLE; kgen.bits_head.nla_len = NLA_HDRLEN + sizeof(kgen.bits); kgen.bits_head.nla_type = NCR_ATTR_RSA_MODULUS_BITS; kgen.bits = 1024; if (ioctl(cfd, NCRIO_KEY_GENERATE_PAIR, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE_PAIR)"); return 1; } /* export the private key */ memset(data, 0, sizeof(data)); memset(&kexport, 0, sizeof(kexport)); kexport.key = privkey; kexport.buffer = data; kexport.buffer_size = sizeof(data); data_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (data_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } ret = privkey_info(data, data_size, 0); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } /* export the public key */ memset(data, 0, sizeof(data)); memset(&kexport, 0, sizeof(kexport)); kexport.key = pubkey; kexport.buffer = data; kexport.buffer_size = sizeof(data); data_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (data_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } ret = pubkey_info(data, data_size, 0); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } fprintf(stdout, " Success\n"); ret = rsa_key_sign_verify(cfd, privkey, pubkey, 1); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } ret = rsa_key_sign_verify(cfd, privkey, pubkey, 0); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } ret = rsa_key_encrypt(cfd, privkey, pubkey, 0); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } ret = rsa_key_encrypt(cfd, privkey, pubkey, 1); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } return 0; } static int test_ncr_dsa(int cfd) { int ret; struct __attribute__((packed)) { struct ncr_key_generate_pair f; struct nlattr algo_head ALIGN_NL; uint32_t algo ALIGN_NL; struct nlattr flags_head ALIGN_NL; uint32_t flags ALIGN_NL; struct nlattr q_bits_head ALIGN_NL; uint32_t q_bits ALIGN_NL; struct nlattr p_bits_head ALIGN_NL; uint32_t p_bits ALIGN_NL; } kgen; ncr_key_t pubkey, privkey; struct ncr_key_export kexport; uint8_t data[DATA_SIZE]; int data_size; fprintf(stdout, "Tests on DSA key generation:"); fflush(stdout); /* convert it to key */ privkey = ioctl(cfd, NCRIO_KEY_INIT); if (privkey == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } pubkey = ioctl(cfd, NCRIO_KEY_INIT); if (pubkey == -1) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_INIT)"); return 1; } memset(&kgen, 0, sizeof(kgen)); kgen.f.input_size = sizeof(kgen); kgen.f.private_key = privkey; kgen.f.public_key = pubkey; kgen.algo_head.nla_len = NLA_HDRLEN + sizeof(kgen.algo); kgen.algo_head.nla_type = NCR_ATTR_ALGORITHM; kgen.algo = NCR_ALG_DSA; kgen.flags_head.nla_len = NLA_HDRLEN + sizeof(kgen.flags); kgen.flags_head.nla_type = NCR_ATTR_KEY_FLAGS; kgen.flags = NCR_KEY_FLAG_EXPORTABLE|NCR_KEY_FLAG_WRAPPABLE; kgen.q_bits_head.nla_len = NLA_HDRLEN + sizeof(kgen.q_bits); kgen.q_bits_head.nla_type = NCR_ATTR_DSA_Q_BITS; kgen.q_bits = 160; kgen.p_bits_head.nla_len = NLA_HDRLEN + sizeof(kgen.p_bits); kgen.p_bits_head.nla_type = NCR_ATTR_DSA_P_BITS; kgen.p_bits = 1024; if (ioctl(cfd, NCRIO_KEY_GENERATE_PAIR, &kgen)) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_GENERATE_PAIR)"); return 1; } memset(data, 0, sizeof(data)); memset(&kexport, 0, sizeof(kexport)); kexport.key = privkey; kexport.buffer = data; kexport.buffer_size = sizeof(data); data_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (data_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } ret = privkey_info(data, data_size, 0); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } /* export the public key */ memset(data, 0, sizeof(data)); memset(&kexport, 0, sizeof(kexport)); kexport.key = pubkey; kexport.buffer = data; kexport.buffer_size = sizeof(data); data_size = ioctl(cfd, NCRIO_KEY_EXPORT, &kexport); if (data_size < 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); perror("ioctl(NCRIO_KEY_EXPORT)"); return 1; } ret = pubkey_info(data, data_size, 0); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } fprintf(stdout, " Success\n"); ret = dsa_key_sign_verify(cfd, privkey, pubkey); if (ret != 0) { fprintf(stderr, "Error: %s:%d\n", __func__, __LINE__); return 1; } return 0; } int main() { int fd = -1; gnutls_global_init(); /* actually test if the initial close * will really delete all used lists */ fd = open("/dev/crypto", O_RDWR, 0); if (fd < 0) { perror("open(/dev/crypto)"); return 1; } if (test_ncr_dh(fd)) return 1; if (test_ncr_rsa(fd)) return 1; if (test_ncr_dsa(fd)) return 1; if (test_ncr_wrap_key3(fd)) return 1; /* Close the original descriptor */ if (close(fd)) { perror("close(fd)"); return 1; } return 0; }