summaryrefslogtreecommitdiffstats
path: root/libtommath/tommath.h
diff options
context:
space:
mode:
authorNikos Mavrogiannopoulos <nmav@gnutls.org>2010-09-06 17:20:33 +0200
committerNikos Mavrogiannopoulos <nmav@gnutls.org>2010-09-06 17:26:58 +0200
commite6177630198eb1eea2def0374fae1196da0e40ec (patch)
tree704951804609999fb6ef7a956b04921b9f84c320 /libtommath/tommath.h
parent943f9ab50c110133a5cd1118b5b19cb09301168f (diff)
downloadcryptodev-linux-e6177630198eb1eea2def0374fae1196da0e40ec.tar.gz
cryptodev-linux-e6177630198eb1eea2def0374fae1196da0e40ec.tar.xz
cryptodev-linux-e6177630198eb1eea2def0374fae1196da0e40ec.zip
Run Lindent on libtom(*)
Diffstat (limited to 'libtommath/tommath.h')
-rw-r--r--libtommath/tommath.h323
1 files changed, 159 insertions, 164 deletions
diff --git a/libtommath/tommath.h b/libtommath/tommath.h
index 3fa7ae8..7b154a6 100644
--- a/libtommath/tommath.h
+++ b/libtommath/tommath.h
@@ -26,21 +26,21 @@
inline static int rand(void)
{
- int res;
-
- get_random_bytes(&res, sizeof(int));
-
- return res;
+ int res;
+
+ get_random_bytes(&res, sizeof(int));
+
+ return res;
}
#include <tommath_class.h>
#ifndef MIN
- #define MIN(x,y) ((x)<(y)?(x):(y))
+#define MIN(x,y) ((x)<(y)?(x):(y))
#endif
#ifndef MAX
- #define MAX(x,y) ((x)>(y)?(x):(y))
+#define MAX(x,y) ((x)>(y)?(x):(y))
#endif
#ifdef __cplusplus
@@ -56,7 +56,6 @@ extern "C" {
#endif
-
/* some default configurations.
*
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
@@ -65,24 +64,24 @@ extern "C" {
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
-
+
/* FIXME: This can be improved, but requires to use 128bit division
* on 64bit machines, which is not available in kernel now.
*/
#if BITS_PER_LONG < 32
- typedef uint16_t mp_digit;
- typedef uint32_t mp_word;
-# define DIGIT_BIT 15
+typedef uint16_t mp_digit;
+typedef uint32_t mp_word;
+#define DIGIT_BIT 15
#elif BITS_PER_LONG <= 64
- typedef uint32_t mp_digit;
- typedef uint64_t mp_word;
+typedef uint32_t mp_digit;
+typedef uint64_t mp_word;
-# define word_div_int(x,y) div_u64((x),(y))
+#define word_div_int(x,y) div_u64((x),(y))
-# define DIGIT_BIT 31
+#define DIGIT_BIT 31
#endif
@@ -90,23 +89,22 @@ extern "C" {
/* if we could get a way to use an 128 bit integer
* in kernel, use this.
*/
- typedef uint64_t mp_digit;
- typedef __uint128_t mp_word;
-# define DIGIT_BIT 60
+typedef uint64_t mp_digit;
+typedef __uint128_t mp_word;
+#define DIGIT_BIT 60
#endif
#ifndef word_div_int
-# define word_div_int(x,y) ((x)/(y))
+#define word_div_int(x,y) ((x)/(y))
#endif
-
/* define heap macros */
#ifndef XMALLOC
-# define XMALLOC(x) kmalloc(x, GFP_KERNEL)
-# define XFREE kfree
-# define XREALLOC(x,y) krealloc(x,y, GFP_KERNEL)
-# define XCALLOC(x,y) kzalloc(x*y, GPF_KERNEL)
+#define XMALLOC(x) kmalloc(x, GFP_KERNEL)
+#define XFREE kfree
+#define XREALLOC(x,y) krealloc(x,y, GFP_KERNEL)
+#define XCALLOC(x,y) kzalloc(x*y, GPF_KERNEL)
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
@@ -119,33 +117,31 @@ extern "C" {
#define MP_DIGIT_MAX MP_MASK
/* equalities */
-#define MP_LT -1 /* less than */
-#define MP_EQ 0 /* equal to */
-#define MP_GT 1 /* greater than */
+#define MP_LT -1 /* less than */
+#define MP_EQ 0 /* equal to */
+#define MP_GT 1 /* greater than */
-#define MP_ZPOS 0 /* positive integer */
-#define MP_NEG 1 /* negative */
+#define MP_ZPOS 0 /* positive integer */
+#define MP_NEG 1 /* negative */
-#define MP_OKAY 0 /* ok result */
-#define MP_MEM -2 /* out of mem */
-#define MP_VAL -3 /* invalid input */
+#define MP_OKAY 0 /* ok result */
+#define MP_MEM -2 /* out of mem */
+#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
-#define MP_YES 1 /* yes response */
-#define MP_NO 0 /* no response */
+#define MP_YES 1 /* yes response */
+#define MP_NO 0 /* no response */
/* Primality generation flags */
-#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
-#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
-#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
-typedef int mp_err;
+typedef int mp_err;
/* you'll have to tune these... */
extern int KARATSUBA_MUL_CUTOFF,
- KARATSUBA_SQR_CUTOFF,
- TOOM_MUL_CUTOFF,
- TOOM_SQR_CUTOFF;
+ KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF;
/* define this to use lower memory usage routines (exptmods mostly) */
/* We use this to reduce stack usage --nmav */
@@ -153,26 +149,25 @@ extern int KARATSUBA_MUL_CUTOFF,
/* default precision */
#ifndef MP_PREC
- #ifndef MP_LOW_MEM
- #define MP_PREC 32 /* default digits of precision */
- #else
- #define MP_PREC 8 /* default digits of precision */
- #endif
+#ifndef MP_LOW_MEM
+#define MP_PREC 32 /* default digits of precision */
+#else
+#define MP_PREC 8 /* default digits of precision */
+#endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
/* the infamous mp_int structure */
-typedef struct {
- int used, alloc, sign;
- mp_digit *dp;
+typedef struct {
+ int used, alloc, sign;
+ mp_digit *dp;
} mp_int;
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
-
#define USED(m) ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m) ((m)->sign)
@@ -182,28 +177,28 @@ char *mp_error_to_string(int code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
-int mp_init(mp_int *a);
+int mp_init(mp_int * a);
/* free a bignum */
-void mp_clear(mp_int *a);
+void mp_clear(mp_int * a);
/* init a null terminated series of arguments */
-int mp_init_multi(mp_int *mp, ...);
+int mp_init_multi(mp_int * mp, ...);
/* clear a null terminated series of arguments */
-void mp_clear_multi(mp_int *mp, ...);
+void mp_clear_multi(mp_int * mp, ...);
/* exchange two ints */
-void mp_exch(mp_int *a, mp_int *b);
+void mp_exch(mp_int * a, mp_int * b);
/* shrink ram required for a bignum */
-int mp_shrink(mp_int *a);
+int mp_shrink(mp_int * a);
/* grow an int to a given size */
-int mp_grow(mp_int *a, int size);
+int mp_grow(mp_int * a, int size);
/* init to a given number of digits */
-int mp_init_size(mp_int *a, int size);
+int mp_init_size(mp_int * a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
@@ -211,250 +206,250 @@ int mp_init_size(mp_int *a, int size);
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
/* set to zero */
-void mp_zero(mp_int *a);
+void mp_zero(mp_int * a);
/* set to a digit */
-void mp_set(mp_int *a, mp_digit b);
+void mp_set(mp_int * a, mp_digit b);
/* set a 32-bit const */
-int mp_set_int(mp_int *a, unsigned long b);
+int mp_set_int(mp_int * a, unsigned long b);
/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);
/* initialize and set a digit */
-int mp_init_set (mp_int * a, mp_digit b);
+int mp_init_set(mp_int * a, mp_digit b);
/* initialize and set 32-bit value */
-int mp_init_set_int (mp_int * a, unsigned long b);
+int mp_init_set_int(mp_int * a, unsigned long b);
/* copy, b = a */
-int mp_copy(mp_int *a, mp_int *b);
+int mp_copy(mp_int * a, mp_int * b);
/* inits and copies, a = b */
-int mp_init_copy(mp_int *a, mp_int *b);
+int mp_init_copy(mp_int * a, mp_int * b);
/* trim unused digits */
-void mp_clamp(mp_int *a);
+void mp_clamp(mp_int * a);
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
-void mp_rshd(mp_int *a, int b);
+void mp_rshd(mp_int * a, int b);
/* left shift by "b" digits */
-int mp_lshd(mp_int *a, int b);
+int mp_lshd(mp_int * a, int b);
/* c = a / 2**b */
-int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
+int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
+int mp_div_2(mp_int * a, mp_int * b);
/* c = a * 2**b */
-int mp_mul_2d(mp_int *a, int b, mp_int *c);
+int mp_mul_2d(mp_int * a, int b, mp_int * c);
/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
+int mp_mul_2(mp_int * a, mp_int * b);
/* c = a mod 2**d */
-int mp_mod_2d(mp_int *a, int b, mp_int *c);
+int mp_mod_2d(mp_int * a, int b, mp_int * c);
/* computes a = 2**b */
-int mp_2expt(mp_int *a, int b);
+int mp_2expt(mp_int * a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(mp_int *a);
+int mp_cnt_lsb(mp_int * a);
/* I Love Earth! */
/* makes a pseudo-random int of a given size */
-int mp_rand(mp_int *a, int digits);
+int mp_rand(mp_int * a, int digits);
/* ---> binary operations <--- */
/* c = a XOR b */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+int mp_xor(mp_int * a, mp_int * b, mp_int * c);
/* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
+int mp_or(mp_int * a, mp_int * b, mp_int * c);
/* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
+int mp_and(mp_int * a, mp_int * b, mp_int * c);
/* ---> Basic arithmetic <--- */
/* b = -a */
-int mp_neg(mp_int *a, mp_int *b);
+int mp_neg(mp_int * a, mp_int * b);
/* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
+int mp_abs(mp_int * a, mp_int * b);
/* compare a to b */
-int mp_cmp(mp_int *a, mp_int *b);
+int mp_cmp(mp_int * a, mp_int * b);
/* compare |a| to |b| */
-int mp_cmp_mag(mp_int *a, mp_int *b);
+int mp_cmp_mag(mp_int * a, mp_int * b);
/* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
+int mp_add(mp_int * a, mp_int * b, mp_int * c);
/* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int mp_sub(mp_int * a, mp_int * b, mp_int * c);
/* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_mul(mp_int * a, mp_int * b, mp_int * c);
/* b = a*a */
-int mp_sqr(mp_int *a, mp_int *b);
+int mp_sqr(mp_int * a, mp_int * b);
/* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
/* c = a mod b, 0 <= c < b */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+int mp_mod(mp_int * a, mp_int * b, mp_int * c);
/* ---> single digit functions <--- */
/* compare against a single digit */
-int mp_cmp_d(mp_int *a, mp_digit b);
+int mp_cmp_d(mp_int * a, mp_digit b);
/* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_add_d(mp_int * a, mp_digit b, mp_int * c);
/* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(mp_int * a, mp_digit b, mp_int * c);
/* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(mp_int * a, mp_digit b, mp_int * c);
/* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_div_d(mp_int * a, mp_digit b, mp_int * c, mp_digit * d);
/* a/3 => 3c + d == a */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+int mp_div_3(mp_int * a, mp_int * c, mp_digit * d);
/* c = a**b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_expt_d(mp_int * a, mp_digit b, mp_int * c);
/* c = a mod b, 0 <= c < b */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+int mp_mod_d(mp_int * a, mp_digit b, mp_digit * c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_addmod(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_submod(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_mulmod(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_sqrmod(mp_int * a, mp_int * b, mp_int * c);
/* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
/* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+int mp_gcd(mp_int * a, mp_int * b, mp_int * c);
/* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+int mp_exteuclid(mp_int * a, mp_int * b, mp_int * U1, mp_int * U2, mp_int * U3);
/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+int mp_lcm(mp_int * a, mp_int * b, mp_int * c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+int mp_n_root(mp_int * a, mp_digit b, mp_int * c);
/* special sqrt algo */
-int mp_sqrt(mp_int *arg, mp_int *ret);
+int mp_sqrt(mp_int * arg, mp_int * ret);
/* is number a square? */
-int mp_is_square(mp_int *arg, int *ret);
+int mp_is_square(mp_int * arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
+int mp_jacobi(mp_int * a, mp_int * n, int *c);
/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
+int mp_reduce_setup(mp_int * a, mp_int * b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+int mp_reduce(mp_int * a, mp_int * b, mp_int * c);
/* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+int mp_montgomery_setup(mp_int * a, mp_digit * mp);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+int mp_montgomery_calc_normalization(mp_int * a, mp_int * b);
/* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+int mp_montgomery_reduce(mp_int * a, mp_int * m, mp_digit mp);
/* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
+int mp_dr_is_modulus(mp_int * a);
/* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
+void mp_dr_setup(mp_int * a, mp_digit * d);
/* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+int mp_dr_reduce(mp_int * a, mp_int * b, mp_digit mp);
/* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(mp_int *a);
+int mp_reduce_is_2k(mp_int * a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+int mp_reduce_2k_setup(mp_int * a, mp_digit * d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+int mp_reduce_2k(mp_int * a, mp_int * n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(mp_int *a);
+int mp_reduce_is_2k_l(mp_int * a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
+int mp_reduce_2k_setup_l(mp_int * a, mp_int * d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
+int mp_reduce_2k_l(mp_int * a, mp_int * n, mp_int * d);
/* d = a**b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_exptmod(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
/* ---> Primes <--- */
/* number of primes */
#ifdef MP_8BIT
- #define PRIME_SIZE 31
+#define PRIME_SIZE 31
#else
- #define PRIME_SIZE 256
+#define PRIME_SIZE 256
#endif
/* table of first PRIME_SIZE primes */
extern const mp_digit ltm_prime_tab[];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
+int mp_prime_is_divisible(mp_int * a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+int mp_prime_fermat(mp_int * a, mp_int * b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+int mp_prime_miller_rabin(mp_int * a, mp_int * b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
@@ -468,14 +463,14 @@ int mp_prime_rabin_miller_trials(int size);
*
* Sets result to 1 if probably prime, 0 otherwise
*/
-int mp_prime_is_prime(mp_int *a, int t, int *result);
+int mp_prime_is_prime(mp_int * a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
+int mp_prime_next_prime(mp_int * a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
@@ -502,25 +497,26 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
* so it can be NULL
*
*/
-int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
+int mp_prime_random_ex(mp_int * a, int t, int size, int flags,
+ ltm_prime_callback cb, void *dat);
/* ---> radix conversion <--- */
-int mp_count_bits(mp_int *a);
+int mp_count_bits(mp_int * a);
-int mp_unsigned_bin_size(mp_int *a);
-int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+int mp_unsigned_bin_size(mp_int * a);
+int mp_read_unsigned_bin(mp_int * a, const unsigned char *b, int c);
+int mp_to_unsigned_bin(mp_int * a, unsigned char *b);
+int mp_to_unsigned_bin_n(mp_int * a, unsigned char *b, unsigned long *outlen);
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+int mp_signed_bin_size(mp_int * a);
+int mp_read_signed_bin(mp_int * a, const unsigned char *b, int c);
+int mp_to_signed_bin(mp_int * a, unsigned char *b);
+int mp_to_signed_bin_n(mp_int * a, unsigned char *b, unsigned long *outlen);
-int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(mp_int *a, char *str, int radix);
+int mp_read_radix(mp_int * a, const char *str, int radix);
+int mp_toradix(mp_int * a, char *str, int radix);
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
-int mp_radix_size(mp_int *a, int radix, int *size);
+int mp_radix_size(mp_int * a, int radix, int *size);
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)
@@ -535,35 +531,34 @@ int mp_radix_size(mp_int *a, int radix, int *size);
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
/* lowlevel functions, do not call! */
-int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
-int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int s_mp_add(mp_int * a, mp_int * b, mp_int * c);
+int s_mp_sub(mp_int * a, mp_int * b, mp_int * c);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
-int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_sqr(mp_int *a, mp_int *b);
-int s_mp_sqr(mp_int *a, mp_int *b);
-int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_karatsuba_sqr(mp_int *a, mp_int *b);
-int mp_toom_sqr(mp_int *a, mp_int *b);
-int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
-int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
-int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
+int fast_s_mp_mul_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
+int s_mp_mul_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
+int fast_s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
+int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
+int fast_s_mp_sqr(mp_int * a, mp_int * b);
+int s_mp_sqr(mp_int * a, mp_int * b);
+int mp_karatsuba_mul(mp_int * a, mp_int * b, mp_int * c);
+int mp_toom_mul(mp_int * a, mp_int * b, mp_int * c);
+int mp_karatsuba_sqr(mp_int * a, mp_int * b);
+int mp_toom_sqr(mp_int * a, mp_int * b);
+int fast_mp_invmod(mp_int * a, mp_int * b, mp_int * c);
+int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
+int fast_mp_montgomery_reduce(mp_int * a, mp_int * m, mp_digit mp);
+int mp_exptmod_fast(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
+int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
void bn_reverse(unsigned char *s, int len);
extern const char *mp_s_rmap;
#ifdef __cplusplus
- }
+}
#endif
#endif
-
/* $Source: /cvs/libtom/libtommath/tommath.h,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2006/03/31 14:18:44 $ */