
Git
(Why not CVS? ... because Git.)

Karel Zak
<kzak@redhat.com>

Copyright © 2007 Karel Zak.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

Agenda

1 Intro
Development model

2 Implementation
Naming revisions

3 Repositories

4 Branches

5 Real life with Git

6 Commands
Commits and patches

7 Misc

Intro

What is Git?

“I’m an egotistical bastard, and I name all my projects
after myself. First ’Linux’, now ’git’.” (Linus Torvalds)

fast distributed revision control system

unusually rich command set

provides both high-level operations and full access to internals

originally created by Linus Torvalds for kernel development

design was inspired by BitKeeper and Monotone

GNU General Public License, version 2

Intro

Basic features

distributed development model

support for non-linear development (branching and merging)

ready for large projects (very good performance)

repositories can be easily published (git://, ssh://, http://,
rsync://, ...)

cryptographic authentication of history (GPG-signed tags)

internally objects are addressed by content (SHA-1) – no
filenames

local branches are local only (off-line work)

Intro Development model

Centralized model

extra policy for write access

SCM is not development tool, but source code archive only

every change has impact to all developers

Intro Development model

Distributed model

maintainer has full control over primary (his) repository

support for non-linear development

repositories can be easily published (git://, ssh://, http://, ...)

Intro Development model

Git improves your work manners and habits

branching and merging is cheap

you can prototyping
you can collaborate with others developers on incomplete and
unstable stuff
you can easily (e.g. every day) rebase your changes to new
upstream code
often merging (rebase) minimize conflicts between your
patches and upstream

small patch is the best patch (patch per feature/change)

reviewers hate huge patches
well separated feature or change is easy to revert

Implementation

Internal objects

All objects are content-addressable by SHA-1.

commit refers to “tree” and “parent“ (connection into the
project history)

tree represents the state of a single directory (list of “blob”
objects and subtrees)

blob contains file data without any other structure

references are human readable names for commits; for example
tags, see files under .git/refs/heads/.

Implementation

Internal objects

commit – connection between “tree” and “parent“

tree – state of a single directory

blob – contain file data

Implementation

Trust

everything is content-addressed and based on SHA-1

two trees are same when HEAD SHA-1 are same

tags could be GPG-signed

$ git tag -v v2.13

object 49ef7acdf77066ed05a6c828c261d332c4f54644

type commit

tag v2.13

tagger Karel Zak <kzak@redhat.com> Tue Aug 28 01:01:35 2007 +0200

stable release v2.13

gpg: Signature made Tue 28 Aug 2007 01:01:35 AM CEST using DSA key ID DC06D885

gpg: Good signature from "Karel Zak <kzak@redhat.com>"

Implementation Naming revisions

Object reference

SHA-1 40-hexdigit object name

tag human readable name for commit

commit^n N-th parent

commit~n N-th generation grand-parent of the named commit
object, following only the first parent.

ref@{date} specify the value of the ref at a prior point in time

:/text commit whose commit message starts with the
specified text

HEAD refers to the head of the current branch

rev~3 = rev^^^ = rev^1^1^1

$ git reset HEAD^

Implementation Naming revisions

Ranges

r1..r2 commits reachable from r2 but exclude the ones reachable
from r1

r1...r2 set of commits that are reachable from either one of r1 or
r2 but not from both

$ git log v2.13..v2.14

Implementation Naming revisions

”tree-ish”

Lots of commands take a tree as an argument. A tree can be
referred to in many different ways, by:

name for that tree

name of a commit that refers to the tree

name of a branch whose head refers to that tree

Repositories

Create a repository

create a new repository

$ mkdir project
$ cd project
$ git init

clone an existing remote repository (”origin” repository)

$ git clone http://foo.com/project

add a next remote repository

$ git config remote.bar.url git://bar.com/project
$ git config remote.bar.fetch master:refs/remotes/bar/master
$ git fetch bar

Repositories

Visualisation

Branches

Branches

o--o--o <-- Branch A
/

o--o--o--o--o <-- master
\
o--o--o <-- Branch B

branch is line of development

branch head is a reference to the most recent commit on a branch

Branches, remote-tracking branches, and tags are all references to
commits.

Branches

Manipulating branches

git branch lists, creates, or deletes branches

git checkout <branch> makes the current branch <branch>,
updating the working directory

git checkout -b <branch> creates a new branch
<branch>check it out

git show-branch shows branches and their commits

git diff <branch>..<branch> diffs between branches

Branches

Rebase branch

Before

A---B---C topic
/

D---E---F---G master

Command

$ git rebase master topic

After

A---B---C topic
/

D---E---F---G master

Branches

Edit 2nd commit from the top

1 create a temporary branch (rewind to the commit in question):

$ git checkout -f -b tmp HEAD~2

2 reset old changes and redo the commit

$ git reset HEAD^
$ vim foo.c
$ git commit -a -c ORIG_HEAD

3 replay the later changes to the master:

$ git rebase --onto tmp master~2 master

4 clean up (delete) the temporary branch

$ git branch -D tmp

Real life with Git

Changes in project history

the latest patches – (git reset) reset current HEAD

deep in project history
rebease

impact to all rebased commits (new SHA-1)
impact to all tags
useless for publicly pushed changes

patch revert (git revert)

zero impact to project history

Real life with Git

Send a patch

Basic rules:

one patch per e-mail

don’t use stupid e-mail clients (e.g. Outlook)

(don’t use attachments)

export patches by git format-patch

send patches by git send-email

well formatted patch is possible to apply by git am

don’t forget to keep correct authorship (e.g when you are not
author of the patch)

use commit messages – a patch without comment is
incomplete crap

Commands

Syntax

git <commandname> [options]

git-<commandname> [options]

High level

$ git commit -a -s -m "cool change"

Low level

$ git rev-list --pretty=oneline v2.13..

Commands

Basic commands

git init creates en empty repository at ./.git

git add adds file contents to the next commit

git reset resets current HEAD

git status shows the working tree status

git commit records changes to the repository

git log shows commit log

git show shows commit (or another object)

git format-path exports a change

git send-email sends patch(s)

git am applies a series of patches from a mailbox

Commands Commits and patches

Commit changes

git commit [options] [<file>]

-a commits all modified or deleted files

-s adds Signed-off-by line at the end of the commit message

-c ORIG HEAD reuses a commit message (e.g. from
previously reseted commit)

–author ”Random Hacker <rand@hacker.com>” overrides
the author name

starts $EDITOR for commit message (or -m "<commit
message>")

$ git commit -a -s

Commands Commits and patches

Export patches to files

git format-patch [options] <since|range>

creates one file per patch

created patches are usable by git am

$ git format-patch -o ~/ HEAD~5

/home/kzak/0001-setterm-opened-file-leaving-unclosed.patch

/home/kzak/0002-sfdisk-opened-files-leaving-unclosed.patch

/home/kzak/0003-blockdev-fix-opened-file-leaving-unclosed.patch

/home/kzak/0004-tailf-opened-file-leaving-unclosed.patch

/home/kzak/0005-tests-use-losetup-s.patch

Commands Commits and patches

Patch description

Commands Commits and patches

Send patches by e-mail

git send-email [options] <file|dir>

Takes the patches given on the command line and emails them out.

no attachments

no broken patch format

correct subject line

$ git send-email --to "God <father@heaven.com>" \
~/0001-make-this-world-better.patch

Commands Commits and patches

Browsing changes

git log shows commit logs

git show shows one or more objects (blobs, trees, tags
and commits)

git blame shows what revision and author last modified
each line of a file

git whatchanged shows logs with difference each commit
introduces

$ git log v2.5.. # commits since v2.5

$ git log test..master # commits reachable from master

but not test

$ git log --since="2 weeks ago" # commits from the last 2 weeks

$ git log Makefile # commits which modify Makefile

$ git log --pretty=format:"%h [%an]" # commit log in format

"sha-1 [Author Name]"

$ git blame -L 10,15 foo.c # who modified code between lines

10 and 15

$ git show c1a47c171b # shows selecte object (commit)

Misc

Gitweb

Misc

References

Git User’s Manual
http://www.kernel.org/pub/software/scm/git/docs/
user-manual.html

A tutorial introduction to git
http://www.kernel.org/pub/software/scm/git/docs/
tutorial.html

The perfect patch
http://www.zip.com.au/∼akpm/linux/patches/stuff/
tpp.txt

http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/tutorial.html
http://www.kernel.org/pub/software/scm/git/docs/tutorial.html
http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt
http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt

The end.
Thanks for listening.

	Intro
	Development model

	Implementation
	Naming revisions

	Repositories
	Branches
	Real life with Git
	Commands
	Commits and patches

	Misc

