/* * ms2mit.c * */ /*********************************************************** Copyright 2000 by Carnegie Mellon University All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Carnegie Mellon University not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ #define UNICODE #define _UNICODE #include #include #include #include #include #define SECURITY_WIN32 #include #include #include #include #include VOID ShowWinError( LPSTR szAPI, DWORD dwError ) { #define MAX_MSG_SIZE 256 // TODO - Write errors to event log so that scripts that don't // check for errors will still get something in the event log WCHAR szMsgBuf[MAX_MSG_SIZE]; DWORD dwRes; printf("Error calling function %s: %lu\n", szAPI, dwError); dwRes = FormatMessage ( FORMAT_MESSAGE_FROM_SYSTEM, NULL, dwError, MAKELANGID (LANG_ENGLISH, SUBLANG_ENGLISH_US), szMsgBuf, MAX_MSG_SIZE, NULL); if (0 == dwRes) { printf("FormatMessage failed with %d\n", GetLastError()); ExitProcess(EXIT_FAILURE); } printf("%S",szMsgBuf); } VOID ShowLsaError( LPSTR szAPI, NTSTATUS Status ) { // // Convert the NTSTATUS to Winerror. Then call ShowWinError(). // ShowWinError(szAPI, LsaNtStatusToWinError(Status)); } BOOL WINAPI UnicodeToANSI( LPTSTR lpInputString, LPSTR lpszOutputString, int nOutStringLen ) { #ifndef WIN32S CPINFO CodePageInfo; GetCPInfo(CP_ACP, &CodePageInfo); if (CodePageInfo.MaxCharSize > 1) // Only supporting non-Unicode strings return FALSE; else if (((LPBYTE) lpInputString)[1] == '\0') { // Looks like unicode, better translate it WideCharToMultiByte(CP_ACP, 0, (LPCWSTR) lpInputString, -1, lpszOutputString, nOutStringLen, NULL, NULL); } else lstrcpyA(lpszOutputString, (LPSTR) lpInputString); #else lstrcpy(lpszOutputString, (LPSTR) lpInputString); #endif return TRUE; } // UnicodeToANSI VOID WINAPI ANSIToUnicode( LPSTR lpInputString, LPTSTR lpszOutputString, int nOutStringLen ) { #ifndef WIN32S CPINFO CodePageInfo; lstrcpy(lpszOutputString, (LPTSTR) lpInputString); GetCPInfo(CP_ACP, &CodePageInfo); if (CodePageInfo.MaxCharSize > 1) // It must already be a Unicode string return; else if (((LPBYTE) lpInputString)[1] != '\0') { // Looks like ANSI, better translate it MultiByteToWideChar(CP_ACP, 0, (LPCSTR) lpInputString, -1, (LPWSTR) lpszOutputString, nOutStringLen); } else lstrcpy(lpszOutputString, (LPTSTR) lpInputString); #endif } // ANSIToUnicode void MSPrincToMITPrinc( KERB_EXTERNAL_NAME *msprinc, WCHAR *realm, krb5_context context, krb5_principal *principal ) { WCHAR princbuf[512],tmpbuf[128]; char aname[512]; USHORT i; princbuf[0]=0; for (i=0;iNameCount;i++) { wcsncpy(tmpbuf, msprinc->Names[i].Buffer, msprinc->Names[i].Length/sizeof(WCHAR)); tmpbuf[msprinc->Names[i].Length/sizeof(WCHAR)]=0; if (princbuf[0]) wcscat(princbuf, L"/"); wcscat(princbuf, tmpbuf); } wcscat(princbuf, L"@"); wcscat(princbuf, realm); UnicodeToANSI(princbuf, aname, sizeof(aname)); krb5_parse_name(context, aname, principal); } time_t FileTimeToUnixTime( LARGE_INTEGER *ltime ) { FILETIME filetime, localfiletime; SYSTEMTIME systime; struct tm utime; filetime.dwLowDateTime=ltime->LowPart; filetime.dwHighDateTime=ltime->HighPart; FileTimeToLocalFileTime(&filetime, &localfiletime); FileTimeToSystemTime(&localfiletime, &systime); utime.tm_sec=systime.wSecond; utime.tm_min=systime.wMinute; utime.tm_hour=systime.wHour; utime.tm_mday=systime.wDay; utime.tm_mon=systime.wMonth-1; utime.tm_year=systime.wYear-1900; utime.tm_isdst=-1; return(mktime(&utime)); } void MSSessionKeyToMITKeyblock( KERB_CRYPTO_KEY *mskey, krb5_context context, krb5_keyblock *keyblock ) { krb5_keyblock tmpblock; tmpblock.magic=KV5M_KEYBLOCK; tmpblock.enctype=mskey->KeyType; tmpblock.length=mskey->Length; tmpblock.contents=mskey->Value; krb5_copy_keyblock_contents(context, &tmpblock, keyblock); } void MSFlagsToMITFlags( ULONG msflags, ULONG *mitflags ) { *mitflags=msflags; } void MSTicketToMITTicket( KERB_EXTERNAL_TICKET *msticket, krb5_context context, krb5_data *ticket ) { krb5_data tmpdata, *newdata; tmpdata.magic=KV5M_DATA; tmpdata.length=msticket->EncodedTicketSize; tmpdata.data=msticket->EncodedTicket; // todo: fix this up a little. this is ugly and will break krb_free_data() krb5_copy_data(context, &tmpdata, &newdata); memcpy(ticket, newdata, sizeof(krb5_data)); } void MSCredToMITCred( KERB_EXTERNAL_TICKET *msticket, krb5_context context, krb5_creds *creds ) { WCHAR wtmp[128]; ZeroMemory(creds, sizeof(krb5_creds)); creds->magic=KV5M_CREDS; wcsncpy(wtmp, msticket->TargetDomainName.Buffer, msticket->TargetDomainName.Length/sizeof(WCHAR)); wtmp[msticket->TargetDomainName.Length/sizeof(WCHAR)]=0; MSPrincToMITPrinc(msticket->ClientName, wtmp, context, &creds->client); wcsncpy(wtmp, msticket->DomainName.Buffer, msticket->DomainName.Length/sizeof(WCHAR)); wtmp[msticket->DomainName.Length/sizeof(WCHAR)]=0; MSPrincToMITPrinc(msticket->ServiceName, wtmp, context, &creds->server); MSSessionKeyToMITKeyblock(&msticket->SessionKey, context, &creds->keyblock); MSFlagsToMITFlags(msticket->TicketFlags, &creds->ticket_flags); creds->times.starttime=FileTimeToUnixTime(&msticket->StartTime); creds->times.endtime=FileTimeToUnixTime(&msticket->EndTime); creds->times.renew_till=FileTimeToUnixTime(&msticket->RenewUntil); // krb5_cc_store_cred crashes downstream if creds->addresses is NULL. // unfortunately, the MS interface doesn't seem to return a list of // addresses as part of the credentials information. for now i'll just // use krb5_os_localaddr to mock up the address list. is this sufficient? krb5_os_localaddr(context, &creds->addresses); MSTicketToMITTicket(msticket, context, &creds->ticket); } BOOL PackageConnectLookup( HANDLE *pLogonHandle, ULONG *pPackageId ) { LSA_STRING Name; NTSTATUS Status; Status = LsaConnectUntrusted( pLogonHandle ); if (FAILED(Status)) { ShowLsaError("LsaConnectUntrusted", Status); return FALSE; } Name.Buffer = MICROSOFT_KERBEROS_NAME_A; Name.Length = strlen(Name.Buffer); Name.MaximumLength = Name.Length + 1; Status = LsaLookupAuthenticationPackage( *pLogonHandle, &Name, pPackageId ); if (FAILED(Status)) { ShowLsaError("LsaLookupAuthenticationPackage", Status); return FALSE; } return TRUE; } DWORD ConcatenateUnicodeStrings( UNICODE_STRING *pTarget, UNICODE_STRING Source1, UNICODE_STRING Source2 ) { // // The buffers for Source1 and Source2 cannot overlap pTarget's // buffer. Source1.Length + Source2.Length must be <= 0xFFFF, // otherwise we overflow... // USHORT TotalSize = Source1.Length + Source2.Length; PBYTE buffer = (PBYTE) pTarget->Buffer; if (TotalSize > pTarget->MaximumLength) return ERROR_INSUFFICIENT_BUFFER; pTarget->Length = TotalSize; memcpy(buffer, Source1.Buffer, Source1.Length); memcpy(buffer + Source1.Length, Source2.Buffer, Source2.Length); return ERROR_SUCCESS; } BOOL GetMSTGT( HANDLE LogonHandle, ULONG PackageId, KERB_EXTERNAL_TICKET **ticket ) { // // INVARIANTS: // // (FAILED(Status) || FAILED(SubStatus)) ==> error // bIsLsaError ==> LsaCallAuthenticationPackage() error // // // NOTE: // // The updated code leaks memory, but so does the old code. The // whole program is full of leaks. Since it's short-lived // process, it is ok. // BOOL bIsLsaError = FALSE; NTSTATUS Status = 0; NTSTATUS SubStatus = 0; UNICODE_STRING TargetPrefix; KERB_QUERY_TKT_CACHE_REQUEST CacheRequest; PKERB_RETRIEVE_TKT_REQUEST pTicketRequest; PKERB_RETRIEVE_TKT_RESPONSE pTicketResponse = NULL; ULONG RequestSize; ULONG ResponseSize; USHORT TargetSize; CacheRequest.MessageType = KerbRetrieveTicketMessage; CacheRequest.LogonId.LowPart = 0; CacheRequest.LogonId.HighPart = 0; pTicketResponse = NULL; Status = LsaCallAuthenticationPackage( LogonHandle, PackageId, &CacheRequest, sizeof(CacheRequest), &pTicketResponse, &ResponseSize, &SubStatus ); if (FAILED(Status) || FAILED(SubStatus)) { bIsLsaError = TRUE; goto cleanup; } if (pTicketResponse->Ticket.SessionKey.KeyType == KERB_ETYPE_DES_CBC_CRC) { // all done! goto cleanup; } // // Set up the "krbtgt/" target prefix into a UNICODE_STRING so we // can easily concatenate it later. // TargetPrefix.Buffer = L"krbtgt/"; TargetPrefix.Length = wcslen(TargetPrefix.Buffer) * sizeof(WCHAR); TargetPrefix.MaximumLength = TargetPrefix.Length; // // We will need to concatenate the "krbtgt/" prefix and the previous // response's target domain into our request's target name. // // Therefore, first compute the necessary buffer size for that. // // Note that we might theoretically have integer overflow. // TargetSize = TargetPrefix.Length + pTicketResponse->Ticket.TargetDomainName.Length; // // The ticket request buffer needs to be a single buffer. That buffer // needs to include the buffer for the target name. // RequestSize = sizeof(*pTicketRequest) + TargetSize; // // Allocate the request buffer and make sure it's zero-filled. // pTicketRequest = (PKERB_RETRIEVE_TKT_REQUEST) LocalAlloc(LMEM_ZEROINIT, RequestSize); if (!pTicketRequest) { Status = GetLastError(); goto cleanup; } // // Concatenate the target prefix with the previous reponse's // target domain. // pTicketRequest->TargetName.Length = 0; pTicketRequest->TargetName.MaximumLength = TargetSize; pTicketRequest->TargetName.Buffer = (PWSTR) (pTicketRequest + 1); Status = ConcatenateUnicodeStrings(&(pTicketRequest->TargetName), TargetPrefix, pTicketResponse->Ticket.TargetDomainName); assert(SUCCEEDED(Status)); // // Intialize the requst of the request. // pTicketRequest->MessageType = KerbRetrieveEncodedTicketMessage; pTicketRequest->LogonId.LowPart = 0; pTicketRequest->LogonId.HighPart = 0; // Note: pTicketRequest->TargetName set up above pTicketRequest->CacheOptions = KERB_RETRIEVE_TICKET_DONT_USE_CACHE; pTicketRequest->TicketFlags = 0L; pTicketRequest->EncryptionType = ENCTYPE_DES_CBC_CRC; // // Free the previous response buffer so we can get the new response. // LsaFreeReturnBuffer(pTicketResponse); pTicketResponse = NULL; Status = LsaCallAuthenticationPackage( LogonHandle, PackageId, pTicketRequest, RequestSize, &pTicketResponse, &ResponseSize, &SubStatus ); if (FAILED(Status) || FAILED(SubStatus)) { bIsLsaError = TRUE; goto cleanup; } cleanup: if (FAILED(Status) || FAILED(SubStatus)) { if (bIsLsaError) { // XXX - Will be fixed later if (FAILED(Status)) ShowLsaError("LsaCallAuthenticationPackage", Status); if (FAILED(SubStatus)) ShowLsaError("LsaCallAuthenticationPackage", SubStatus); } else { ShowWinError("GetMSTGT", Status); } if (pTicketResponse) LsaFreeReturnBuffer(pTicketResponse); return(FALSE); } *ticket = &(pTicketResponse->Ticket); return(TRUE); } void main( int argc, char *argv[] ) { krb5_context kcontext; krb5_error_code code; krb5_creds creds; krb5_ccache ccache=NULL; krb5_get_init_creds_opt opts; char *cache_name=NULL; HANDLE LogonHandle=NULL; ULONG PackageId; KERB_EXTERNAL_TICKET *msticket; if(!PackageConnectLookup(&LogonHandle, &PackageId)) exit(1); if (GetMSTGT(LogonHandle, PackageId, &msticket)==FALSE) exit(1); if (code = krb5_init_context(&kcontext)) { com_err(argv[0], code, "while initializing kerberos library"); exit(1); } krb5_get_init_creds_opt_init(&opts); MSCredToMITCred(msticket, kcontext, &creds); if (code = krb5_cc_default(kcontext, &ccache)) { com_err(argv[0], code, "while getting default ccache"); exit(1); } if (code = krb5_cc_initialize(kcontext, ccache, creds.client)) { com_err (argv[0], code, "when initializing cache %s", cache_name?cache_name:""); exit(1); } if (code = krb5_cc_store_cred(kcontext, ccache, &creds)) { com_err (argv[0], code, "while storing credentials"); exit(1); } krb5_cc_close(kcontext, ccache); krb5_free_context(kcontext); } 28 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
require 'test/unit'

class ComplexSub < Complex; end

class Complex_Test < Test::Unit::TestCase

  def test_compsub
    c = ComplexSub.__send__(:new, 1)
    cc = ComplexSub.__send__(:convert, 1)
    if defined?(ComplexSub::Unify)
      assert_instance_of(Fixnum, c)
      assert_instance_of(Fixnum, cc)
    else
      assert_instance_of(ComplexSub, c)
      assert_instance_of(ComplexSub, cc)

      c2 = c + 1
      assert_instance_of(ComplexSub, c2)
      c2 = c - 1
      assert_instance_of(ComplexSub, c2)

      c3 = c - c2
      assert_instance_of(ComplexSub, c3)

      s = Marshal.dump(c)
      c5 = Marshal.load(s)
      assert_equal(c, c5)
      assert_instance_of(ComplexSub, c5)
    end

  end

  def test_eql_p
    c = Complex(0)
    c2 = Complex(0)
    c3 = Complex(1)

    assert_equal(true, c.eql?(c2))
    assert_equal(false, c.eql?(c3))

    if defined?(Complex::Unify)
      assert_equal(true, c.eql?(0))
    else
      assert_equal(false, c.eql?(0))
    end
  end

  def test_hash
    assert_instance_of(Fixnum, Complex(1,2).hash)

    h = {}
    h[Complex(0)] = 0
    h[Complex(0,1)] = 1
    h[Complex(1,0)] = 2
    h[Complex(1,1)] = 3

    assert_equal(4, h.size)
    assert_equal(2, h[Complex(1,0)])

    h[Complex(0,0)] = 9
    assert_equal(4, h.size)
  end

  def test_freeze
    c = Complex(1)
    c.freeze
    unless defined?(Complex::Unify)
      assert_equal(true, c.frozen?)
    end
    assert_instance_of(String, c.to_s)
  end

  def test_new_bang # no unify
    assert_instance_of(Complex, Complex.__send__(:new!, 2,0))
    assert_equal([2,0], Complex.__send__(:new!, 2,0).
		 instance_eval{[real, image]})
    assert_equal([2,4], Complex.__send__(:new!, 2,4).
		 instance_eval{[real, image]})
    assert_equal([-2,4], Complex.__send__(:new!, -2,4).
		 instance_eval{[real, image]})
    assert_equal([2,-4], Complex.__send__(:new!, 2,-4).
		 instance_eval{[real, image]})
    assert_equal([-2,-4], Complex.__send__(:new!, -2,-4).
		 instance_eval{[real, image]})

    assert_equal([2,0], Complex.__send__(:new!, Complex(2)).
		 instance_eval{[real, image]})
    assert_equal([2,3], Complex.__send__(:new!, Complex(2), Complex(3)).
		 instance_eval{[real, image]})
    assert_equal([2,3], Complex.__send__(:new!, 2, Complex(3)).
		 instance_eval{[real, image]})

    assert_equal([1.1,0], Complex.__send__(:new!, 1.1).
		 instance_eval{[real, image]})
    assert_equal([-1.1,0], Complex.__send__(:new!, -1.1).
		 instance_eval{[real, image]})
    assert_equal([1,0], Complex.__send__(:new!, '1').
		 instance_eval{[real, image]})
    assert_equal([0,0], Complex.__send__(:new!, nil).
		 instance_eval{[real, image]})
  end

  def test_new
    if defined?(Complex::Unify)
      assert_instance_of(Fixnum, Complex.__send__(:new, 2,0))
    else
      assert_instance_of(Complex, Complex.__send__(:new, 2,0))
      assert_equal([2,0], Complex.__send__(:new, 2,0). instance_eval{[real, image]})
    end
    assert_equal([2,4], Complex.__send__(:new, 2,4).instance_eval{[real, image]})
    assert_equal([-2,4], Complex.__send__(:new, -2,4).instance_eval{[real, image]})
    assert_equal([2,-4], Complex.__send__(:new, 2,-4).instance_eval{[real, image]})
    assert_equal([-2,-4], Complex.__send__(:new, -2,-4).instance_eval{[real, image]})

    assert_raise(ArgumentError){Complex.__send__(:new, Complex(1,2),2)}
    assert_raise(ArgumentError){Complex.__send__(:new, 2,Complex(1,2))}
    assert_raise(ArgumentError){Complex.__send__(:new, Complex(1,2),Complex(1,2))}

    assert_raise(ArgumentError){Complex.__send__(:new, '1')}
    assert_raise(ArgumentError){Complex.__send__(:new, nil)}
=begin
    assert_raise(ArgumentError){Complex.__send__(:new, Complex(1))}
=end
  end

  def test_conv
    c = Complex(0,0)
    assert_equal(Complex.__send__(:new, 0,0), c)

    c = Complex(2**32, 2**32)
    assert_equal(Complex.__send__(:new, 2**32,2**32), c)
    assert_equal([2**32,2**32], [c.real,c.image])

    c = Complex(-2**32, 2**32)
    assert_equal(Complex.__send__(:new, -2**32,2**32), c)
    assert_equal([-2**32,2**32], [c.real,c.image])

    c = Complex(2**32, -2**32)
    assert_equal(Complex.__send__(:new, 2**32,-2**32), c)
    assert_equal([2**32,-2**32], [c.real,c.image])

    c = Complex(-2**32, -2**32)
    assert_equal(Complex.__send__(:new, -2**32,-2**32), c)
    assert_equal([-2**32,-2**32], [c.real,c.image])

    c = Complex(Complex(1),0)
    assert_equal(Complex.__send__(:new, 1,0), c)

    c = Complex(0,Complex(1))
    assert_equal(Complex.__send__(:new, 0,1), c)

    c = 5.re
    assert_equal(Complex.__send__(:new, 5,0), c)

    c = Complex(1,2).re
    assert_equal(Complex.__send__(:new, 1,2), c)

    c = 5.im
    assert_equal(Complex.__send__(:new, 0,5), c)

    c = Complex(2,0).im
    assert_equal(Complex.__send__(:new, 0,2), c)
    assert_raise(ArgumentError){Complex(1,2).im}

    c = Complex::I
    assert_equal(Complex.__send__(:new, 0,1), c)

    assert_equal(Complex.__send__(:new, 1),Complex(1))
    assert_equal(Complex.__send__(:new, 1),Complex('1'))
    assert_raise(ArgumentError){Complex(nil)}
  end

  def test_attr
    c = Complex(4)

    assert_equal(4, c.real)
    assert_equal(0, c.image)

    c = Complex(4,5)

    assert_equal(4, c.real)
    assert_equal(5, c.image)

    c = Complex(-0.0,-0.0)

    assert_equal('-0.0', c.real.to_s)
    assert_equal('-0.0', c.image.to_s)

    c = Complex.__send__(:new, 4)

    assert_equal(4, c.real)
    assert_equal(0, c.image)
    assert_equal(c.imag, c.image)

    c = Complex.__send__(:new, 4,5)

    assert_equal(4, c.real)
    assert_equal(5, c.image)
    assert_equal(c.imag, c.image)

    c = Complex.__send__(:new, -0.0,-0.0)

    assert_equal('-0.0', c.real.to_s)
    assert_equal('-0.0', c.image.to_s)
    assert_equal(c.imag.to_s, c.image.to_s)

    c = Complex.__send__(:new!, 4)

    assert_equal(4, c.real)
    assert_equal(c.imag, c.image)
    assert_equal(0, c.image)

    c = Complex.__send__(:new!, 4,5)

    assert_equal(4, c.real)
    assert_equal(5, c.image)
    assert_equal(c.imag, c.image)

    c = Complex.__send__(:new!, -0.0,-0.0)

    assert_equal('-0.0', c.real.to_s)
    assert_equal('-0.0', c.image.to_s)
    assert_equal(c.imag.to_s, c.image.to_s)
  end

  def test_attr2
    c = Complex(1)

    if defined?(Complex::Unify)
      assert_equal(true, c.scalar?)
=begin
      assert_equal(true, c.finite?)
      assert_equal(false, c.infinite?)
      assert_equal(false, c.nan?)
      assert_equal(true, c.integer?)
      assert_equal(false, c.float?)
      assert_equal(true, c.rational?)
      assert_equal(true, c.real?)
      assert_equal(false, c.complex?)
      assert_equal(true, c.exact?)
      assert_equal(false, c.inexact?)
=end
    else
      assert_equal(false, c.scalar?)
=begin
      assert_equal(true, c.finite?)
      assert_equal(false, c.infinite?)
      assert_equal(false, c.nan?)
      assert_equal(false, c.integer?)
      assert_equal(false, c.float?)
      assert_equal(false, c.rational?)
      assert_equal(false, c.real?)
      assert_equal(true, c.complex?)
      assert_equal(true, c.exact?)
      assert_equal(false, c.inexact?)
=end
    end

=begin
    assert_equal(0, Complex(0).sign)
    assert_equal(1, Complex(2).sign)
    assert_equal(-1, Complex(-2).sign)
=end

    assert_equal(true, Complex(0).zero?)
    assert_equal(true, Complex(0,0).zero?)
    assert_equal(false, Complex(1,0).zero?)
    assert_equal(false, Complex(0,1).zero?)
    assert_equal(false, Complex(1,1).zero?)

    assert_equal(nil, Complex(0).nonzero?)
    assert_equal(nil, Complex(0,0).nonzero?)
    assert_equal(Complex(1,0), Complex(1,0).nonzero?)
    assert_equal(Complex(0,1), Complex(0,1).nonzero?)
    assert_equal(Complex(1,1), Complex(1,1).nonzero?)
  end

  def test_uplus
    assert_equal(Complex(1), +Complex(1))
    assert_equal(Complex(-1), +Complex(-1))
    assert_equal(Complex(1,1), +Complex(1,1))
    assert_equal(Complex(-1,1), +Complex(-1,1))
    assert_equal(Complex(1,-1), +Complex(1,-1))
    assert_equal(Complex(-1,-1), +Complex(-1,-1))
  end

  def test_negate
    assert_equal(Complex(-1), -Complex(1))
    assert_equal(Complex(1), -Complex(-1))
    assert_equal(Complex(-1,-1), -Complex(1,1))
    assert_equal(Complex(1,-1), -Complex(-1,1))
    assert_equal(Complex(-1,1), -Complex(1,-1))
    assert_equal(Complex(1,1), -Complex(-1,-1))

=begin
    assert_equal(0, Complex(0).negate)
    assert_equal(-2, Complex(2).negate)
    assert_equal(2, Complex(-2).negate)
=end
  end

  def test_add
    c = Complex(1,2)
    c2 = Complex(2,3)

    assert_equal(Complex(3,5), c + c2)

    assert_equal(Complex(3,2), c + 2)
    assert_equal(Complex(3.0,2), c + 2.0)

    if defined?(Rational)
      assert_equal(Complex(Rational(3,1),Rational(2)), c + Rational(2))
      assert_equal(Complex(Rational(5,3),Rational(2)), c + Rational(2,3))
    end
  end

  def test_sub
    c = Complex(1,2)
    c2 = Complex(2,3)

    assert_equal(Complex(-1,-1), c - c2)

    assert_equal(Complex(-1,2), c - 2)
    assert_equal(Complex(-1.0,2), c - 2.0)

    if defined?(Rational)
      assert_equal(Complex(Rational(-1,1),Rational(2)), c - Rational(2))
      assert_equal(Complex(Rational(1,3),Rational(2)), c - Rational(2,3))
    end
  end

  def test_mul
    c = Complex(1,2)
    c2 = Complex(2,3)

    assert_equal(Complex(-4,7), c * c2)

    assert_equal(Complex(2,4), c * 2)
    assert_equal(Complex(2.0,4.0), c * 2.0)

    if defined?(Rational)
      assert_equal(Complex(Rational(2,1),Rational(4)), c * Rational(2))
      assert_equal(Complex(Rational(2,3),Rational(4,3)), c * Rational(2,3))
    end

  end

  def test_div
    c = Complex(1,2)
    c2 = Complex(2,3)

    if defined?(Complex::Unify)
      assert_equal(Complex(Rational(8,13),Rational(1,13)), c / c2)
    else
      assert_equal(Complex(0,0), c / c2)
    end

    c = Complex(1.0,2.0)
    c2 = Complex(2.0,3.0)

    r = c / c2
    assert_in_delta(0.615, r.real, 0.001)
    assert_in_delta(0.076, r.image, 0.001)

    c = Complex(1,2)
    c2 = Complex(2,3)

    if defined?(Complex::Unify)
      assert_equal(Complex(Rational(1,2),1), c / 2)
    else
      assert_equal(Complex(0,1), c / 2)
    end
    assert_equal(Complex(0.5,1.0), c / 2.0)

    if defined?(Rational)
      assert_equal(Complex(Rational(1,2),Rational(1)), c / Rational(2))
      assert_equal(Complex(Rational(3,2),Rational(3)), c / Rational(2,3))
    end
  end

  def test_quo
    c = Complex(1,2)
    c2 = Complex(2,3)

    if defined?(Rational)
      assert_equal(Complex(Rational(8,13),Rational(1,13)), c.quo(c2))
    else
      r = c.quo(c2)
      assert_in_delta(0.615, r.real, 0.001)
      assert_in_delta(0.076, r.image, 0.001)
    end

    c = Complex(1.0,2.0)
    c2 = Complex(2.0,3.0)

    r = c.quo(c2)
    assert_in_delta(0.615, r.real, 0.001)
    assert_in_delta(0.076, r.image, 0.001)

    c = Complex(1,2)
    c2 = Complex(2,3)

    if defined?(Rational)
      assert_equal(Complex(Rational(1,2),1), c.quo(2))
    else
      assert_equal(Complex(0.5,1.0), c.quo(2))
    end
    assert_equal(Complex(0.5,1.0), c.quo(2.0))

    if defined?(Rational)
      assert_equal(Complex(Rational(1,2),Rational(1)), c / Rational(2))
      assert_equal(Complex(Rational(3,2),Rational(3)), c / Rational(2,3))
    end
  end

  def test_fdiv
    c = Complex(1,2)
    c2 = Complex(2,3)

    r = c.fdiv(c2)
    assert_in_delta(0.615, r.real, 0.001)
    assert_in_delta(0.076, r.image, 0.001)

    c = Complex(1.0,2.0)
    c2 = Complex(2.0,3.0)

    r = c.fdiv(c2)
    assert_in_delta(0.615, r.real, 0.001)
    assert_in_delta(0.076, r.image, 0.001)

    c = Complex(1,2)
    c2 = Complex(2,3)

    assert_equal(Complex(0.5,1.0), c.fdiv(2))
    assert_equal(Complex(0.5,1.0), c.fdiv(2.0))
  end

  def test_expt
    c = Complex(1,2)
    c2 = Complex(2,3)

    r = c ** c2
    assert_in_delta(-0.015, r.real, 0.001)
    assert_in_delta(-0.179, r.image, 0.001)

    assert_equal(Complex(-3,4), c ** 2)
    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(Complex(Rational(-3,25),Rational(-4,25)), c ** -2)
    else
      r = c ** -2
      assert_in_delta(-0.12, r.real, 0.001)
      assert_in_delta(-0.16, r.image, 0.001)
    end
    r = c ** 2.0
    assert_in_delta(-3.0, r.real, 0.001)
    assert_in_delta(4.0, r.image, 0.001)

    r = c ** -2.0
    assert_in_delta(-0.12, r.real, 0.001)
    assert_in_delta(-0.16, r.image, 0.001)

    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(Complex(-3,4), c ** Rational(2))
#=begin
      assert_equal(Complex(Rational(-3,25),Rational(-4,25)),
		   c ** Rational(-2)) # why failed?
#=end

      r = c ** Rational(2,3)
      assert_in_delta(1.264, r.real, 0.001)
      assert_in_delta(1.150, r.image, 0.001)

      r = c ** Rational(-2,3)
      assert_in_delta(0.432, r.real, 0.001)
      assert_in_delta(-0.393, r.image, 0.001)
    end
  end

  def test_cmp
    assert_raise(NoMethodError){1 <=> Complex(1,1)}
    assert_raise(NoMethodError){Complex(1,1) <=> 1}
    assert_raise(NoMethodError){Complex(1,1) <=> Complex(1,1)}
  end

  def test_equal
    assert(Complex(1,0) == Complex(1))
    assert(Complex(1,0) == Complex.__send__(:new, 1))
    assert(Complex(1,0) == Complex.__send__(:new, 1,0))
    assert(Complex(1,0) == Complex.__send__(:new!, 1))
    assert(Complex(1,0) == Complex.__send__(:new!, 1,0))

    assert(Complex(-1,0) == Complex(-1))
    assert(Complex(-1,0) == Complex.__send__(:new, -1))
    assert(Complex(-1,0) == Complex.__send__(:new, -1,0))
    assert(Complex(-1,0) == Complex.__send__(:new!, -1))
    assert(Complex(-1,0) == Complex.__send__(:new!, -1,0))

    assert_equal(false, Complex(2,1) == Complex(1))
    assert_equal(true, Complex(2,1) != Complex(1))
    assert_equal(false, Complex(1) == nil)
    assert_equal(false, Complex(1) == '')
  end

  def test_math
    c = Complex(1,2)

    assert_in_delta(2.236, c.abs, 0.001)
    assert_equal(5, c.abs2)

    assert_equal(c.abs, Math.sqrt(c * c.conj))
    assert_equal(c.abs, Math.sqrt(c.real**2 + c.image**2))
    assert_equal(c.abs2, c * c.conj)
    assert_equal(c.abs2, c.real**2 + c.image**2)

    assert_in_delta(1.107, c.arg, 0.001)
    assert_in_delta(1.107, c.angle, 0.001)

    r = c.polar
    assert_in_delta(2.236, r[0], 0.001)
    assert_in_delta(1.107, r[1], 0.001)
    assert_equal(Complex(1,-2), c.conjugate)
    assert_equal(Complex(1,-2), c.conj)
#    assert_equal(Complex(1,-2), ~c)
#    assert_equal(5, c * ~c)

    assert_equal(Complex(1,2), c.numerator)
    assert_equal(1, c.denominator)
  end

  def test_to_s
    c = Complex(1,2)

    assert_instance_of(String, c.to_s)
    assert_equal('1+2i', c.to_s)

    assert_equal('2i', Complex(0,2).to_s)
    assert_equal('-2i', Complex(0,-2).to_s)
    assert_equal('1+2i', Complex(1,2).to_s)
    assert_equal('-1+2i', Complex(-1,2).to_s)
    assert_equal('-1-2i', Complex(-1,-2).to_s)
    assert_equal('1-2i', Complex(1,-2).to_s)
    assert_equal('-1-2i', Complex(-1,-2).to_s)

    assert_equal('2.0i', Complex(0,2.0).to_s)
    assert_equal('-2.0i', Complex(0,-2.0).to_s)
    assert_equal('1.0+2.0i', Complex(1.0,2.0).to_s)
    assert_equal('-1.0+2.0i', Complex(-1.0,2.0).to_s)
    assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s)
    assert_equal('1.0-2.0i', Complex(1.0,-2.0).to_s)
    assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s)

    if defined?(Rational)
      assert_equal('2i', Complex(0,Rational(2)).to_s)
      assert_equal('-2i', Complex(0,Rational(-2)).to_s)
      assert_equal('1+2i', Complex(1,Rational(2)).to_s)
      assert_equal('-1+2i', Complex(-1,Rational(2)).to_s)
      assert_equal('-1-2i', Complex(-1,Rational(-2)).to_s)
      assert_equal('1-2i', Complex(1,Rational(-2)).to_s)
      assert_equal('-1-2i', Complex(-1,Rational(-2)).to_s)

      assert_equal('(2/3)i', Complex(0,Rational(2,3)).to_s)
      assert_equal('(-2/3)i', Complex(0,Rational(-2,3)).to_s)
      assert_equal('1+(2/3)i', Complex(1,Rational(2,3)).to_s)
      assert_equal('-1+(2/3)i', Complex(-1,Rational(2,3)).to_s)
      assert_equal('-1-(2/3)i', Complex(-1,Rational(-2,3)).to_s)
      assert_equal('1-(2/3)i', Complex(1,Rational(-2,3)).to_s)
      assert_equal('-1-(2/3)i', Complex(-1,Rational(-2,3)).to_s)
    end
  end

  def test_inspect
    c = Complex(1,2)

    assert_instance_of(String, c.inspect)
    assert_equal('Complex(1, 2)', c.inspect)
  end

  def test_marshal
    c = Complex(1,2)

    s = Marshal.dump(c)
    c2 = Marshal.load(s)
    assert_equal(c, c2)
    assert_instance_of(Complex, c2)

    if defined?(Rational)
      c = Complex(Rational(1,2),Rational(2,3))

      s = Marshal.dump(c)
      c2 = Marshal.load(s)
      assert_equal(c, c2)
      assert_instance_of(Complex, c2)
    end
  end

  def test_parse
    assert_equal(Complex(0), ''.to_c)
    assert_equal(Complex(0), ' '.to_c)
    assert_equal(Complex(5), '5'.to_c)
    assert_equal(Complex(-5), '-5'.to_c)
    assert_equal(Complex(5,3), '5+3i'.to_c)
    assert_equal(Complex(-5,3), '-5+3i'.to_c)
    assert_equal(Complex(5,-3), '5-3i'.to_c)
    assert_equal(Complex(-5,-3), '-5-3i'.to_c)
    assert_equal(Complex(0,3), '3i'.to_c)
    assert_equal(Complex(0,-3), '-3i'.to_c)

    assert_equal(Complex(5,3), '5+3I'.to_c)
    assert_equal(Complex(5,3), '5+3j'.to_c)
    assert_equal(Complex(5,3), '5+3J'.to_c)
    assert_equal(Complex(0,3), '3I'.to_c)
    assert_equal(Complex(0,3), '3j'.to_c)
    assert_equal(Complex(0,3), '3J'.to_c)

    assert_equal(Complex(5.0), '5.0'.to_c)
    assert_equal(Complex(-5.0), '-5.0'.to_c)
    assert_equal(Complex(5.0,3.0), '5.0+3.0i'.to_c)
    assert_equal(Complex(-5.0,3.0), '-5.0+3.0i'.to_c)
    assert_equal(Complex(5.0,-3.0), '5.0-3.0i'.to_c)
    assert_equal(Complex(-5.0,-3.0), '-5.0-3.0i'.to_c)
    assert_equal(Complex(0.0,3.0), '3.0i'.to_c)
    assert_equal(Complex(0.0,-3.0), '-3.0i'.to_c)

    assert_equal(Complex(5.0), '5e0'.to_c)
    assert_equal(Complex(-5.0), '-5e0'.to_c)
    assert_equal(Complex(5.0,3.0), '5e0+3e0i'.to_c)
    assert_equal(Complex(-5.0,3.0), '-5e0+3e0i'.to_c)
    assert_equal(Complex(5.0,-3.0), '5e0-3e0i'.to_c)
    assert_equal(Complex(-5.0,-3.0), '-5e0-3e0i'.to_c)
    assert_equal(Complex(0.0,3.0), '3e0i'.to_c)
    assert_equal(Complex(0.0,-3.0), '-3e0i'.to_c)

    assert_equal(Complex(5), Complex('5'))
    assert_equal(Complex(-5), Complex('-5'))
    assert_equal(Complex(5,3), Complex('5+3i'))
    assert_equal(Complex(-5,3), Complex('-5+3i'))
    assert_equal(Complex(5,-3), Complex('5-3i'))
    assert_equal(Complex(-5,-3), Complex('-5-3i'))
    assert_equal(Complex(0,3), Complex('3i'))
    assert_equal(Complex(0,-3), Complex('-3i'))

    assert_equal(Complex(5,3), Complex('5+3I'))
    assert_equal(Complex(5,3), Complex('5+3j'))
    assert_equal(Complex(5,3), Complex('5+3J'))
    assert_equal(Complex(0,3), Complex('3I'))
    assert_equal(Complex(0,3), Complex('3j'))
    assert_equal(Complex(0,3), Complex('3J'))

    assert_equal(Complex(5.0), Complex('5.0'))
    assert_equal(Complex(-5.0), Complex('-5.0'))
    assert_equal(Complex(5.0,3.0), Complex('5.0+3.0i'))
    assert_equal(Complex(-5.0,3.0), Complex('-5.0+3.0i'))
    assert_equal(Complex(5.0,-3.0), Complex('5.0-3.0i'))
    assert_equal(Complex(-5.0,-3.0), Complex('-5.0-3.0i'))
    assert_equal(Complex(0.0,3.0), Complex('3.0i'))
    assert_equal(Complex(0.0,-3.0), Complex('-3.0i'))

    assert_equal(Complex(5.0), Complex('5e0'))
    assert_equal(Complex(-5.0), Complex('-5e0'))
    assert_equal(Complex(5.0,3.0), Complex('5e0+3e0i'))
    assert_equal(Complex(-5.0,3.0), Complex('-5e0+3e0i'))
    assert_equal(Complex(5.0,-3.0), Complex('5e0-3e0i'))
    assert_equal(Complex(-5.0,-3.0), Complex('-5e0-3e0i'))
    assert_equal(Complex(0.0,3.0), Complex('3e0i'))
    assert_equal(Complex(0.0,-3.0), Complex('-3e0i'))

    assert_equal(Complex(0), '_'.to_c)
    assert_equal(Complex(0), '_5'.to_c)
    assert_equal(Complex(5), '5_'.to_c)
    assert_equal(Complex(5), '5x'.to_c)
    assert_equal(Complex(5), '5+_3i'.to_c)
    assert_equal(Complex(5), '5+3_i'.to_c)
    assert_equal(Complex(5,3), '5+3i_'.to_c)
    assert_equal(Complex(5,3), '5+3ix'.to_c)
    assert_raise(ArgumentError){ Complex('')}
    assert_raise(ArgumentError){ Complex('_')}
    assert_raise(ArgumentError){ Complex('_5')}
    assert_raise(ArgumentError){ Complex('5_')}
    assert_raise(ArgumentError){ Complex('5x')}
    assert_raise(ArgumentError){ Complex('5+_3i')}
    assert_raise(ArgumentError){ Complex('5+3_i')}
    assert_raise(ArgumentError){ Complex('5+3i_')}
    assert_raise(ArgumentError){ Complex('5+3ix')}

    if defined?(Rational) && defined?(''.to_r)
      assert_equal(Complex(Rational(1,5)), '1/5'.to_c)
      assert_equal(Complex(Rational(-1,5)), '-1/5'.to_c)
      assert_equal(Complex(Rational(1,5),3), '1/5+3i'.to_c)
      assert_equal(Complex(Rational(1,5),-3), '1/5-3i'.to_c)
      assert_equal(Complex(Rational(-1,5),3), '-1/5+3i'.to_c)
      assert_equal(Complex(Rational(-1,5),-3), '-1/5-3i'.to_c)
      assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+3/2i'.to_c)
      assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c)
      assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c)
      assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c)
      assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+(3/2)i'.to_c)
      assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-(3/2)i'.to_c)
      assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+(3/2)i'.to_c)
      assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-(3/2)i'.to_c)
    end

    assert_equal(Complex(5, 3), Complex('5', '3'))
  end

  def test_respond
    c = Complex(1,1)
    assert_equal(false, c.respond_to?(:<))
    assert_equal(false, c.respond_to?(:<=))
    assert_equal(false, c.respond_to?(:<=>))
    assert_equal(false, c.respond_to?(:>))
    assert_equal(false, c.respond_to?(:>=))
    assert_equal(false, c.respond_to?(:between?))
#    assert_equal(false, c.respond_to?(:div)) # ?
    assert_equal(false, c.respond_to?(:divmod))
    assert_equal(false, c.respond_to?(:floor))
    assert_equal(false, c.respond_to?(:ceil))
    assert_equal(false, c.respond_to?(:modulo))
    assert_equal(false, c.respond_to?(:round))
    assert_equal(false, c.respond_to?(:step))
    assert_equal(false, c.respond_to?(:tunrcate))

    assert_equal(false, c.respond_to?(:positive?))
    assert_equal(false, c.respond_to?(:negative?))
#    assert_equal(false, c.respond_to?(:sign))

    assert_equal(false, c.respond_to?(:quotient))
    assert_equal(false, c.respond_to?(:quot))
    assert_equal(false, c.respond_to?(:quotrem))

    assert_equal(false, c.respond_to?(:gcd))
    assert_equal(false, c.respond_to?(:lcm))
    assert_equal(false, c.respond_to?(:gcdlcm))
  end

  def test_to_i
    assert_equal(3, Complex(3).to_i)
    assert_equal(3, Integer(Complex(3)))
    assert_raise(RangeError){Complex(3,2).to_i}
    assert_raise(RangeError){Integer(Complex(3,2))}
  end

  def test_to_f
    assert_equal(3.0, Complex(3).to_f)
    assert_equal(3.0, Float(Complex(3)))
    assert_raise(RangeError){Complex(3,2).to_f}
    assert_raise(RangeError){Float(Complex(3,2))}
  end

  def test_to_r
    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(Rational(3), Complex(3).to_r)
      assert_equal(Rational(3), Rational(Complex(3)))
      assert_raise(RangeError){Complex(3,2).to_r}
      assert_raise(RangeError){Rational(Complex(3,2))}
    end
  end

  def test_to_c
    c = nil.to_c
    assert_equal([0,0] , [c.real, c.image])

    c = 0.to_c
    assert_equal([0,0] , [c.real, c.image])

    c = 1.to_c
    assert_equal([1,0] , [c.real, c.image])

    c = 1.1.to_c
    assert_equal([1.1, 0], [c.real, c.image])

    if defined?(Rational)
      c = Rational(1,2).to_c
      assert_equal([Rational(1,2), 0], [c.real, c.image])
    end

    c = Complex(1,2).to_c
    assert_equal([1, 2], [c.real, c.image])
  end

  def test_prec
    assert_equal(nil, Complex < Precision)
  end

  def test_supp
    assert_equal(true, 1.scalar?)
    assert_equal(true, 1.1.scalar?)

    assert_equal(1, 1.real)
    assert_equal(0, 1.image)
    assert_equal(0, 1.imag)

    assert_equal(1.1, 1.1.real)
    assert_equal(0, 1.1.image)
    assert_equal(0, 1.1.imag)

    assert_equal(0, 1.arg)
    assert_equal(0, 1.angle)

    assert_equal(0, 1.0.arg)
    assert_equal(0, 1.0.angle)

    assert_equal(Math::PI, -1.arg)
    assert_equal(Math::PI, -1.angle)

    assert_equal(Math::PI, -1.0.arg)
    assert_equal(Math::PI, -1.0.angle)

    assert_equal([1,0], 1.polar)
    assert_equal([1, Math::PI], -1.polar)

    assert_equal([1.0,0], 1.0.polar)
    assert_equal([1.0, Math::PI], -1.0.polar)

    assert_equal(1, 1.conjugate)
    assert_equal(-1, -1.conjugate)
    assert_equal(1, 1.conj)
    assert_equal(-1, -1.conj)

    assert_equal(1.1, 1.1.conjugate)
    assert_equal(-1.1, -1.1.conjugate)
    assert_equal(1.1, 1.1.conj)
    assert_equal(-1.1, -1.1.conj)

    assert_equal(1, 1.numerator)
    assert_equal(9, 9.numerator)
    assert_equal(1, 1.denominator)
    assert_equal(1, 9.denominator)

    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(1.0, 1.0.numerator)
      assert_equal(9.0, 9.0.numerator)
      assert_equal(1.0, 1.0.denominator)
      assert_equal(1.0, 9.0.denominator)
    end

=begin
    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(Rational(1,9), 9.reciprocal)
      assert_equal(Rational(1,9), 9.0.reciprocal)
      assert_equal(Rational(1,9), 9.inverse)
      assert_equal(Rational(1,9), 9.0.inverse)
    end
=end

    if defined?(Rational)
      assert_equal(Rational(1,2), 1.quo(2))
      assert_equal(Rational(5000000000), 10000000000.quo(2))
      assert_equal(0.5, 1.0.quo(2))
      assert_equal(Rational(1,4), Rational(1,2).quo(2))
      assert_equal(Complex(Rational(1,2),Rational(1)), Complex(1,2).quo(2))
    else
      assert_equal(0.5, 1.quo(2))
      assert_equal(5000000000.0, 10000000000.quo(2))
      assert_equal(0.5, 1.0.quo(2))
      assert_equal(Complex(0.5,1.0), Complex(1,2).quo(2))
    end

    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(Rational(1,2), 1.quo(2))
      assert_equal(Rational(5000000000), 10000000000.quo(2))
      assert_equal(Rational(1,2), 1.0.quo(2))
      assert_equal(Rational(1,4), Rational(1,2).quo(2))
      assert_equal(Complex(Rational(1,2),Rational(1)), Complex(1,2).quo(2))
    end

    assert_equal(0.5, 1.fdiv(2))
    assert_equal(5000000000.0, 10000000000.fdiv(2))
    assert_equal(0.5, 1.0.fdiv(2))
    if defined?(Rational)
      assert_equal(0.25, Rational(1,2).fdiv(2))
    end
    assert_equal(Complex(0.5,1.0), Complex(1,2).quo(2))

    unless $".grep(/(\A|\/)complex/).empty?
      assert_equal(Complex(0,2), Math.sqrt(-4.0))
#      assert_equal(true, Math.sqrt(-4.0).inexact?)
      assert_equal(Complex(0,2), Math.sqrt(-4))
#      assert_equal(true, Math.sqrt(-4).exact?)
      if defined?(Rational)
	assert_equal(Complex(0,2), Math.sqrt(Rational(-4)))
#	assert_equal(true, Math.sqrt(Rational(-4)).exact?)
      end

      assert_equal(Complex(0,3), Math.sqrt(-9.0))
#      assert_equal(true, Math.sqrt(-9.0).inexact?)
      assert_equal(Complex(0,3), Math.sqrt(-9))
#      assert_equal(true, Math.sqrt(-9).exact?)
      if defined?(Rational)
	assert_equal(Complex(0,3), Math.sqrt(Rational(-9)))
#	assert_equal(true, Math.sqrt(Rational(-9)).exact?)
      end

      c = Math.sqrt(Complex(1, 2))
      assert_in_delta(1.272, c.real, 0.001)
      assert_in_delta(0.786, c.image, 0.001)

      c = Math.sqrt(-9)
      assert_in_delta(0.0, c.real, 0.001)
      assert_in_delta(3.0, c.image, 0.001)

      c = Math.exp(Complex(1, 2))
      assert_in_delta(-1.131, c.real, 0.001)
      assert_in_delta(2.471, c.image, 0.001)

      c = Math.sin(Complex(1, 2))
      assert_in_delta(3.165, c.real, 0.001)
      assert_in_delta(1.959, c.image, 0.001)

      c = Math.cos(Complex(1, 2))
      assert_in_delta(2.032, c.real, 0.001)
      assert_in_delta(-3.051, c.image, 0.001)

      c = Math.tan(Complex(1, 2))
      assert_in_delta(0.033, c.real, 0.001)
      assert_in_delta(1.014, c.image, 0.001)

      c = Math.sinh(Complex(1, 2))
      assert_in_delta(-0.489, c.real, 0.001)
      assert_in_delta(1.403, c.image, 0.001)

      c = Math.cosh(Complex(1, 2))
      assert_in_delta(-0.642, c.real, 0.001)
      assert_in_delta(1.068, c.image, 0.001)

      c = Math.tanh(Complex(1, 2))
      assert_in_delta(1.166, c.real, 0.001)
      assert_in_delta(-0.243, c.image, 0.001)

      c = Math.log(Complex(1, 2))
      assert_in_delta(0.804, c.real, 0.001)
      assert_in_delta(1.107, c.image, 0.001)

      c = Math.log(Complex(1, 2), Math::E)
      assert_in_delta(0.804, c.real, 0.001)
      assert_in_delta(1.107, c.image, 0.001)

      c = Math.log(-1)
      assert_in_delta(0.0, c.real, 0.001)
      assert_in_delta(Math::PI, c.image, 0.001)

      c = Math.log(8, 2)
      assert_in_delta(3.0, c.real, 0.001)
      assert_in_delta(0.0, c.image, 0.001)

      c = Math.log(-8, -2)
      assert_in_delta(1.092, c.real, 0.001)
      assert_in_delta(-0.420, c.image, 0.001)

      c = Math.log10(Complex(1, 2))
      assert_in_delta(0.349, c.real, 0.001)
      assert_in_delta(0.480, c.image, 0.001)

      c = Math.asin(Complex(1, 2))
      assert_in_delta(0.427, c.real, 0.001)
      assert_in_delta(1.528, c.image, 0.001)

      c = Math.acos(Complex(1, 2))
      assert_in_delta(1.143, c.real, 0.001)
      assert_in_delta(-1.528, c.image, 0.001)

      c = Math.atan(Complex(1, 2))
      assert_in_delta(1.338, c.real, 0.001)
      assert_in_delta(0.402, c.image, 0.001)

      c = Math.atan2(Complex(1, 2), 1)
      assert_in_delta(1.338, c.real, 0.001)
      assert_in_delta(0.402, c.image, 0.001)

      c = Math.asinh(Complex(1, 2))
      assert_in_delta(1.469, c.real, 0.001)
      assert_in_delta(1.063, c.image, 0.001)

      c = Math.acosh(Complex(1, 2))
      assert_in_delta(1.528, c.real, 0.001)
      assert_in_delta(1.143, c.image, 0.001)

      c = Math.atanh(Complex(1, 2))
      assert_in_delta(0.173, c.real, 0.001)
      assert_in_delta(1.178, c.image, 0.001)
    end

  end

  def test_canonicalize
    f = defined?(Complex::Unify)
    Complex.const_set(:Unify, true) unless f

    assert_same(1, Complex.instance_eval { new(1, 0) })
    assert_not_same(1.0, Complex.instance_eval { new(1.0, 0) })
    assert_equal(Complex(1.0, 0), Complex.instance_eval { new(1.0, 0) })

    Complex.instance_eval { remove_const(:Unify) } unless f
  end

  def test_polar
    c = Complex.polar(2, 2)
    assert_in_delta(2*Math.cos(2), c.real , 0.001)
    assert_in_delta(2*Math.sin(2), c.image, 0.001)

    c = Complex.polar(1, Complex(0, 1))
    assert_in_delta(1/Math::E, c.real , 0.001)
    assert_in_delta(        0, c.image, 0.001)
  end

  def test_generic?
    assert_equal(true, Complex.generic?(1))
    assert_equal(true, Complex.generic?(2**100))
    assert_equal(true, Complex.generic?(Rational(1, 2)))
    assert_equal(true, Complex.generic?(1.0))
    assert_equal(false, Complex.generic?(Complex(1, 1)))
  end

  def test_new_bang2
    o = Object.new
    def o.to_i; 1; end
    assert_equal(Complex(1, 1), Complex.instance_eval { new!(o, o) })
  end

  def test_denominator
    f = defined?(Complex::Unify)
    unify_val = f && Complex::Unify
    Complex.instance_eval { remove_const(:Unify) } if f

    dummy_rational = Class.new(Rational)
    o1 = dummy_rational.instance_eval { new(1, 1) }
    o2 = dummy_rational.instance_eval { new(1, 1) }
    d1 = d2 = nil
    class << o1; self; end.instance_eval { define_method(:denominator) { d1 } rescue nil }
    class << o2; self; end.instance_eval { define_method(:denominator) { d2 } rescue nil }
    # o1.denominator returns d1 and o1.denominator returns d2

    c = Complex(o1, o2)

    d1 = d2 = 0
    assert_equal(0, c.denominator)

    d1 = d2 = -1
    assert_equal(1, c.denominator)

    d1 = d2 = 256
    assert_equal(256, c.denominator)

    d1, d2 = 512, 256
    assert_equal(512, c.denominator)

    d1, d2 = 256, 512
    assert_equal(512, c.denominator)

    d1, d2 = -(2**100), -(3**100)
    assert_equal(6**100, c.denominator)

    d1, d2 = 1, 2**100
    assert_equal(2**100, c.denominator)

    Complex.const_set(:Unify, unify_val) if f
  end

=begin
  def test_abs
    b = 2**100
    def b.*(x); self; end rescue nil
    def b.+(x); -1; end rescue nil
    assert_equal(Complex(0, 1), Complex(b, 1).abs)

    def b.+(x); Complex(0, 1); end rescue nil
    c = Complex(b, 1).abs
    assert_in_delta(1/Math.sqrt(2), c.real , 0.001)
    assert_in_delta(1/Math.sqrt(2), c.image, 0.001)

    def b.+(x); Complex(0, -1); end rescue nil
    c = Complex(b, 1).abs
    assert_in_delta( 1/Math.sqrt(2), c.real , 0.001)
    assert_in_delta(-1/Math.sqrt(2), c.image, 0.001)

    inf = 1.0/0.0
    nan = inf/inf
    assert_raise(Errno::EDOM, Errno::ERANGE) { Complex(1, nan).abs }
  end
=end

  def test_coerce
    c = Complex(6, 3)
    assert_equal(Complex(42, 0), c.coerce(42).first)
    assert_raise(TypeError) { c.coerce(Object.new) }

    o = Object.new
    def o.coerce(x); [x.real, x.image]; end
    assert_equal(9, c + o)
    assert_equal(3, c - o)
    assert_equal(18, c * o)
    assert_equal(2, c / o)
    assert_equal(216, c ** o)
  end

  def test_add2
    assert_equal(Complex(2**100, 1), Complex(0, 1) + 2**100)
  end

  def test_mul2
    assert_equal(Complex(0.0, 0.0), Complex(1.0, 1.0) * 0)
    assert_equal(Complex(0, 0), Complex(0, 0) * (2**100))
  end

  def test_expt2
    assert_equal(Complex(1, 0), Complex(2, 2) ** 0)
    assert_equal(Complex(0, -1), Complex(0, 1) ** (2**100-1))
    assert_equal(Complex(1, 0), Complex(1, 0) ** Rational(1, 2**100))
  end

  def test_fixed_bug
    if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
      assert_equal(Complex(1), 1 ** Complex(1))
    end
    assert_equal('-1.0-0.0i', Complex(-1.0, -0.0).to_s)
  end

  def test_known_bug
  end

end