diff options
Diffstat (limited to 'libtommath/tommath.h')
-rw-r--r-- | libtommath/tommath.h | 323 |
1 files changed, 159 insertions, 164 deletions
diff --git a/libtommath/tommath.h b/libtommath/tommath.h index 3fa7ae8..7b154a6 100644 --- a/libtommath/tommath.h +++ b/libtommath/tommath.h @@ -26,21 +26,21 @@ inline static int rand(void) { - int res; - - get_random_bytes(&res, sizeof(int)); - - return res; + int res; + + get_random_bytes(&res, sizeof(int)); + + return res; } #include <tommath_class.h> #ifndef MIN - #define MIN(x,y) ((x)<(y)?(x):(y)) +#define MIN(x,y) ((x)<(y)?(x):(y)) #endif #ifndef MAX - #define MAX(x,y) ((x)>(y)?(x):(y)) +#define MAX(x,y) ((x)>(y)?(x):(y)) #endif #ifdef __cplusplus @@ -56,7 +56,6 @@ extern "C" { #endif - /* some default configurations. * * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits @@ -65,24 +64,24 @@ extern "C" { * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ - + /* FIXME: This can be improved, but requires to use 128bit division * on 64bit machines, which is not available in kernel now. */ #if BITS_PER_LONG < 32 - typedef uint16_t mp_digit; - typedef uint32_t mp_word; -# define DIGIT_BIT 15 +typedef uint16_t mp_digit; +typedef uint32_t mp_word; +#define DIGIT_BIT 15 #elif BITS_PER_LONG <= 64 - typedef uint32_t mp_digit; - typedef uint64_t mp_word; +typedef uint32_t mp_digit; +typedef uint64_t mp_word; -# define word_div_int(x,y) div_u64((x),(y)) +#define word_div_int(x,y) div_u64((x),(y)) -# define DIGIT_BIT 31 +#define DIGIT_BIT 31 #endif @@ -90,23 +89,22 @@ extern "C" { /* if we could get a way to use an 128 bit integer * in kernel, use this. */ - typedef uint64_t mp_digit; - typedef __uint128_t mp_word; -# define DIGIT_BIT 60 +typedef uint64_t mp_digit; +typedef __uint128_t mp_word; +#define DIGIT_BIT 60 #endif #ifndef word_div_int -# define word_div_int(x,y) ((x)/(y)) +#define word_div_int(x,y) ((x)/(y)) #endif - /* define heap macros */ #ifndef XMALLOC -# define XMALLOC(x) kmalloc(x, GFP_KERNEL) -# define XFREE kfree -# define XREALLOC(x,y) krealloc(x,y, GFP_KERNEL) -# define XCALLOC(x,y) kzalloc(x*y, GPF_KERNEL) +#define XMALLOC(x) kmalloc(x, GFP_KERNEL) +#define XFREE kfree +#define XREALLOC(x,y) krealloc(x,y, GFP_KERNEL) +#define XCALLOC(x,y) kzalloc(x*y, GPF_KERNEL) #endif /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ @@ -119,33 +117,31 @@ extern "C" { #define MP_DIGIT_MAX MP_MASK /* equalities */ -#define MP_LT -1 /* less than */ -#define MP_EQ 0 /* equal to */ -#define MP_GT 1 /* greater than */ +#define MP_LT -1 /* less than */ +#define MP_EQ 0 /* equal to */ +#define MP_GT 1 /* greater than */ -#define MP_ZPOS 0 /* positive integer */ -#define MP_NEG 1 /* negative */ +#define MP_ZPOS 0 /* positive integer */ +#define MP_NEG 1 /* negative */ -#define MP_OKAY 0 /* ok result */ -#define MP_MEM -2 /* out of mem */ -#define MP_VAL -3 /* invalid input */ +#define MP_OKAY 0 /* ok result */ +#define MP_MEM -2 /* out of mem */ +#define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL -#define MP_YES 1 /* yes response */ -#define MP_NO 0 /* no response */ +#define MP_YES 1 /* yes response */ +#define MP_NO 0 /* no response */ /* Primality generation flags */ -#define LTM_PRIME_BBS 0x0001 /* BBS style prime */ -#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ -#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ +#define LTM_PRIME_BBS 0x0001 /* BBS style prime */ +#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ +#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ -typedef int mp_err; +typedef int mp_err; /* you'll have to tune these... */ extern int KARATSUBA_MUL_CUTOFF, - KARATSUBA_SQR_CUTOFF, - TOOM_MUL_CUTOFF, - TOOM_SQR_CUTOFF; + KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF; /* define this to use lower memory usage routines (exptmods mostly) */ /* We use this to reduce stack usage --nmav */ @@ -153,26 +149,25 @@ extern int KARATSUBA_MUL_CUTOFF, /* default precision */ #ifndef MP_PREC - #ifndef MP_LOW_MEM - #define MP_PREC 32 /* default digits of precision */ - #else - #define MP_PREC 8 /* default digits of precision */ - #endif +#ifndef MP_LOW_MEM +#define MP_PREC 32 /* default digits of precision */ +#else +#define MP_PREC 8 /* default digits of precision */ +#endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) /* the infamous mp_int structure */ -typedef struct { - int used, alloc, sign; - mp_digit *dp; +typedef struct { + int used, alloc, sign; + mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); - #define USED(m) ((m)->used) #define DIGIT(m,k) ((m)->dp[(k)]) #define SIGN(m) ((m)->sign) @@ -182,28 +177,28 @@ char *mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ -int mp_init(mp_int *a); +int mp_init(mp_int * a); /* free a bignum */ -void mp_clear(mp_int *a); +void mp_clear(mp_int * a); /* init a null terminated series of arguments */ -int mp_init_multi(mp_int *mp, ...); +int mp_init_multi(mp_int * mp, ...); /* clear a null terminated series of arguments */ -void mp_clear_multi(mp_int *mp, ...); +void mp_clear_multi(mp_int * mp, ...); /* exchange two ints */ -void mp_exch(mp_int *a, mp_int *b); +void mp_exch(mp_int * a, mp_int * b); /* shrink ram required for a bignum */ -int mp_shrink(mp_int *a); +int mp_shrink(mp_int * a); /* grow an int to a given size */ -int mp_grow(mp_int *a, int size); +int mp_grow(mp_int * a, int size); /* init to a given number of digits */ -int mp_init_size(mp_int *a, int size); +int mp_init_size(mp_int * a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) @@ -211,250 +206,250 @@ int mp_init_size(mp_int *a, int size); #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) /* set to zero */ -void mp_zero(mp_int *a); +void mp_zero(mp_int * a); /* set to a digit */ -void mp_set(mp_int *a, mp_digit b); +void mp_set(mp_int * a, mp_digit b); /* set a 32-bit const */ -int mp_set_int(mp_int *a, unsigned long b); +int mp_set_int(mp_int * a, unsigned long b); /* get a 32-bit value */ unsigned long mp_get_int(mp_int * a); /* initialize and set a digit */ -int mp_init_set (mp_int * a, mp_digit b); +int mp_init_set(mp_int * a, mp_digit b); /* initialize and set 32-bit value */ -int mp_init_set_int (mp_int * a, unsigned long b); +int mp_init_set_int(mp_int * a, unsigned long b); /* copy, b = a */ -int mp_copy(mp_int *a, mp_int *b); +int mp_copy(mp_int * a, mp_int * b); /* inits and copies, a = b */ -int mp_init_copy(mp_int *a, mp_int *b); +int mp_init_copy(mp_int * a, mp_int * b); /* trim unused digits */ -void mp_clamp(mp_int *a); +void mp_clamp(mp_int * a); /* ---> digit manipulation <--- */ /* right shift by "b" digits */ -void mp_rshd(mp_int *a, int b); +void mp_rshd(mp_int * a, int b); /* left shift by "b" digits */ -int mp_lshd(mp_int *a, int b); +int mp_lshd(mp_int * a, int b); /* c = a / 2**b */ -int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); +int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d); /* b = a/2 */ -int mp_div_2(mp_int *a, mp_int *b); +int mp_div_2(mp_int * a, mp_int * b); /* c = a * 2**b */ -int mp_mul_2d(mp_int *a, int b, mp_int *c); +int mp_mul_2d(mp_int * a, int b, mp_int * c); /* b = a*2 */ -int mp_mul_2(mp_int *a, mp_int *b); +int mp_mul_2(mp_int * a, mp_int * b); /* c = a mod 2**d */ -int mp_mod_2d(mp_int *a, int b, mp_int *c); +int mp_mod_2d(mp_int * a, int b, mp_int * c); /* computes a = 2**b */ -int mp_2expt(mp_int *a, int b); +int mp_2expt(mp_int * a, int b); /* Counts the number of lsbs which are zero before the first zero bit */ -int mp_cnt_lsb(mp_int *a); +int mp_cnt_lsb(mp_int * a); /* I Love Earth! */ /* makes a pseudo-random int of a given size */ -int mp_rand(mp_int *a, int digits); +int mp_rand(mp_int * a, int digits); /* ---> binary operations <--- */ /* c = a XOR b */ -int mp_xor(mp_int *a, mp_int *b, mp_int *c); +int mp_xor(mp_int * a, mp_int * b, mp_int * c); /* c = a OR b */ -int mp_or(mp_int *a, mp_int *b, mp_int *c); +int mp_or(mp_int * a, mp_int * b, mp_int * c); /* c = a AND b */ -int mp_and(mp_int *a, mp_int *b, mp_int *c); +int mp_and(mp_int * a, mp_int * b, mp_int * c); /* ---> Basic arithmetic <--- */ /* b = -a */ -int mp_neg(mp_int *a, mp_int *b); +int mp_neg(mp_int * a, mp_int * b); /* b = |a| */ -int mp_abs(mp_int *a, mp_int *b); +int mp_abs(mp_int * a, mp_int * b); /* compare a to b */ -int mp_cmp(mp_int *a, mp_int *b); +int mp_cmp(mp_int * a, mp_int * b); /* compare |a| to |b| */ -int mp_cmp_mag(mp_int *a, mp_int *b); +int mp_cmp_mag(mp_int * a, mp_int * b); /* c = a + b */ -int mp_add(mp_int *a, mp_int *b, mp_int *c); +int mp_add(mp_int * a, mp_int * b, mp_int * c); /* c = a - b */ -int mp_sub(mp_int *a, mp_int *b, mp_int *c); +int mp_sub(mp_int * a, mp_int * b, mp_int * c); /* c = a * b */ -int mp_mul(mp_int *a, mp_int *b, mp_int *c); +int mp_mul(mp_int * a, mp_int * b, mp_int * c); /* b = a*a */ -int mp_sqr(mp_int *a, mp_int *b); +int mp_sqr(mp_int * a, mp_int * b); /* a/b => cb + d == a */ -int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); /* c = a mod b, 0 <= c < b */ -int mp_mod(mp_int *a, mp_int *b, mp_int *c); +int mp_mod(mp_int * a, mp_int * b, mp_int * c); /* ---> single digit functions <--- */ /* compare against a single digit */ -int mp_cmp_d(mp_int *a, mp_digit b); +int mp_cmp_d(mp_int * a, mp_digit b); /* c = a + b */ -int mp_add_d(mp_int *a, mp_digit b, mp_int *c); +int mp_add_d(mp_int * a, mp_digit b, mp_int * c); /* c = a - b */ -int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); +int mp_sub_d(mp_int * a, mp_digit b, mp_int * c); /* c = a * b */ -int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); +int mp_mul_d(mp_int * a, mp_digit b, mp_int * c); /* a/b => cb + d == a */ -int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); +int mp_div_d(mp_int * a, mp_digit b, mp_int * c, mp_digit * d); /* a/3 => 3c + d == a */ -int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); +int mp_div_3(mp_int * a, mp_int * c, mp_digit * d); /* c = a**b */ -int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); +int mp_expt_d(mp_int * a, mp_digit b, mp_int * c); /* c = a mod b, 0 <= c < b */ -int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); +int mp_mod_d(mp_int * a, mp_digit b, mp_digit * c); /* ---> number theory <--- */ /* d = a + b (mod c) */ -int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_addmod(mp_int * a, mp_int * b, mp_int * c, mp_int * d); /* d = a - b (mod c) */ -int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_submod(mp_int * a, mp_int * b, mp_int * c, mp_int * d); /* d = a * b (mod c) */ -int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_mulmod(mp_int * a, mp_int * b, mp_int * c, mp_int * d); /* c = a * a (mod b) */ -int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); +int mp_sqrmod(mp_int * a, mp_int * b, mp_int * c); /* c = 1/a (mod b) */ -int mp_invmod(mp_int *a, mp_int *b, mp_int *c); +int mp_invmod(mp_int * a, mp_int * b, mp_int * c); /* c = (a, b) */ -int mp_gcd(mp_int *a, mp_int *b, mp_int *c); +int mp_gcd(mp_int * a, mp_int * b, mp_int * c); /* produces value such that U1*a + U2*b = U3 */ -int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); +int mp_exteuclid(mp_int * a, mp_int * b, mp_int * U1, mp_int * U2, mp_int * U3); /* c = [a, b] or (a*b)/(a, b) */ -int mp_lcm(mp_int *a, mp_int *b, mp_int *c); +int mp_lcm(mp_int * a, mp_int * b, mp_int * c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ -int mp_n_root(mp_int *a, mp_digit b, mp_int *c); +int mp_n_root(mp_int * a, mp_digit b, mp_int * c); /* special sqrt algo */ -int mp_sqrt(mp_int *arg, mp_int *ret); +int mp_sqrt(mp_int * arg, mp_int * ret); /* is number a square? */ -int mp_is_square(mp_int *arg, int *ret); +int mp_is_square(mp_int * arg, int *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ -int mp_jacobi(mp_int *a, mp_int *n, int *c); +int mp_jacobi(mp_int * a, mp_int * n, int *c); /* used to setup the Barrett reduction for a given modulus b */ -int mp_reduce_setup(mp_int *a, mp_int *b); +int mp_reduce_setup(mp_int * a, mp_int * b); /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. */ -int mp_reduce(mp_int *a, mp_int *b, mp_int *c); +int mp_reduce(mp_int * a, mp_int * b, mp_int * c); /* setups the montgomery reduction */ -int mp_montgomery_setup(mp_int *a, mp_digit *mp); +int mp_montgomery_setup(mp_int * a, mp_digit * mp); /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ -int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); +int mp_montgomery_calc_normalization(mp_int * a, mp_int * b); /* computes x/R == x (mod N) via Montgomery Reduction */ -int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); +int mp_montgomery_reduce(mp_int * a, mp_int * m, mp_digit mp); /* returns 1 if a is a valid DR modulus */ -int mp_dr_is_modulus(mp_int *a); +int mp_dr_is_modulus(mp_int * a); /* sets the value of "d" required for mp_dr_reduce */ -void mp_dr_setup(mp_int *a, mp_digit *d); +void mp_dr_setup(mp_int * a, mp_digit * d); /* reduces a modulo b using the Diminished Radix method */ -int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); +int mp_dr_reduce(mp_int * a, mp_int * b, mp_digit mp); /* returns true if a can be reduced with mp_reduce_2k */ -int mp_reduce_is_2k(mp_int *a); +int mp_reduce_is_2k(mp_int * a); /* determines k value for 2k reduction */ -int mp_reduce_2k_setup(mp_int *a, mp_digit *d); +int mp_reduce_2k_setup(mp_int * a, mp_digit * d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); +int mp_reduce_2k(mp_int * a, mp_int * n, mp_digit d); /* returns true if a can be reduced with mp_reduce_2k_l */ -int mp_reduce_is_2k_l(mp_int *a); +int mp_reduce_is_2k_l(mp_int * a); /* determines k value for 2k reduction */ -int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); +int mp_reduce_2k_setup_l(mp_int * a, mp_int * d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); +int mp_reduce_2k_l(mp_int * a, mp_int * n, mp_int * d); /* d = a**b (mod c) */ -int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_exptmod(mp_int * a, mp_int * b, mp_int * c, mp_int * d); /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT - #define PRIME_SIZE 31 +#define PRIME_SIZE 31 #else - #define PRIME_SIZE 256 +#define PRIME_SIZE 256 #endif /* table of first PRIME_SIZE primes */ extern const mp_digit ltm_prime_tab[]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ -int mp_prime_is_divisible(mp_int *a, int *result); +int mp_prime_is_divisible(mp_int * a, int *result); /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ -int mp_prime_fermat(mp_int *a, mp_int *b, int *result); +int mp_prime_fermat(mp_int * a, mp_int * b, int *result); /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ -int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); +int mp_prime_miller_rabin(mp_int * a, mp_int * b, int *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 @@ -468,14 +463,14 @@ int mp_prime_rabin_miller_trials(int size); * * Sets result to 1 if probably prime, 0 otherwise */ -int mp_prime_is_prime(mp_int *a, int t, int *result); +int mp_prime_is_prime(mp_int * a, int t, int *result); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ -int mp_prime_next_prime(mp_int *a, int t, int bbs_style); +int mp_prime_next_prime(mp_int * a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 @@ -502,25 +497,26 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); * so it can be NULL * */ -int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); +int mp_prime_random_ex(mp_int * a, int t, int size, int flags, + ltm_prime_callback cb, void *dat); /* ---> radix conversion <--- */ -int mp_count_bits(mp_int *a); +int mp_count_bits(mp_int * a); -int mp_unsigned_bin_size(mp_int *a); -int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); -int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); +int mp_unsigned_bin_size(mp_int * a); +int mp_read_unsigned_bin(mp_int * a, const unsigned char *b, int c); +int mp_to_unsigned_bin(mp_int * a, unsigned char *b); +int mp_to_unsigned_bin_n(mp_int * a, unsigned char *b, unsigned long *outlen); -int mp_signed_bin_size(mp_int *a); -int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); -int mp_to_signed_bin(mp_int *a, unsigned char *b); -int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); +int mp_signed_bin_size(mp_int * a); +int mp_read_signed_bin(mp_int * a, const unsigned char *b, int c); +int mp_to_signed_bin(mp_int * a, unsigned char *b); +int mp_to_signed_bin_n(mp_int * a, unsigned char *b, unsigned long *outlen); -int mp_read_radix(mp_int *a, const char *str, int radix); -int mp_toradix(mp_int *a, char *str, int radix); +int mp_read_radix(mp_int * a, const char *str, int radix); +int mp_toradix(mp_int * a, char *str, int radix); int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); -int mp_radix_size(mp_int *a, int radix, int *size); +int mp_radix_size(mp_int * a, int radix, int *size); #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) @@ -535,35 +531,34 @@ int mp_radix_size(mp_int *a, int radix, int *size); #define mp_tohex(M, S) mp_toradix((M), (S), 16) /* lowlevel functions, do not call! */ -int s_mp_add(mp_int *a, mp_int *b, mp_int *c); -int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); +int s_mp_add(mp_int * a, mp_int * b, mp_int * c); +int s_mp_sub(mp_int * a, mp_int * b, mp_int * c); #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) -int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_sqr(mp_int *a, mp_int *b); -int s_mp_sqr(mp_int *a, mp_int *b); -int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_karatsuba_sqr(mp_int *a, mp_int *b); -int mp_toom_sqr(mp_int *a, mp_int *b); -int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); -int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); -int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); -int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); +int fast_s_mp_mul_digs(mp_int * a, mp_int * b, mp_int * c, int digs); +int s_mp_mul_digs(mp_int * a, mp_int * b, mp_int * c, int digs); +int fast_s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); +int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); +int fast_s_mp_sqr(mp_int * a, mp_int * b); +int s_mp_sqr(mp_int * a, mp_int * b); +int mp_karatsuba_mul(mp_int * a, mp_int * b, mp_int * c); +int mp_toom_mul(mp_int * a, mp_int * b, mp_int * c); +int mp_karatsuba_sqr(mp_int * a, mp_int * b); +int mp_toom_sqr(mp_int * a, mp_int * b); +int fast_mp_invmod(mp_int * a, mp_int * b, mp_int * c); +int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c); +int fast_mp_montgomery_reduce(mp_int * a, mp_int * m, mp_digit mp); +int mp_exptmod_fast(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); +int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); void bn_reverse(unsigned char *s, int len); extern const char *mp_s_rmap; #ifdef __cplusplus - } +} #endif #endif - /* $Source: /cvs/libtom/libtommath/tommath.h,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2006/03/31 14:18:44 $ */ |