/* rational.c: Coded by Tadayoshi Funaba 2008,2009 This implementation is based on Keiju Ishitsuka's Rational library which is written in ruby. */ #include "ruby.h" #include #include #ifdef HAVE_IEEEFP_H #include #endif #define NDEBUG #include #define ZERO INT2FIX(0) #define ONE INT2FIX(1) #define TWO INT2FIX(2) VALUE rb_cRational; static ID id_abs, id_cmp, id_convert, id_eqeq_p, id_expt, id_fdiv, id_floor, id_idiv, id_inspect, id_integer_p, id_negate, id_to_f, id_to_i, id_to_s, id_truncate; #define f_boolcast(x) ((x) ? Qtrue : Qfalse) #define binop(n,op) \ inline static VALUE \ f_##n(VALUE x, VALUE y)\ {\ return rb_funcall(x, op, 1, y);\ } #define fun1(n) \ inline static VALUE \ f_##n(VALUE x)\ {\ return rb_funcall(x, id_##n, 0);\ } #define fun2(n) \ inline static VALUE \ f_##n(VALUE x, VALUE y)\ {\ return rb_funcall(x, id_##n, 1, y);\ } inline static VALUE f_add(VALUE x, VALUE y) { if (FIXNUM_P(y) && FIX2LONG(y) == 0) return x; else if (FIXNUM_P(x) && FIX2LONG(x) == 0) return y; return rb_funcall(x, '+', 1, y); } inline static VALUE f_cmp(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { long c = FIX2LONG(x) - FIX2LONG(y); if (c > 0) c = 1; else if (c < 0) c = -1; return INT2FIX(c); } return rb_funcall(x, id_cmp, 1, y); } inline static VALUE f_div(VALUE x, VALUE y) { if (FIXNUM_P(y) && FIX2LONG(y) == 1) return x; return rb_funcall(x, '/', 1, y); } inline static VALUE f_gt_p(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) return f_boolcast(FIX2LONG(x) > FIX2LONG(y)); return rb_funcall(x, '>', 1, y); } inline static VALUE f_lt_p(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) return f_boolcast(FIX2LONG(x) < FIX2LONG(y)); return rb_funcall(x, '<', 1, y); } binop(mod, '%') inline static VALUE f_mul(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long iy = FIX2LONG(y); if (iy == 0) { if (FIXNUM_P(x) || TYPE(x) == T_BIGNUM) return ZERO; } else if (iy == 1) return x; } else if (FIXNUM_P(x)) { long ix = FIX2LONG(x); if (ix == 0) { if (FIXNUM_P(y) || TYPE(y) == T_BIGNUM) return ZERO; } else if (ix == 1) return y; } return rb_funcall(x, '*', 1, y); } inline static VALUE f_sub(VALUE x, VALUE y) { if (FIXNUM_P(y) && FIX2LONG(y) == 0) return x; return rb_funcall(x, '-', 1, y); } fun1(abs) fun1(floor) fun1(inspect) fun1(integer_p) fun1(negate) fun1(to_f) fun1(to_i) fun1(to_s) fun1(truncate) inline static VALUE f_eqeq_p(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) return f_boolcast(FIX2LONG(x) == FIX2LONG(y)); return rb_funcall(x, id_eqeq_p, 1, y); } fun2(expt) fun2(fdiv) fun2(idiv) inline static VALUE f_negative_p(VALUE x) { if (FIXNUM_P(x)) return f_boolcast(FIX2LONG(x) < 0); return rb_funcall(x, '<', 1, ZERO); } #define f_positive_p(x) (!f_negative_p(x)) inline static VALUE f_zero_p(VALUE x) { switch (TYPE(x)) { case T_FIXNUM: return f_boolcast(FIX2LONG(x) == 0); case T_BIGNUM: return Qfalse; case T_RATIONAL: { VALUE num = RRATIONAL(x)->num; return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0); } } return rb_funcall(x, id_eqeq_p, 1, ZERO); } #define f_nonzero_p(x) (!f_zero_p(x)) inline static VALUE f_one_p(VALUE x) { switch (TYPE(x)) { case T_FIXNUM: return f_boolcast(FIX2LONG(x) == 1); case T_BIGNUM: return Qfalse; case T_RATIONAL: { VALUE num = RRATIONAL(x)->num; VALUE den = RRATIONAL(x)->den; return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 && FIXNUM_P(den) && FIX2LONG(den) == 1); } } return rb_funcall(x, id_eqeq_p, 1, ONE); } inline static VALUE f_kind_of_p(VALUE x, VALUE c) { return rb_obj_is_kind_of(x, c); } inline static VALUE k_numeric_p(VALUE x) { return f_kind_of_p(x, rb_cNumeric); } inline static VALUE k_integer_p(VALUE x) { return f_kind_of_p(x, rb_cInteger); } inline static VALUE k_float_p(VALUE x) { return f_kind_of_p(x, rb_cFloat); } inline static VALUE k_rational_p(VALUE x) { return f_kind_of_p(x, rb_cRational); } #define k_exact_p(x) (!k_float_p(x)) #define k_inexact_p(x) k_float_p(x) #define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x)) #define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x)) #ifndef NDEBUG #define f_gcd f_gcd_orig #endif inline static long i_gcd(long x, long y) { if (x < 0) x = -x; if (y < 0) y = -y; if (x == 0) return y; if (y == 0) return x; while (x > 0) { long t = x; x = y % x; y = t; } return y; } inline static VALUE f_gcd(VALUE x, VALUE y) { VALUE z; if (FIXNUM_P(x) && FIXNUM_P(y)) return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y))); if (f_negative_p(x)) x = f_negate(x); if (f_negative_p(y)) y = f_negate(y); if (f_zero_p(x)) return y; if (f_zero_p(y)) return x; for (;;) { if (FIXNUM_P(x)) { if (FIX2LONG(x) == 0) return y; if (FIXNUM_P(y)) return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y))); } z = x; x = f_mod(y, x); y = z; } /* NOTREACHED */ } #ifndef NDEBUG #undef f_gcd inline static VALUE f_gcd(VALUE x, VALUE y) { VALUE r = f_gcd_orig(x, y); if (f_nonzero_p(r)) { assert(f_zero_p(f_mod(x, r))); assert(f_zero_p(f_mod(y, r))); } return r; } #endif inline static VALUE f_lcm(VALUE x, VALUE y) { if (f_zero_p(x) || f_zero_p(y)) return ZERO; return f_abs(f_mul(f_div(x, f_gcd(x, y)), y)); } #define get_dat1(x) \ struct RRational *dat;\ dat = ((struct RRational *)(x)) #define get_dat2(x,y) \ struct RRational *adat, *bdat;\ adat = ((struct RRational *)(x));\ bdat = ((struct RRational *)(y)) inline static VALUE nurat_s_new_internal(VALUE klass, VALUE num, VALUE den) { NEWOBJ(obj, struct RRational); OBJSETUP(obj, klass, T_RATIONAL); obj->num = num; obj->den = den; return (VALUE)obj; } static VALUE nurat_s_alloc(VALUE klass) { return nurat_s_new_internal(klass, ZERO, ONE); } #define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0") #if 0 static VALUE nurat_s_new_bang(int argc, VALUE *argv, VALUE klass) { VALUE num, den; switch (rb_scan_args(argc, argv, "11", &num, &den)) { case 1: if (!k_integer_p(num)) num = f_to_i(num); den = ONE; break; default: if (!k_integer_p(num)) num = f_to_i(num); if (!k_integer_p(den)) den = f_to_i(den); switch (FIX2INT(f_cmp(den, ZERO))) { case -1: num = f_negate(num); den = f_negate(den); break; case 0: rb_raise_zerodiv(); break; } break; } return nurat_s_new_internal(klass, num, den); } #endif inline static VALUE f_rational_new_bang1(VALUE klass, VALUE x) { return nurat_s_new_internal(klass, x, ONE); } inline static VALUE f_rational_new_bang2(VALUE klass, VALUE x, VALUE y) { assert(f_positive_p(y)); assert(f_nonzero_p(y)); return nurat_s_new_internal(klass, x, y); } #ifdef CANONICALIZATION_FOR_MATHN #define CANON #endif #ifdef CANON static int canonicalization = 0; void nurat_canonicalization(int f) { canonicalization = f; } #endif inline static void nurat_int_check(VALUE num) { switch (TYPE(num)) { case T_FIXNUM: case T_BIGNUM: break; default: if (!k_numeric_p(num) || !f_integer_p(num)) rb_raise(rb_eArgError, "not an integer"); } } inline static VALUE nurat_int_value(VALUE num) { nurat_int_check(num); if (!k_integer_p(num)) num = f_to_i(num); return num; } inline static VALUE nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den) { VALUE gcd; switch (FIX2INT(f_cmp(den, ZERO))) { case -1: num = f_negate(num); den = f_negate(den); break; case 0: rb_raise_zerodiv(); break; } gcd = f_gcd(num, den); num = f_idiv(num, gcd); den = f_idiv(den, gcd); #ifdef CANON if (f_one_p(den) && canonicalization) return num; #endif return nurat_s_new_internal(klass, num, den); } inline static VALUE nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den) { switch (FIX2INT(f_cmp(den, ZERO))) { case -1: num = f_negate(num); den = f_negate(den); break; case 0: rb_raise_zerodiv(); break; } #ifdef CANON if (f_one_p(den) && canonicalization) return num; #endif return nurat_s_new_internal(klass, num, den); } static VALUE nurat_s_new(int argc, VALUE *argv, VALUE klass) { VALUE num, den; switch (rb_scan_args(argc, argv, "11", &num, &den)) { case 1: num = nurat_int_value(num); den = ONE; break; default: num = nurat_int_value(num); den = nurat_int_value(den); break; } return nurat_s_canonicalize_internal(klass, num, den); } inline static VALUE f_rational_new1(VALUE klass, VALUE x) { assert(!k_rational_p(x)); return nurat_s_canonicalize_internal(klass, x, ONE); } inline static VALUE f_rational_new2(VALUE klass, VALUE x, VALUE y) { assert(!k_rational_p(x)); assert(!k_rational_p(y)); return nurat_s_canonicalize_internal(klass, x, y); } inline static VALUE f_rational_new_no_reduce1(VALUE klass, VALUE x) { assert(!k_rational_p(x)); return nurat_s_canonicalize_internal_no_reduce(klass, x, ONE); } inline static VALUE f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y) { assert(!k_rational_p(x)); assert(!k_rational_p(y)); return nurat_s_canonicalize_internal_no_reduce(klass, x, y); } /* * call-seq: * Rational(x[, y]) -> numeric * * Returns x/y; */ static VALUE nurat_f_rational(int argc, VALUE *argv, VALUE klass) { return rb_funcall2(rb_cRational, id_convert, argc, argv); } /* * call-seq: * rat.numerator -> integer * * Returns the numerator. * * For example: * * Rational(7).numerator #=> 7 * Rational(7, 1).numerator #=> 7 * Rational(9, -4).numerator #=> -9 * Rational(-2, -10).numerator #=> 1 */ static VALUE nurat_numerator(VALUE self) { get_dat1(self); return dat->num; } /* * call-seq: * rat.denominator -> integer * * Returns the denominator (always positive). * * For example: * * Rational(7).denominator #=> 1 * Rational(7, 1).denominator #=> 1 * Rational(9, -4).denominator #=> 4 * Rational(-2, -10).denominator #=> 5 * rat.numerator.gcd(rat.denominator) #=> 1 */ static VALUE nurat_denominator(VALUE self) { get_dat1(self); return dat->den; } #ifndef NDEBUG #define f_imul f_imul_orig #endif inline static VALUE f_imul(long a, long b) { VALUE r; long c; if (a == 0 || b == 0) return ZERO; else if (a == 1) return LONG2NUM(b); else if (b == 1) return LONG2NUM(a); c = a * b; r = LONG2NUM(c); if (NUM2LONG(r) != c || (c / a) != b) r = rb_big_mul(rb_int2big(a), rb_int2big(b)); return r; } #ifndef NDEBUG #undef f_imul inline static VALUE f_imul(long x, long y) { VALUE r = f_imul_orig(x, y); assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y)))); return r; } #endif inline static VALUE f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k) { VALUE num, den; if (FIXNUM_P(anum) && FIXNUM_P(aden) && FIXNUM_P(bnum) && FIXNUM_P(bden)) { long an = FIX2LONG(anum); long ad = FIX2LONG(aden); long bn = FIX2LONG(bnum); long bd = FIX2LONG(bden); long ig = i_gcd(ad, bd); VALUE g = LONG2NUM(ig); VALUE a = f_imul(an, bd / ig); VALUE b = f_imul(bn, ad / ig); VALUE c; if (k == '+') c = f_add(a, b); else c = f_sub(a, b); b = f_idiv(aden, g); g = f_gcd(c, g); num = f_idiv(c, g); a = f_idiv(bden, g); den = f_mul(a, b); } else { VALUE g = f_gcd(aden, bden); VALUE a = f_mul(anum, f_idiv(bden, g)); VALUE b = f_mul(bnum, f_idiv(aden, g)); VALUE c; if (k == '+') c = f_add(a, b); else c = f_sub(a, b); b = f_idiv(aden, g); g = f_gcd(c, g); num = f_idiv(c, g); a = f_idiv(bden, g); den = f_mul(a, b); } return f_rational_new_no_reduce2(CLASS_OF(self), num, den); } /* * call-seq: * rat + numeric -> numeric_result * * Performs addition. * * For example: * * Rational(2, 3) + Rational(2, 3) #=> (4/3) * Rational(900) + Rational(1) #=> (900/1) * Rational(-2, 9) + Rational(-9, 2) #=> (-85/18) * Rational(9, 8) + 4 #=> (41/8) * Rational(20, 9) + 9.8 #=> 12.022222222222222 */ static VALUE nurat_add(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); return f_addsub(self, dat->num, dat->den, other, ONE, '+'); } case T_FLOAT: return f_add(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '+'); } default: return rb_num_coerce_bin(self, other, '+'); } } /* * call-seq: * rat - numeric -> numeric_result * * Performs subtraction. * * For example: * * Rational(2, 3) - Rational(2, 3) #=> (0/1) * Rational(900) - Rational(1) #=> (899/1) * Rational(-2, 9) - Rational(-9, 2) #=> (77/18) * Rational(9, 8) - 4 #=> (23/8) * Rational(20, 9) - 9.8 #=> -7.577777777777778 */ static VALUE nurat_sub(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); return f_addsub(self, dat->num, dat->den, other, ONE, '-'); } case T_FLOAT: return f_sub(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '-'); } default: return rb_num_coerce_bin(self, other, '-'); } } inline static VALUE f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k) { VALUE num, den; if (k == '/') { VALUE t; if (f_negative_p(bnum)) { anum = f_negate(anum); bnum = f_negate(bnum); } t = bnum; bnum = bden; bden = t; } if (FIXNUM_P(anum) && FIXNUM_P(aden) && FIXNUM_P(bnum) && FIXNUM_P(bden)) { long an = FIX2LONG(anum); long ad = FIX2LONG(aden); long bn = FIX2LONG(bnum); long bd = FIX2LONG(bden); long g1 = i_gcd(an, bd); long g2 = i_gcd(ad, bn); num = f_imul(an / g1, bn / g2); den = f_imul(ad / g2, bd / g1); } else { VALUE g1 = f_gcd(anum, bden); VALUE g2 = f_gcd(aden, bnum); num = f_mul(f_idiv(anum, g1), f_idiv(bnum, g2)); den = f_mul(f_idiv(aden, g2), f_idiv(bden, g1)); } return f_rational_new_no_reduce2(CLASS_OF(self), num, den); } /* * call-seq: * rat * numeric -> numeric_result * * Performs multiplication. * * For example: * * Rational(2, 3) * Rational(2, 3) #=> (4/9) * Rational(900) * Rational(1) #=> (900/1) * Rational(-2, 9) * Rational(-9, 2) #=> (1/1) * Rational(9, 8) * 4 #=> (9/2) * Rational(20, 9) * 9.8 #=> 21.77777777777778 */ static VALUE nurat_mul(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '*'); } case T_FLOAT: return f_mul(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '*'); } default: return rb_num_coerce_bin(self, other, '*'); } } /* * call-seq: * rat / numeric -> numeric_result * rat.quo(numeric) -> numeric_result * * Performs division. * * For example: * * Rational(2, 3) / Rational(2, 3) #=> (1/1) * Rational(900) / Rational(1) #=> (900/1) * Rational(-2, 9) / Rational(-9, 2) #=> (4/81) * Rational(9, 8) / 4 #=> (9/32) * Rational(20, 9) / 9.8 #=> 0.22675736961451246 */ static VALUE nurat_div(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: if (f_zero_p(other)) rb_raise_zerodiv(); { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '/'); } case T_FLOAT: return rb_funcall(f_to_f(self), '/', 1, other); case T_RATIONAL: if (f_zero_p(other)) rb_raise_zerodiv(); { get_dat2(self, other); if (f_one_p(self)) return f_rational_new_no_reduce2(CLASS_OF(self), bdat->den, bdat->num); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '/'); } default: return rb_num_coerce_bin(self, other, '/'); } } /* * call-seq: * rat.fdiv(numeric) -> float * * Performs division and returns the value as a float. * * For example: * * Rational(2, 3).fdiv(1) #=> 0.6666666666666666 * Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333 * Rational(2).fdiv(3) #=> 0.6666666666666666 */ static VALUE nurat_fdiv(VALUE self, VALUE other) { if (f_zero_p(other)) return f_div(self, f_to_f(other)); return f_to_f(f_div(self, other)); } extern VALUE rb_fexpt(VALUE x, VALUE y); /* * call-seq: * rat ** numeric -> numeric_result * * Performs exponentiation. * * For example: * * Rational(2) ** Rational(3) #=> (8/1) * Rational(10) ** -2 #=> (1/100) * Rational(10) ** -2.0 #=> 0.01 * Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i) * Rational(1, 2) ** 0 #=> (1/1) * Rational(1, 2) ** 0.0 #=> 1.0 */ static VALUE nurat_expt(VALUE self, VALUE other) { if (k_exact_zero_p(other)) return f_rational_new_bang1(CLASS_OF(self), ONE); if (k_rational_p(other)) { get_dat1(other); if (f_one_p(dat->den)) other = dat->num; /* c14n */ } switch (TYPE(other)) { case T_FIXNUM: { VALUE num, den; get_dat1(self); switch (FIX2INT(f_cmp(other, ZERO))) { case 1: num = f_expt(dat->num, other); den = f_expt(dat->den, other); break; case -1: num = f_expt(dat->den, f_negate(other)); den = f_expt(dat->num, f_negate(other)); break; default: num = ONE; den = ONE; break; } return f_rational_new2(CLASS_OF(self), num, den); } case T_BIGNUM: rb_warn("in a**b, b may be too big"); /* fall through */ case T_FLOAT: case T_RATIONAL: return rb_fexpt(f_to_f(self), other); default: return rb_num_coerce_bin(self, other, id_expt); } } /* * call-seq: * rat <=> numeric -> -1, 0, +1 or nil * * Performs comparison and returns -1, 0, or +1. * * For example: * * Rational(2, 3) <=> Rational(2, 3) #=> 0 * Rational(5) <=> 5 #=> 0 * Rational(2,3) <=> Rational(1,3) #=> 1 * Rational(1,3) <=> 1 #=> -1 * Rational(1,3) <=> 0.3 #=> 1 */ static VALUE nurat_cmp(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1) return f_cmp(dat->num, other); /* c14n */ return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other)); } case T_FLOAT: return f_cmp(f_to_f(self), other); case T_RATIONAL: { VALUE num1, num2; get_dat2(self, other); if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) && FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) { num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)); num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)); } else { num1 = f_mul(adat->num, bdat->den); num2 = f_mul(bdat->num, adat->den); } return f_cmp(f_sub(num1, num2), ZERO); } default: return rb_num_coerce_cmp(self, other, id_cmp); } } /* * call-seq: * rat == object -> true or false * * Returns true if rat equals object numerically. * * For example: * * Rational(2, 3) == Rational(2, 3) #=> true * Rational(5) == 5 #=> true * Rational(0) == 0.0 #=> true * Rational('1/3') == 0.33 #=> false * Rational('1/2') == '1/2' #=> false */ static VALUE nurat_eqeq_p(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); if (f_zero_p(dat->num) && f_zero_p(other)) return Qtrue; if (!FIXNUM_P(dat->den)) return Qfalse; if (FIX2LONG(dat->den) != 1) return Qfalse; if (f_eqeq_p(dat->num, other)) return Qtrue; return Qfalse; } case T_FLOAT: return f_eqeq_p(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); if (f_zero_p(adat->num) && f_zero_p(bdat->num)) return Qtrue; return f_boolcast(f_eqeq_p(adat->num, bdat->num) && f_eqeq_p(adat->den, bdat->den)); } default: return f_eqeq_p(other, self); } } /* :nodoc: */ static VALUE nurat_coerce(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self); case T_FLOAT: return rb_assoc_new(other, f_to_f(self)); case T_RATIONAL: return rb_assoc_new(other, self); case T_COMPLEX: if (k_exact_zero_p(RCOMPLEX(other)->imag)) return rb_assoc_new(f_rational_new_bang1 (CLASS_OF(self), RCOMPLEX(other)->real), self); } rb_raise(rb_eTypeError, "%s can't be coerced into %s", rb_obj_classname(other), rb_obj_classname(self)); return Qnil; } #if 0 /* :nodoc: */ static VALUE nurat_idiv(VALUE self, VALUE other) { return f_idiv(self, other); } /* :nodoc: */ static VALUE nurat_quot(VALUE self, VALUE other) { return f_truncate(f_div(self, other)); } /* :nodoc: */ static VALUE nurat_quotrem(VALUE self, VALUE other) { VALUE val = f_truncate(f_div(self, other)); return rb_assoc_new(val, f_sub(self, f_mul(other, val))); } #endif #if 0 /* :nodoc: */ static VALUE nurat_true(VALUE self) { return Qtrue; } #endif static VALUE nurat_floor(VALUE self) { get_dat1(self); return f_idiv(dat->num, dat->den); } static VALUE nurat_ceil(VALUE self) { get_dat1(self); return f_negate(f_idiv(f_negate(dat->num), dat->den)); } /* * call-seq: * rat.to_i -> integer * * Returns the truncated value as an integer. * * Equivalent to * rat.truncate. * * For example: * * Rational(2, 3).to_i #=> 0 * Rational(3).to_i #=> 3 * Rational(300.6).to_i #=> 300 * Rational(98,71).to_i #=> 1 * Rational(-30,2).to_i #=> -15 */ static VALUE nurat_truncate(VALUE self) { get_dat1(self); if (f_negative_p(dat->num)) return f_negate(f_idiv(f_negate(dat->num), dat->den)); return f_idiv(dat->num, dat->den); } static VALUE nurat_round(VALUE self) { VALUE num, den, neg; get_dat1(self); num = dat->num; den = dat->den; neg = f_negative_p(num); if (neg) num = f_negate(num); num = f_add(f_mul(num, TWO), den); den = f_mul(den, TWO); num = f_idiv(num, den); if (neg) num = f_negate(num); return num; } static VALUE f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE)) { VALUE n, b, s; if (argc == 0) return (*func)(self); rb_scan_args(argc, argv, "01", &n); if (!k_integer_p(n)) rb_raise(rb_eTypeError, "not an integer"); b = f_expt(INT2FIX(10), n); s = f_mul(self, b); s = (*func)(s); s = f_div(f_rational_new_bang1(CLASS_OF(self), s), b); if (f_lt_p(n, ONE)) s = f_to_i(s); return s; } /* * call-seq: * rat.floor -> integer * rat.floor(precision=0) -> rational * * Returns the truncated value (toward negative infinity). * * For example: * * Rational(3).floor #=> 3 * Rational(2, 3).floor #=> 0 * Rational(-3, 2).floor #=> -1 * * decimal - 1 2 3 . 4 5 6 * ^ ^ ^ ^ ^ ^ * precision -3 -2 -1 0 +1 +2 * * '%f' % Rational('-123.456').floor(+1) #=> "-123.500000" * '%f' % Rational('-123.456').floor(-1) #=> "-130.000000" */ static VALUE nurat_floor_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_floor); } /* * call-seq: * rat.ceil -> integer * rat.ceil(precision=0) -> rational * * Returns the truncated value (toward positive infinity). * * For example: * * Rational(3).ceil #=> 3 * Rational(2, 3).ceil #=> 1 * Rational(-3, 2).ceil #=> -1 * * decimal - 1 2 3 . 4 5 6 * ^ ^ ^ ^ ^ ^ * precision -3 -2 -1 0 +1 +2 * * '%f' % Rational('-123.456').ceil(+1) #=> "-123.400000" * '%f' % Rational('-123.456').ceil(-1) #=> "-120.000000" */ static VALUE nurat_ceil_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_ceil); } /* * call-seq: * rat.truncate -> integer * rat.truncate(precision=0) -> rational * * Returns the truncated value (toward zero). * * For example: * * Rational(3).truncate #=> 3 * Rational(2, 3).truncate #=> 0 * Rational(-3, 2).truncate #=> -1 * * decimal - 1 2 3 . 4 5 6 * ^ ^ ^ ^ ^ ^ * precision -3 -2 -1 0 +1 +2 * * '%f' % Rational('-123.456').truncate(+1) #=> "-123.400000" * '%f' % Rational('-123.456').truncate(-1) #=> "-120.000000" */ static VALUE nurat_truncate_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_truncate); } /* * call-seq: * rat.round -> integer * rat.round(precision=0) -> rational * * Returns the truncated value (toward the nearest integer; * 0.5 => 1; -0.5 => -1). * * For example: * * Rational(3).round #=> 3 * Rational(2, 3).round #=> 1 * Rational(-3, 2).round #=> -2 * * decimal - 1 2 3 . 4 5 6 * ^ ^ ^ ^ ^ ^ * precision -3 -2 -1 0 +1 +2 * * '%f' % Rational('-123.456').round(+1) #=> "-123.500000" * '%f' % Rational('-123.456').round(-1) #=> "-120.000000" */ static VALUE nurat_round_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_round); } /* * call-seq: * rat.to_f -> float * * Return the value as a float. * * For example: * * Rational(2).to_f #=> 2.0 * Rational(9, 4).to_f #=> 2.25 * Rational(-3, 4).to_f #=> -0.75 * Rational(20, 3).to_f #=> 6.666666666666667 */ static VALUE nurat_to_f(VALUE self) { get_dat1(self); return f_fdiv(dat->num, dat->den); } /* * call-seq: * rat.to_r -> self * * Returns self. * * For example: * * Rational(2).to_r #=> (2/1) * Rational(-8, 6).to_r #=> (-4/3) */ static VALUE nurat_to_r(VALUE self) { return self; } #define id_ceil rb_intern("ceil") #define f_ceil(x) rb_funcall(x, id_ceil, 0) #define id_quo rb_intern("quo") #define f_quo(x,y) rb_funcall(x, id_quo, 1, y) #define f_reciprocal(x) f_quo(ONE, x) /* The algorithm here is the method described in CLISP. Bruno Haible has graciously given permission to use this algorithm. He says, "You can use it, if you present the following explanation of the algorithm." Algorithm (recursively presented): If x is a rational number, return x. If x = 0.0, return 0. If x < 0.0, return (- (rationalize (- x))). If x > 0.0: Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, exponent, sign). If m = 0 or e >= 0: return x = m*2^e. Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e with smallest possible numerator and denominator. Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. But in this case the result will be x itself anyway, regardless of the choice of a. Therefore we can simply ignore this case. Note 2: At first, we need to consider the closed interval [a,b]. but since a and b have the denominator 2^(|e|+1) whereas x itself has a denominator <= 2^|e|, we can restrict the search to the open interval (a,b). So, for given a and b (0 < a < b) we are searching a rational number y with a <= y <= b. Recursive algorithm fraction_between(a,b): c := (ceiling a) if c < b then return c ; because a <= c < b, c integer else ; a is not integer (otherwise we would have had c = a < b) k := c-1 ; k = floor(a), k < a < b <= k+1 return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) ; note 1 <= 1/(b-k) < 1/(a-k) You can see that we are actually computing a continued fraction expansion. Algorithm (iterative): If x is rational, return x. Call (integer-decode-float x). It returns a m,e,s (mantissa, exponent, sign). If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) (positive and already in lowest terms because the denominator is a power of two and the numerator is odd). Start a continued fraction expansion p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. Loop c := (ceiling a) if c >= b then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), goto Loop finally partial_quotient(c). Here partial_quotient(c) denotes the iteration i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. At the end, return s * (p[i]/q[i]). This rational number is already in lowest terms because p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. */ static void nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q) { VALUE c, k, t, p0, p1, p2, q0, q1, q2; p0 = ZERO; p1 = ONE; q0 = ONE; q1 = ZERO; while (1) { c = f_ceil(a); if (f_lt_p(c, b)) break; k = f_sub(c, ONE); p2 = f_add(f_mul(k, p1), p0); q2 = f_add(f_mul(k, q1), q0); t = f_reciprocal(f_sub(b, k)); b = f_reciprocal(f_sub(a, k)); a = t; p0 = p1; q0 = q1; p1 = p2; q1 = q2; } *p = f_add(f_mul(c, p1), p0); *q = f_add(f_mul(c, q1), q0); } /* * call-seq: * rat.rationalize -> self * rat.rationalize(eps) -> rational * * Returns a simpler approximation of the value if an optional * argument eps is given (rat-|eps| <= result <= rat+|eps|), self * otherwise. * * For example: * * r = Rational(5033165, 16777216) * r.rationalize #=> (5033165/16777216) * r.rationalize(Rational('0.01')) #=> (3/10) * r.rationalize(Rational('0.1')) #=> (1/3) */ static VALUE nurat_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e, a, b, p, q; if (argc == 0) return self; if (f_negative_p(self)) return f_negate(nurat_rationalize(argc, argv, f_abs(self))); rb_scan_args(argc, argv, "01", &e); e = f_abs(e); a = f_sub(self, e); b = f_add(self, e); if (f_eqeq_p(a, b)) return self; nurat_rationalize_internal(a, b, &p, &q); return f_rational_new2(CLASS_OF(self), p, q); } /* :nodoc: */ static VALUE nurat_hash(VALUE self) { st_index_t v, h[2]; VALUE n; get_dat1(self); n = rb_hash(dat->num); h[0] = NUM2LONG(n); n = rb_hash(dat->den); h[1] = NUM2LONG(n); v = rb_memhash(h, sizeof(h)); return LONG2FIX(v); } static VALUE f_format(VALUE self, VALUE (*func)(VALUE)) { VALUE s; get_dat1(self); s = (*func)(dat->num); rb_str_cat2(s, "/"); rb_str_concat(s, (*func)(dat->den)); return s; } /* * call-seq: * rat.to_s -> string * * Returns the value as a string. * * For example: * * Rational(2).to_s #=> "2/1" * Rational(-8, 6).to_s #=> "-4/3" * Rational('0.5').to_s #=> "1/2" */ static VALUE nurat_to_s(VALUE self) { return f_format(self, f_to_s); } /* * call-seq: * rat.inspect -> string * * Returns the value as a string for inspection. * * For example: * * Rational(2).inspect #=> "(2/1)" * Rational(-8, 6).inspect #=> "(-4/3)" * Rational('0.5').inspect #=> "(1/2)" */ static VALUE nurat_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, f_inspect)); rb_str_cat2(s, ")"); return s; } /* :nodoc: */ static VALUE nurat_marshal_dump(VALUE self) { VALUE a; get_dat1(self); a = rb_assoc_new(dat->num, dat->den); rb_copy_generic_ivar(a, self); return a; } /* :nodoc: */ static VALUE nurat_marshal_load(VALUE self, VALUE a) { get_dat1(self); dat->num = RARRAY_PTR(a)[0]; dat->den = RARRAY_PTR(a)[1]; rb_copy_generic_ivar(self, a); if (f_zero_p(dat->den)) rb_raise_zerodiv(); return self; } /* --- */ VALUE rb_rational_reciprocal(VALUE x) { get_dat1(x); return f_rational_new_no_reduce2(CLASS_OF(x), dat->den, dat->num); } /* * call-seq: * int.gcd(int2) -> integer * * Returns the greatest common divisor (always positive). 0.gcd(x) * and x.gcd(0) return abs(x). * * For example: * * 2.gcd(2) #=> 2 * 3.gcd(-7) #=> 1 * ((1<<31)-1).gcd((1<<61)-1) #=> 1 */ VALUE rb_gcd(VALUE self, VALUE other) { other = nurat_int_value(other); return f_gcd(self, other); } /* * call-seq: * int.lcm(int2) -> integer * * Returns the least common multiple (always positive). 0.lcm(x) and * x.lcm(0) return zero. * * For example: * * 2.lcm(2) #=> 2 * 3.lcm(-7) #=> 21 * ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297 */ VALUE rb_lcm(VALUE self, VALUE other) { other = nurat_int_value(other); return f_lcm(self, other); } /* * call-seq: * int.gcdlcm(int2) -> array * * Returns an array; [int.gcd(int2), int.lcm(int2)]. * * For example: * * 2.gcdlcm(2) #=> [2, 2] * 3.gcdlcm(-7) #=> [1, 21] * ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297] */ VALUE rb_gcdlcm(VALUE self, VALUE other) { other = nurat_int_value(other); return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); } VALUE rb_rational_raw(VALUE x, VALUE y) { return nurat_s_new_internal(rb_cRational, x, y); } VALUE rb_rational_new(VALUE x, VALUE y) { return nurat_s_canonicalize_internal(rb_cRational, x, y); } static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass); VALUE rb_Rational(VALUE x, VALUE y) { VALUE a[2]; a[0] = x; a[1] = y; return nurat_s_convert(2, a, rb_cRational); } #define id_numerator rb_intern("numerator") #define f_numerator(x) rb_funcall(x, id_numerator, 0) #define id_denominator rb_intern("denominator") #define f_denominator(x) rb_funcall(x, id_denominator, 0) #define id_to_r rb_intern("to_r") #define f_to_r(x) rb_funcall(x, id_to_r, 0) /* * call-seq: * num.numerator -> integer * * Returns the numerator. */ static VALUE numeric_numerator(VALUE self) { return f_numerator(f_to_r(self)); } /* * call-seq: * num.denominator -> integer * * Returns the denominator (always positive). */ static VALUE numeric_denominator(VALUE self) { return f_denominator(f_to_r(self)); } /* * call-seq: * int.numerator -> self * * Returns self. */ static VALUE integer_numerator(VALUE self) { return self; } /* * call-seq: * int.denominator -> 1 * * Returns 1. */ static VALUE integer_denominator(VALUE self) { return INT2FIX(1); } /* * call-seq: * flo.numerator -> integer * * Returns the numerator. The result is machine dependent. * * For example: * * n = 0.3.numerator #=> 5404319552844595 * d = 0.3.denominator #=> 18014398509481984 * n.fdiv(d) #=> 0.3 */ static VALUE float_numerator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return self; return rb_call_super(0, 0); } /* * call-seq: * flo.denominator -> integer * * Returns the denominator (always positive). The result is machine * dependent. * * See numerator. */ static VALUE float_denominator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return INT2FIX(1); return rb_call_super(0, 0); } /* * call-seq: * nil.to_r -> (0/1) * * Returns zero as a rational. */ static VALUE nilclass_to_r(VALUE self) { return rb_rational_new1(INT2FIX(0)); } /* * call-seq: * nil.rationalize([eps]) -> (0/1) * * Returns zero as a rational. An optional argument eps is always * ignored. */ static VALUE nilclass_rationalize(int argc, VALUE *argv, VALUE self) { rb_scan_args(argc, argv, "01", NULL); return nilclass_to_r(self); } /* * call-seq: * int.to_r -> rational * * Returns the value as a rational. * * For example: * * 1.to_r #=> (1/1) * (1<<64).to_r #=> (18446744073709551616/1) */ static VALUE integer_to_r(VALUE self) { return rb_rational_new1(self); } /* * call-seq: * int.rationalize([eps]) -> rational * * Returns the value as a rational. An optional argument eps is * always ignored. */ static VALUE integer_rationalize(int argc, VALUE *argv, VALUE self) { rb_scan_args(argc, argv, "01", NULL); return integer_to_r(self); } static void float_decode_internal(VALUE self, VALUE *rf, VALUE *rn) { double f; int n; f = frexp(RFLOAT_VALUE(self), &n); f = ldexp(f, DBL_MANT_DIG); n -= DBL_MANT_DIG; *rf = rb_dbl2big(f); *rn = INT2FIX(n); } #if 0 static VALUE float_decode(VALUE self) { VALUE f, n; float_decode_internal(self, &f, &n); return rb_assoc_new(f, n); } #endif #define id_lshift rb_intern("<<") #define f_lshift(x,n) rb_funcall(x, id_lshift, 1, n) /* * call-seq: * flt.to_r -> rational * * Returns the value as a rational. * * NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is * equivalent to '3/10'.to_r, but the former isn't so. * * For example: * * 2.0.to_r #=> (2/1) * 2.5.to_r #=> (5/2) * -0.75.to_r #=> (-3/4) * 0.0.to_r #=> (0/1) */ static VALUE float_to_r(VALUE self) { VALUE f, n; float_decode_internal(self, &f, &n); #if FLT_RADIX == 2 { long ln = FIX2LONG(n); if (ln == 0) return f_to_r(f); if (ln > 0) return f_to_r(f_lshift(f, n)); ln = -ln; return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln))); } #else return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n))); #endif } /* * call-seq: * flt.rationalize([eps]) -> rational * * Returns a simpler approximation of the value (flt-|eps| <= result * <= flt+|eps|). if eps is not given, it will be chosen * automatically. * * For example: * * 0.3.rationalize #=> (3/10) * 1.333.rationalize #=> (1333/1000) * 1.333.rationalize(0.01) #=> (4/3) */ static VALUE float_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e, a, b, p, q; if (f_negative_p(self)) return f_negate(float_rationalize(argc, argv, f_abs(self))); rb_scan_args(argc, argv, "01", &e); if (argc != 0) { e = f_abs(e); a = f_sub(self, e); b = f_add(self, e); } else { VALUE f, n; float_decode_internal(self, &f, &n); if (f_zero_p(f) || f_positive_p(n)) return rb_rational_new1(f_lshift(f, n)); #if FLT_RADIX == 2 a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE), f_lshift(ONE, f_sub(ONE, n))); b = rb_rational_new2(f_add(f_mul(TWO, f), ONE), f_lshift(ONE, f_sub(ONE, n))); #else a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f), INT2FIX(FLT_RADIX - 1)), f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n))); b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f), INT2FIX(FLT_RADIX - 1)), f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n))); #endif } if (f_eqeq_p(a, b)) return f_to_r(self); nurat_rationalize_internal(a, b, &p, &q); return rb_rational_new2(p, q); } static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore; #define WS "\\s*" #define DIGITS "(?:[0-9](?:_[0-9]|[0-9])*)" #define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?" #define DENOMINATOR DIGITS #define PATTERN "\\A" WS "([-+])?(" NUMERATOR ")(?:\\/(" DENOMINATOR "))?" WS static void make_patterns(void) { static const char rat_pat_source[] = PATTERN; static const char an_e_pat_source[] = "[eE]"; static const char a_dot_pat_source[] = "\\."; static const char underscores_pat_source[] = "_+"; if (rat_pat) return; rat_pat = rb_reg_new(rat_pat_source, sizeof rat_pat_source - 1, 0); rb_gc_register_mark_object(rat_pat); an_e_pat = rb_reg_new(an_e_pat_source, sizeof an_e_pat_source - 1, 0); rb_gc_register_mark_object(an_e_pat); a_dot_pat = rb_reg_new(a_dot_pat_source, sizeof a_dot_pat_source - 1, 0); rb_gc_register_mark_object(a_dot_pat); underscores_pat = rb_reg_new(underscores_pat_source, sizeof underscores_pat_source - 1, 0); rb_gc_register_mark_object(underscores_pat); an_underscore = rb_usascii_str_new2("_"); rb_gc_register_mark_object(an_underscore); } #define id_match rb_intern("match") #define f_match(x,y) rb_funcall(x, id_match, 1, y) #define id_aref rb_intern("[]") #define f_aref(x,y) rb_funcall(x, id_aref, 1, y) #define id_post_match rb_intern("post_match") #define f_post_match(x) rb_funcall(x, id_post_match, 0) #define id_split rb_intern("split") #define f_split(x,y) rb_funcall(x, id_split, 1, y) #include static VALUE string_to_r_internal(VALUE self) { VALUE s, m; s = self; if (RSTRING_LEN(s) == 0) return rb_assoc_new(Qnil, self); m = f_match(rat_pat, s); if (!NIL_P(m)) { VALUE v, ifp, exp, ip, fp; VALUE si = f_aref(m, INT2FIX(1)); VALUE nu = f_aref(m, INT2FIX(2)); VALUE de = f_aref(m, INT2FIX(3)); VALUE re = f_post_match(m); { VALUE a; a = f_split(nu, an_e_pat); ifp = RARRAY_PTR(a)[0]; if (RARRAY_LEN(a) != 2) exp = Qnil; else exp = RARRAY_PTR(a)[1]; a = f_split(ifp, a_dot_pat); ip = RARRAY_PTR(a)[0]; if (RARRAY_LEN(a) != 2) fp = Qnil; else fp = RARRAY_PTR(a)[1]; } v = rb_rational_new1(f_to_i(ip)); if (!NIL_P(fp)) { char *p = StringValuePtr(fp); long count = 0; VALUE l; while (*p) { if (rb_isdigit(*p)) count++; p++; } l = f_expt(INT2FIX(10), LONG2NUM(count)); v = f_mul(v, l); v = f_add(v, f_to_i(fp)); v = f_div(v, l); } if (!NIL_P(si) && *StringValuePtr(si) == '-') v = f_negate(v); if (!NIL_P(exp)) v = f_mul(v, f_expt(INT2FIX(10), f_to_i(exp))); #if 0 if (!NIL_P(de) && (!NIL_P(fp) || !NIL_P(exp))) return rb_assoc_new(v, rb_usascii_str_new2("dummy")); #endif if (!NIL_P(de)) v = f_div(v, f_to_i(de)); return rb_assoc_new(v, re); } return rb_assoc_new(Qnil, self); } static VALUE string_to_r_strict(VALUE self) { VALUE a = string_to_r_internal(self); if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) { VALUE s = f_inspect(self); rb_raise(rb_eArgError, "invalid value for convert(): %s", StringValuePtr(s)); } return RARRAY_PTR(a)[0]; } #define id_gsub rb_intern("gsub") #define f_gsub(x,y,z) rb_funcall(x, id_gsub, 2, y, z) /* * call-seq: * str.to_r -> rational * * Returns a rational which denotes the string form. The parser * ignores leading whitespaces and trailing garbage. Any digit * sequences can be separated by an underscore. Returns zero for null * or garbage string. * * NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is * equivalent to '3/10'.to_r, but the latter isn't so. * * For example: * * ' 2 '.to_r #=> (2/1) * '300/2'.to_r #=> (150/1) * '-9.2'.to_r #=> (-46/5) * '-9.2e2'.to_r #=> (-920/1) * '1_234_567'.to_r #=> (1234567/1) * '21 june 09'.to_r #=> (21/1) * '21/06/09'.to_r #=> (7/2) * 'bwv 1079'.to_r #=> (0/1) */ static VALUE string_to_r(VALUE self) { VALUE s, a, backref; backref = rb_backref_get(); rb_match_busy(backref); s = f_gsub(self, underscores_pat, an_underscore); a = string_to_r_internal(s); rb_backref_set(backref); if (!NIL_P(RARRAY_PTR(a)[0])) return RARRAY_PTR(a)[0]; return rb_rational_new1(INT2FIX(0)); } #define id_to_r rb_intern("to_r") #define f_to_r(x) rb_funcall(x, id_to_r, 0) static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2, backref; rb_scan_args(argc, argv, "11", &a1, &a2); if (NIL_P(a1) || (argc == 2 && NIL_P(a2))) rb_raise(rb_eTypeError, "can't convert nil into Rational"); switch (TYPE(a1)) { case T_COMPLEX: if (k_exact_zero_p(RCOMPLEX(a1)->imag)) a1 = RCOMPLEX(a1)->real; } switch (TYPE(a2)) { case T_COMPLEX: if (k_exact_zero_p(RCOMPLEX(a2)->imag)) a2 = RCOMPLEX(a2)->real; } backref = rb_backref_get(); rb_match_busy(backref); switch (TYPE(a1)) { case T_FIXNUM: case T_BIGNUM: break; case T_FLOAT: a1 = f_to_r(a1); break; case T_STRING: a1 = string_to_r_strict(a1); break; } switch (TYPE(a2)) { case T_FIXNUM: case T_BIGNUM: break; case T_FLOAT: a2 = f_to_r(a2); break; case T_STRING: a2 = string_to_r_strict(a2); break; } rb_backref_set(backref); switch (TYPE(a1)) { case T_RATIONAL: if (argc == 1 || (k_exact_one_p(a2))) return a1; } if (argc == 1) { if (!(k_numeric_p(a1) && k_integer_p(a1))) return rb_convert_type(a1, T_RATIONAL, "Rational", "to_r"); } else { if ((k_numeric_p(a1) && k_numeric_p(a2)) && (!f_integer_p(a1) || !f_integer_p(a2))) return f_div(a1, a2); } { VALUE argv2[2]; argv2[0] = a1; argv2[1] = a2; return nurat_s_new(argc, argv2, klass); } } /* * A rational number can be represented as a paired integer number; * a/b (b>0). Where a is numerator and b is denominator. Integer a * equals rational a/1 mathematically. * * In ruby, you can create rational object with Rational or to_r * method. The return values will be irreducible. * * Rational(1) #=> (1/1) * Rational(2, 3) #=> (2/3) * Rational(4, -6) #=> (-2/3) * 3.to_r #=> (3/1) * * You can also create rational object from floating-point numbers or * strings. * * Rational(0.3) #=> (5404319552844595/18014398509481984) * Rational('0.3') #=> (3/10) * Rational('2/3') #=> (2/3) * * 0.3.to_r #=> (5404319552844595/18014398509481984) * '0.3'.to_r #=> (3/10) * '2/3'.to_r #=> (2/3) * * A rational object is an exact number, which helps you to write * program without any rounding errors. * * 10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999 * 10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1) * * However, when an expression has inexact factor (numerical value or * operation), will produce an inexact result. * * Rational(10) / 3 #=> (10/3) * Rational(10) / 3.0 #=> 3.3333333333333335 * * Rational(-8) ** Rational(1, 3) * #=> (1.0000000000000002+1.7320508075688772i) */ void Init_Rational(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) assert(fprintf(stderr, "assert() is now active\n")); id_abs = rb_intern("abs"); id_cmp = rb_intern("<=>"); id_convert = rb_intern("convert"); id_eqeq_p = rb_intern("=="); id_expt = rb_intern("**"); id_fdiv = rb_intern("fdiv"); id_floor = rb_intern("floor"); id_idiv = rb_intern("div"); id_inspect = rb_intern("inspect"); id_integer_p = rb_intern("integer?"); id_negate = rb_intern("-@"); id_to_f = rb_intern("to_f"); id_to_i = rb_intern("to_i"); id_to_s = rb_intern("to_s"); id_truncate = rb_intern("truncate"); rb_cRational = rb_define_class("Rational", rb_cNumeric); rb_define_alloc_func(rb_cRational, nurat_s_alloc); rb_undef_method(CLASS_OF(rb_cRational), "allocate"); #if 0 rb_define_private_method(CLASS_OF(rb_cRational), "new!", nurat_s_new_bang, -1); rb_define_private_method(CLASS_OF(rb_cRational), "new", nurat_s_new, -1); #else rb_undef_method(CLASS_OF(rb_cRational), "new"); #endif rb_define_global_function("Rational", nurat_f_rational, -1); rb_define_method(rb_cRational, "numerator", nurat_numerator, 0); rb_define_method(rb_cRational, "denominator", nurat_denominator, 0); rb_define_method(rb_cRational, "+", nurat_add, 1); rb_define_method(rb_cRational, "-", nurat_sub, 1); rb_define_method(rb_cRational, "*", nurat_mul, 1); rb_define_method(rb_cRational, "/", nurat_div, 1); rb_define_method(rb_cRational, "quo", nurat_div, 1); rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1); rb_define_method(rb_cRational, "**", nurat_expt, 1); rb_define_method(rb_cRational, "<=>", nurat_cmp, 1); rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1); rb_define_method(rb_cRational, "coerce", nurat_coerce, 1); #if 0 /* NUBY */ rb_define_method(rb_cRational, "//", nurat_idiv, 1); #endif #if 0 rb_define_method(rb_cRational, "quot", nurat_quot, 1); rb_define_method(rb_cRational, "quotrem", nurat_quotrem, 1); #endif #if 0 rb_define_method(rb_cRational, "rational?", nurat_true, 0); rb_define_method(rb_cRational, "exact?", nurat_true, 0); #endif rb_define_method(rb_cRational, "floor", nurat_floor_n, -1); rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1); rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1); rb_define_method(rb_cRational, "round", nurat_round_n, -1); rb_define_method(rb_cRational, "to_i", nurat_truncate, 0); rb_define_method(rb_cRational, "to_f", nurat_to_f, 0); rb_define_method(rb_cRational, "to_r", nurat_to_r, 0); rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1); rb_define_method(rb_cRational, "hash", nurat_hash, 0); rb_define_method(rb_cRational, "to_s", nurat_to_s, 0); rb_define_method(rb_cRational, "inspect", nurat_inspect, 0); rb_define_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0); rb_define_method(rb_cRational, "marshal_load", nurat_marshal_load, 1); /* --- */ rb_define_method(rb_cInteger, "gcd", rb_gcd, 1); rb_define_method(rb_cInteger, "lcm", rb_lcm, 1); rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1); rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0); rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0); rb_define_method(rb_cInteger, "numerator", integer_numerator, 0); rb_define_method(rb_cInteger, "denominator", integer_denominator, 0); rb_define_method(rb_cFloat, "numerator", float_numerator, 0); rb_define_method(rb_cFloat, "denominator", float_denominator, 0); rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0); rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1); rb_define_method(rb_cInteger, "to_r", integer_to_r, 0); rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1); rb_define_method(rb_cFloat, "to_r", float_to_r, 0); rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1); make_patterns(); rb_define_method(rb_cString, "to_r", string_to_r, 0); rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1); } /* Local variables: c-file-style: "ruby" End: */ 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
#! /usr/bin/env ruby

$KCODE = "none"
$testnum=0
$ntest=0
$failed = 0

def test_check(what)
  printf "%s\n", what
  $what = what
  $testnum = 0
end

def test_ok(cond,n=1)
  $testnum+=1
  $ntest+=1
  if cond
    printf "ok %d\n", $testnum
  else
    where = caller(n)[0]
    printf "not ok %s %d -- %s\n", $what, $testnum, where
    $failed+=1 
  end
end

# make sure conditional operators work

test_check "assignment"

a=[]; a[0] ||= "bar";
test_ok(a[0] == "bar")
h={}; h["foo"] ||= "bar";
test_ok(h["foo"] == "bar")

aa = 5
aa ||= 25
test_ok(aa == 5)
bb ||= 25
test_ok(bb == 25)
cc &&=33
test_ok(cc == nil)
cc = 5
cc &&=44
test_ok(cc == 44)

a = nil; test_ok(a == nil)
a = 1; test_ok(a == 1)
a = []; test_ok(a == [])
a = [1]; test_ok(a == [1])
a = [nil]; test_ok(a == [nil])
a = [[]]; test_ok(a == [[]])
a = [1,2]; test_ok(a == [1,2])
a = [*[]]; test_ok(a == [])
a = [*[1]]; test_ok(a == [1])
a = [*[1,2]]; test_ok(a == [1,2])

a = *[]; test_ok(a == nil)
a = *[1]; test_ok(a == 1)
a = *[nil]; test_ok(a == nil)
a = *[[]]; test_ok(a == [])
a = *[1,2]; test_ok(a == [1,2])
a = *[*[]]; test_ok(a == nil)
a = *[*[1]]; test_ok(a == 1)
a = *[*[1,2]]; test_ok(a == [1,2])

a, = nil; test_ok(a == nil)
a, = 1; test_ok(a == 1)
a, = []; test_ok(a == nil)
a, = [1]; test_ok(a == 1)
a, = [nil]; test_ok(a == nil)
a, = [[]]; test_ok(a == [])
a, = 1,2; test_ok(a == 1)
a, = [1,2]; test_ok(a == 1)
a, = [*[]]; test_ok(a == nil)
a, = [*[1]]; test_ok(a == 1)
a, = *[1,2]; test_ok(a == 1)
a, = [*[1,2]]; test_ok(a == 1)

a, = *[]; test_ok(a == nil)
a, = *[1]; test_ok(a == 1)
a, = *[nil]; test_ok(a == nil)
a, = *[[]]; test_ok(a == [])
a, = *[1,2]; test_ok(a == 1)
a, = *[*[]]; test_ok(a == nil)
a, = *[*[1]]; test_ok(a == 1)
a, = *[*[1,2]]; test_ok(a == 1)

*a = nil; test_ok(a == [nil])
*a = 1; test_ok(a == [1])
*a = []; test_ok(a == [[]])
*a = [1]; test_ok(a == [[1]])
*a = [nil]; test_ok(a == [[nil]])
*a = [[]]; test_ok(a == [[[]]])
*a = [1,2]; test_ok(a == [[1,2]])
*a = [*[]]; test_ok(a == [[]])
*a = [*[1]]; test_ok(a == [[1]])
*a = [*[1,2]]; test_ok(a == [[1,2]])

*a = *[]; test_ok(a == [])
*a = *[1]; test_ok(a == [1])
*a = *[nil]; test_ok(a == [nil])
*a = *[[]]; test_ok(a == [[]])
*a = *[1,2]; test_ok(a == [1,2])
*a = *[*[]]; test_ok(a == [])
*a = *[*[1]]; test_ok(a == [1])
*a = *[*[1,2]]; test_ok(a == [1,2])

a,b,*c = nil; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = 1; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = []; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = [1]; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = [nil]; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = [[]]; test_ok([a,b,c] == [[],nil,[]])
a,b,*c = [1,2]; test_ok([a,b,c] == [1,2,[]])
a,b,*c = [*[]]; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = [*[1]]; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = [*[1,2]]; test_ok([a,b,c] == [1,2,[]])

a,b,*c = *[]; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = *[1]; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = *[nil]; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = *[[]]; test_ok([a,b,c] == [[],nil,[]])
a,b,*c = *[1,2]; test_ok([a,b,c] == [1,2,[]])
a,b,*c = *[*[]]; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = *[*[1]]; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = *[*[1,2]]; test_ok([a,b,c] == [1,2,[]])

def f; yield nil; end; f {|a| test_ok(a == nil)}
def f; yield 1; end; f {|a| test_ok(a == 1)}
def f; yield []; end; f {|a| test_ok(a == [])}
def f; yield [1]; end; f {|a| test_ok(a == [1])}
def f; yield [nil]; end; f {|a| test_ok(a == [nil])}
def f; yield [[]]; end; f {|a| test_ok(a == [[]])}
def f; yield [*[]]; end; f {|a| test_ok(a == [])}
def f; yield [*[1]]; end; f {|a| test_ok(a == [1])}
def f; yield [*[1,2]]; end; f {|a| test_ok(a == [1,2])}

def f; yield *[1]; end; f {|a| test_ok(a == 1)}
def f; yield *[nil]; end; f {|a| test_ok(a == nil)}
def f; yield *[[]]; end; f {|a| test_ok(a == [])}
def f; yield *[*[1]]; end; f {|a| test_ok(a == 1)}

def f; yield; end; f {|a,| test_ok(a == nil)}
def f; yield nil; end; f {|a,| test_ok(a == nil)}
def f; yield 1; end; f {|a,| test_ok(a == 1)}
def f; yield []; end; f {|a,| test_ok(a == nil)}
def f; yield [1]; end; f {|a,| test_ok(a == 1)}
def f; yield [nil]; end; f {|a,| test_ok(a == nil)}
def f; yield [[]]; end; f {|a,| test_ok(a == [])}
def f; yield [*[]]; end; f {|a,| test_ok(a == nil)}
def f; yield [*[1]]; end; f {|a,| test_ok(a == 1)}
def f; yield [*[1,2]]; end; f {|a,| test_ok(a == 1)}

def f; yield *[]; end; f {|a,| test_ok(a == nil)}
def f; yield *[1]; end; f {|a,| test_ok(a == 1)}
def f; yield *[nil]; end; f {|a,| test_ok(a == nil)}
def f; yield *[[]]; end; f {|a,| test_ok(a == [])}
def f; yield *[*[]]; end; f {|a,| test_ok(a == nil)}
def f; yield *[*[1]]; end; f {|a,| test_ok(a == 1)}
def f; yield *[*[1,2]]; end; f {|a,| test_ok(a == 1)}

def f; yield; end; f {|*a| test_ok(a == [])}
def f; yield nil; end; f {|*a| test_ok(a == [nil])}
def f; yield 1; end; f {|*a| test_ok(a == [1])}
def f; yield []; end; f {|*a| test_ok(a == [[]])}
def f; yield [1]; end; f {|*a| test_ok(a == [[1]])}
def f; yield [nil]; end; f {|*a| test_ok(a == [[nil]])}
def f; yield [[]]; end; f {|*a| test_ok(a == [[[]]])}
def f; yield [1,2]; end; f {|*a| test_ok(a == [[1,2]])}
def f; yield [*[]]; end; f {|*a| test_ok(a == [[]])}
def f; yield [*[1]]; end; f {|*a| test_ok(a == [[1]])}
def f; yield [*[1,2]]; end; f {|*a| test_ok(a == [[1,2]])}

def f; yield *[]; end; f {|*a| test_ok(a == [])}
def f; yield *[1]; end; f {|*a| test_ok(a == [1])}
def f; yield *[nil]; end; f {|*a| test_ok(a == [nil])}
def f; yield *[[]]; end; f {|*a| test_ok(a == [[]])}
def f; yield *[*[]]; end; f {|*a| test_ok(a == [])}
def f; yield *[*[1]]; end; f {|*a| test_ok(a == [1])}
def f; yield *[*[1,2]]; end; f {|*a| test_ok(a == [1,2])}

def f; yield; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield nil; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield 1; end; f {|a,b,*c| test_ok([a,b,c] == [1,nil,[]])}
def f; yield []; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield [1]; end; f {|a,b,*c| test_ok([a,b,c] == [1,nil,[]])}
def f; yield [nil]; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield [[]]; end; f {|a,b,*c| test_ok([a,b,c] == [[],nil,[]])}
def f; yield [*[]]; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield [*[1]]; end; f {|a,b,*c| test_ok([a,b,c] == [1,nil,[]])}
def f; yield [*[1,2]]; end; f {|a,b,*c| test_ok([a,b,c] == [1,2,[]])}

def f; yield *[]; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield *[1]; end; f {|a,b,*c| test_ok([a,b,c] == [1,nil,[]])}
def f; yield *[nil]; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield *[[]]; end; f {|a,b,*c| test_ok([a,b,c] == [[],nil,[]])}
def f; yield *[*[]]; end; f {|a,b,*c| test_ok([a,b,c] == [nil,nil,[]])}
def f; yield *[*[1]]; end; f {|a,b,*c| test_ok([a,b,c] == [1,nil,[]])}
def f; yield *[*[1,2]]; end; f {|a,b,*c| test_ok([a,b,c] == [1,2,[]])}

def r; return; end; a = r(); test_ok(a == nil)
def r; return nil; end; a = r(); test_ok(a == nil)
def r; return 1; end; a = r(); test_ok(a == 1)
def r; return []; end; a = r(); test_ok(a == [])
def r; return [1]; end; a = r(); test_ok(a == [1])
def r; return [nil]; end; a = r(); test_ok(a == [nil])
def r; return [[]]; end; a = r(); test_ok(a == [[]])
def r; return [*[]]; end; a = r(); test_ok(a == [])
def r; return [*[1]]; end; a = r(); test_ok(a == [1])
def r; return [*[1,2]]; end; a = r(); test_ok(a == [1,2])

def r; return *[]; end; a = r(); test_ok(a == nil)
def r; return *[1]; end; a = r(); test_ok(a == 1)
def r; return *[nil]; end; a = r(); test_ok(a == nil)
def r; return *[[]]; end; a = r(); test_ok(a == [])
def r; return *[*[]]; end; a = r(); test_ok(a == nil)
def r; return *[*[1]]; end; a = r(); test_ok(a == 1)
def r; return *[*[1,2]]; end; a = r(); test_ok(a == [1,2])

def r; return *[[]]; end; a = *r(); test_ok(a == nil)
def r; return *[*[1,2]]; end; a = *r(); test_ok(a == [1,2])

def r; return; end; *a = r(); test_ok(a == [nil])
def r; return nil; end; *a = r(); test_ok(a == [nil])
def r; return 1; end; *a = r(); test_ok(a == [1])
def r; return []; end; *a = r(); test_ok(a == [[]])
def r; return [1]; end; *a = r(); test_ok(a == [[1]])
def r; return [nil]; end; *a = r(); test_ok(a == [[nil]])
def r; return [[]]; end; *a = r(); test_ok(a == [[[]]])
def r; return [1,2]; end; *a = r(); test_ok(a == [[1,2]])
def r; return [*[]]; end; *a = r(); test_ok(a == [[]])
def r; return [*[1]]; end; *a = r(); test_ok(a == [[1]])
def r; return [*[1,2]]; end; *a = r(); test_ok(a == [[1,2]])

def r; return *[]; end; *a = r(); test_ok(a == [nil])
def r; return *[1]; end; *a = r(); test_ok(a == [1])
def r; return *[nil]; end; *a = r(); test_ok(a == [nil])
def r; return *[[]]; end; *a = r(); test_ok(a == [[]])
def r; return *[1,2]; end; *a = r(); test_ok(a == [[1,2]])
def r; return *[*[]]; end; *a = r(); test_ok(a == [nil])
def r; return *[*[1]]; end; *a = r(); test_ok(a == [1])
def r; return *[*[1,2]]; end; *a = r(); test_ok(a == [[1,2]])

def r; return *[[]]; end; *a = *r(); test_ok(a == [])
def r; return *[1,2]; end; *a = *r(); test_ok(a == [1,2])
def r; return *[*[1,2]]; end; *a = *r(); test_ok(a == [1,2])

def r; return; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return nil; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return 1; end; a,b,*c = r(); test_ok([a,b,c] == [1,nil,[]])
def r; return []; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return [1]; end; a,b,*c = r(); test_ok([a,b,c] == [1,nil,[]])
def r; return [nil]; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return [[]]; end; a,b,*c = r(); test_ok([a,b,c] == [[],nil,[]])
def r; return [1,2]; end; a,b,*c = r(); test_ok([a,b,c] == [1,2,[]])
def r; return [*[]]; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return [*[1]]; end; a,b,*c = r(); test_ok([a,b,c] == [1,nil,[]])
def r; return [*[1,2]]; end; a,b,*c = r(); test_ok([a,b,c] == [1,2,[]])

def r; return *[]; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return *[1]; end; a,b,*c = r(); test_ok([a,b,c] == [1,nil,[]])
def r; return *[nil]; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return *[[]]; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return *[1,2]; end; a,b,*c = r(); test_ok([a,b,c] == [1,2,[]])
def r; return *[*[]]; end; a,b,*c = r(); test_ok([a,b,c] == [nil,nil,[]])
def r; return *[*[1]]; end; a,b,*c = r(); test_ok([a,b,c] == [1,nil,[]])
def r; return *[*[1,2]]; end; a,b,*c = r(); test_ok([a,b,c] == [1,2,[]])

f = lambda {|r,| test_ok([] == r)}
f.call([], *[])

f = lambda {|r,*l| test_ok([] == r); test_ok([1] == l)}
f.call([], *[1])

f = lambda{|x| x}
test_ok(f.call(42) == 42)
test_ok(f.call([42]) == [42])
test_ok(f.call([[42]]) == [[42]])
test_ok(f.call([42,55]) == [42,55])

f = lambda{|x,| x}
test_ok(f.call(42) == 42)
test_ok(f.call([42]) == [42])
test_ok(f.call([[42]]) == [[42]])
test_ok(f.call([42,55]) == [42,55])

f = lambda{|*x| x}
test_ok(f.call(42) == [42])
test_ok(f.call([42]) == [[42]])
test_ok(f.call([[42]]) == [[[42]]])
test_ok(f.call([42,55]) == [[42,55]])
test_ok(f.call(42,55) == [42,55])

a,=*[1]
test_ok(a == 1)
a,=*[[1]]
test_ok(a == [1])
a,=*[[[1]]]
test_ok(a == [[1]])

x, (y, z) = 1, 2, 3
test_ok([1,2,nil] == [x,y,z])
x, (y, z) = 1, [2,3]
test_ok([1,2,3] == [x,y,z])
x, (y, z) = 1, [2]
test_ok([1,2,nil] == [x,y,z])

a = loop do break; end; test_ok(a == nil)
a = loop do break nil; end; test_ok(a == nil)
a = loop do break 1; end; test_ok(a == 1)
a = loop do break []; end; test_ok(a == [])
a = loop do break [1]; end; test_ok(a == [1])
a = loop do break [nil]; end; test_ok(a == [nil])
a = loop do break [[]]; end; test_ok(a == [[]])
a = loop do break [*[]]; end; test_ok(a == [])
a = loop do break [*[1]]; end; test_ok(a == [1])
a = loop do break [*[1,2]]; end; test_ok(a == [1,2])

a = loop do break *[]; end; test_ok(a == nil)
a = loop do break *[1]; end; test_ok(a == 1)
a = loop do break *[nil]; end; test_ok(a == nil)
a = loop do break *[[]]; end; test_ok(a == [])
a = loop do break *[*[]]; end; test_ok(a == nil)
a = loop do break *[*[1]]; end; test_ok(a == 1)
a = loop do break *[*[1,2]]; end; test_ok(a == [1,2])

*a = loop do break; end; test_ok(a == [nil])
*a = loop do break nil; end; test_ok(a == [nil])
*a = loop do break 1; end; test_ok(a == [1])
*a = loop do break []; end; test_ok(a == [[]])
*a = loop do break [1]; end; test_ok(a == [[1]])
*a = loop do break [nil]; end; test_ok(a == [[nil]])
*a = loop do break [[]]; end; test_ok(a == [[[]]])
*a = loop do break [1,2]; end; test_ok(a == [[1,2]])
*a = loop do break [*[]]; end; test_ok(a == [[]])
*a = loop do break [*[1]]; end; test_ok(a == [[1]])
*a = loop do break [*[1,2]]; end; test_ok(a == [[1,2]])

*a = loop do break *[]; end; test_ok(a == [nil])
*a = loop do break *[1]; end; test_ok(a == [1])
*a = loop do break *[nil]; end; test_ok(a == [nil])
*a = loop do break *[[]]; end; test_ok(a == [[]])
*a = loop do break *[1,2]; end; test_ok(a == [[1,2]])
*a = loop do break *[*[]]; end; test_ok(a == [nil])
*a = loop do break *[*[1]]; end; test_ok(a == [1])
*a = loop do break *[*[1,2]]; end; test_ok(a == [[1,2]])

*a = *loop do break *[[]]; end; test_ok(a == [])
*a = *loop do break *[1,2]; end; test_ok(a == [1,2])
*a = *loop do break *[*[1,2]]; end; test_ok(a == [1,2])

a,b,*c = loop do break; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break nil; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break 1; end; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = loop do break []; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break [1]; end; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = loop do break [nil]; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break [[]]; end; test_ok([a,b,c] == [[],nil,[]])
a,b,*c = loop do break [1,2]; end; test_ok([a,b,c] == [1,2,[]])
a,b,*c = loop do break [*[]]; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break [*[1]]; end; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = loop do break [*[1,2]]; end; test_ok([a,b,c] == [1,2,[]])

a,b,*c = loop do break *[]; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break *[1]; end; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = loop do break *[nil]; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break *[[]]; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break *[1,2]; end; test_ok([a,b,c] == [1,2,[]])
a,b,*c = loop do break *[*[]]; end; test_ok([a,b,c] == [nil,nil,[]])
a,b,*c = loop do break *[*[1]]; end; test_ok([a,b,c] == [1,nil,[]])
a,b,*c = loop do break *[*[1,2]]; end; test_ok([a,b,c] == [1,2,[]])

def r(val); a = yield(); test_ok(a == val, 2); end
r(nil){next}
r(nil){next nil}
r(1){next 1}
r([]){next []}
r([1]){next [1]}
r([nil]){next [nil]}
r([[]]){next [[]]}
r([]){next [*[]]}
r([1]){next [*[1]]}
r([1,2]){next [*[1,2]]}

r(nil){next *[]}
r(1){next *[1]}
r(nil){next *[nil]}
r([]){next *[[]]}
r(nil){next *[*[]]}
r(1){next *[*[1]]}
r([1,2]){next *[*[1,2]]}

def r(val); *a = yield(); test_ok(a == val, 2); end
r([nil]){next}
r([nil]){next nil}
r([1]){next 1}
r([[]]){next []}
r([[1]]){next [1]}
r([[nil]]){next [nil]}
r([[[]]]){next [[]]}
r([[1,2]]){next [1,2]}
r([[]]){next [*[]]}
r([[1]]){next [*[1]]}
r([[1,2]]){next [*[1,2]]}

def r(val); *a = *yield(); test_ok(a == val, 2); end
r([]){next *[[]]}
r([1,2]){next *[1,2]}
r([1,2]){next *[*[1,2]]}

def r(val); a,b,*c = yield(); test_ok([a,b,c] == val, 2); end
r([nil,nil,[]]){next}
r([nil,nil,[]]){next nil}
r([1,nil,[]]){next 1}
r([nil,nil,[]]){next []}
r([1,nil,[]]){next [1]}
r([nil,nil,[]]){next [nil]}
r([[],nil,[]]){next [[]]}
r([1,2,[]]){next [1,2]}
r([nil,nil,[]]){next [*[]]}
r([1,nil,[]]){next [*[1]]}
r([1,2,[]]){next [*[1,2]]}

def r(val); a,b,*c = *yield(); test_ok([a,b,c] == val, 2); end
r([nil,nil,[]]){next *[[]]}
r([1,2,[]]){next *[1,2]}
r([1,2,[]]){next *[*[1,2]]}

test_check "condition"

$x = '0';

$x == $x && test_ok(true)
$x != $x && test_ok(false)
$x == $x || test_ok(false)
$x != $x || test_ok(true)

# first test to see if we can run the tests.

test_check "if/unless";

$x = 'test';
test_ok(if $x == $x then true else false end)
$bad = false
unless $x == $x
  $bad = true
end
test_ok(!$bad)
test_ok(unless $x != $x then true else false end)

test_check "case"

case 5
when 1, 2, 3, 4, 6, 7, 8
  test_ok(false)
when 5
  test_ok(true)
end

case 5
when 5
  test_ok(true)
when 1..10
  test_ok(false)
end

case 5
when 1..10
  test_ok(true)
else
  test_ok(false)
end

case 5
when 5
  test_ok(true)
else
  test_ok(false)
end

case "foobar"
when /^f.*r$/
  test_ok(true)
else
  test_ok(false)
end

test_check "while/until";

tmp = open("while_tmp", "w")
tmp.print "tvi925\n";
tmp.print "tvi920\n";
tmp.print "vt100\n";
tmp.print "Amiga\n";
tmp.print "paper\n";
tmp.close

# test break

tmp = open("while_tmp", "r")
test_ok(tmp.kind_of?(File))

while line = tmp.gets()
  break if /vt100/ =~ line
end

test_ok(!tmp.eof? && /vt100/ =~ line)
tmp.close

# test next
$bad = false
tmp = open("while_tmp", "r")
while line = tmp.gets()
  next if /vt100/ =~ line
  $bad = 1 if /vt100/ =~ line
end
test_ok(!(!tmp.eof? || /vt100/ =~ line || $bad))
tmp.close

# test redo
$bad = false
tmp = open("while_tmp", "r")
while tmp.gets()
  line = $_
  gsub(/vt100/, 'VT100')
  if $_ != line
    $_.gsub!('VT100', 'Vt100')
    redo
  end
  $bad = 1 if /vt100/ =~ $_
  $bad = 1 if /VT100/ =~ $_
end
test_ok(tmp.eof? && !$bad)
tmp.close

sum=0
for i in 1..10
  sum += i
  i -= 1
  if i > 0
    redo
  end
end
test_ok(sum == 220)

# test interval
$bad = false
tmp = open("while_tmp", "r")
while line = tmp.gets()
  break if 3
  case line
  when /vt100/, /Amiga/, /paper/
    $bad = true
  end
end
test_ok(!$bad)
tmp.close

File.unlink "while_tmp" or `/bin/rm -f "while_tmp"`
test_ok(!File.exist?("while_tmp"))

i = 0
until i>4
  i+=1
end
test_ok(i>4)


# exception handling
test_check "exception";

begin
  raise "this must be handled"
  test_ok(false)
rescue
  test_ok(true)
end

$bad = true
begin
  raise "this must be handled no.2"
rescue
  if $bad
    $bad = false
    retry
    test_ok(false)
  end
end
test_ok(true)

# exception in rescue clause
$string = "this must be handled no.3"
begin
  begin
    raise "exception in rescue clause"
  rescue 
    raise $string
  end
  test_ok(false)
rescue
  test_ok(true) if $! == $string
end
  
# exception in ensure clause
begin
  begin
    raise "this must be handled no.4"
  ensure 
    raise "exception in ensure clause"
  end
  test_ok(false)
rescue
  test_ok(true)
end

$bad = true
begin
  begin
    raise "this must be handled no.5"
  ensure
    $bad = false
  end
rescue
end
test_ok(!$bad)

$bad = true
begin
  begin
    raise "this must be handled no.6"
  ensure
    $bad = false
  end
rescue
end
test_ok(!$bad)

$bad = true
while true
  begin
    break
  ensure
    $bad = false
  end
end
test_ok(!$bad)

test_ok(catch(:foo) {
     loop do
       loop do
	 throw :foo, true
	 break
       end
       break
       test_ok(false)			# should no reach here
     end
     false
   })

test_check "array"
test_ok([1, 2] + [3, 4] == [1, 2, 3, 4])
test_ok([1, 2] * 2 == [1, 2, 1, 2])
test_ok([1, 2] * ":" == "1:2")

test_ok([1, 2].hash == [1, 2].hash)

test_ok([1,2,3] & [2,3,4] == [2,3])
test_ok([1,2,3] | [2,3,4] == [1,2,3,4])
test_ok([1,2,3] - [2,3] == [1])

$x = [0, 1, 2, 3, 4, 5]
test_ok($x[2] == 2)
test_ok($x[1..3] == [1, 2, 3])
test_ok($x[1,3] == [1, 2, 3])

$x[0, 2] = 10
test_ok($x[0] == 10 && $x[1] == 2)
  
$x[0, 0] = -1
test_ok($x[0] == -1 && $x[1] == 10)

$x[-1, 1] = 20
test_ok($x[-1] == 20 && $x.pop == 20)

# array and/or
test_ok(([1,2,3]&[2,4,6]) == [2])
test_ok(([1,2,3]|[2,4,6]) == [1,2,3,4,6])

# compact
$x = [nil, 1, nil, nil, 5, nil, nil]
$x.compact!
test_ok($x == [1, 5])

# uniq
$x = [1, 1, 4, 2, 5, 4, 5, 1, 2]
$x.uniq!
test_ok($x == [1, 4, 2, 5])

# empty?
test_ok(!$x.empty?)
$x = []
test_ok($x.empty?)

# sort
$x = ["it", "came", "to", "pass", "that", "..."]
$x = $x.sort.join(" ")
test_ok($x == "... came it pass that to")
$x = [2,5,3,1,7]
$x.sort!{|a,b| a<=>b}		# sort with condition
test_ok($x == [1,2,3,5,7])
$x.sort!{|a,b| b-a}		# reverse sort
test_ok($x == [7,5,3,2,1])

# split test
$x = "The Book of Mormon"
test_ok($x.split(//).reverse!.join == $x.reverse)
test_ok($x.reverse == $x.reverse!)
test_ok("1 byte string".split(//).reverse.join(":") == "g:n:i:r:t:s: :e:t:y:b: :1")
$x = "a b c  d"
test_ok($x.split == ['a', 'b', 'c', 'd'])
test_ok($x.split(' ') == ['a', 'b', 'c', 'd'])
test_ok(defined? "a".chomp)
test_ok("abc".scan(/./) == ["a", "b", "c"])
test_ok("1a2b3c".scan(/(\d.)/) == [["1a"], ["2b"], ["3c"]])
# non-greedy match
test_ok("a=12;b=22".scan(/(.*?)=(\d*);?/) == [["a", "12"], ["b", "22"]])

$x = [1]
test_ok(($x * 5).join(":") == '1:1:1:1:1')
test_ok(($x * 1).join(":") == '1')
test_ok(($x * 0).join(":") == '')

*$x = *(1..7).to_a
test_ok($x.size == 7)
test_ok($x == [1, 2, 3, 4, 5, 6, 7])

$x = [1,2,3]
$x[1,0] = $x
test_ok($x == [1,1,2,3,2,3])

$x = [1,2,3]
$x[-1,0] = $x
test_ok($x == [1,2,1,2,3,3])

$x = [1,2,3]
$x.concat($x)
test_ok($x == [1,2,3,1,2,3])

test_check "hash"
$x = {1=>2, 2=>4, 3=>6}
$y = {1, 2, 2, 4, 3, 6}

test_ok($x[1] == 2)

test_ok(begin   
     for k,v in $y
       raise if k*2 != v
     end
     true
   rescue
     false
   end)

test_ok($x.length == 3)
test_ok($x.has_key?(1))
test_ok($x.has_value?(4))
test_ok($x.values_at(2,3) == [4,6])
test_ok($x == {1=>2, 2=>4, 3=>6})

$z = $y.keys.sort.join(":")
test_ok($z == "1:2:3")

$z = $y.values.sort.join(":")
test_ok($z == "2:4:6")
test_ok($x == $y)

$y.shift
test_ok($y.length == 2)

$z = [1,2]
$y[$z] = 256
test_ok($y[$z] == 256)

$x = Hash.new(0)
$x[1] = 1
test_ok($x[1] == 1)
test_ok($x[2] == 0)

$x = Hash.new([])
test_ok($x[22] == [])
test_ok($x[22].equal?($x[22]))

$x = Hash.new{[]}
test_ok($x[22] == [])
test_ok(!$x[22].equal?($x[22]))

$x = Hash.new{|h,k| $z = k; h[k] = k*2}
$z = 0
test_ok($x[22] == 44)
test_ok($z == 22)
$z = 0
test_ok($x[22] == 44)
test_ok($z == 0)
$x.default = 5
test_ok($x[23] == 5)

$x = Hash.new
def $x.default(k)
  $z = k
  self[k] = k*2
end
$z = 0
test_ok($x[22] == 44)
test_ok($z == 22)
$z = 0
test_ok($x[22] == 44)
test_ok($z == 0)

test_check "iterator"

test_ok(!iterator?)

def ttt
  test_ok(iterator?)
end
ttt{}

# yield at top level
test_ok(!defined?(yield))

$x = [1, 2, 3, 4]
$y = []

# iterator over array
for i in $x
  $y.push i
end
test_ok($x == $y)

# nested iterator
def tt
  1.upto(10) {|i|
    yield i
  }
end

tt{|i| break if i == 5}
test_ok(i == 5)

def tt2(dummy)
  yield 1
end

def tt3(&block)
  tt2(raise(ArgumentError,""),&block)
end

$x = false
begin
  tt3{}
rescue ArgumentError
  $x = true
rescue Exception
end
test_ok($x)

def tt4 &block
  tt2(raise(ArgumentError,""),&block)
end
$x = false
begin
  tt4{}
rescue ArgumentError
  $x = true
rescue Exception
end
test_ok($x)

# iterator break/redo/next/retry
done = true
loop{
  break
  done = false			# should not reach here
}
test_ok(done)

done = false
$bad = false
loop {
  break if done
  done = true
  next
  $bad = true			# should not reach here
}
test_ok(!$bad)

done = false
$bad = false
loop {
  break if done
  done = true
  redo
  $bad = true			# should not reach here
}
test_ok(!$bad)

$x = []
for i in 1 .. 7
  $x.push i
end
test_ok($x.size == 7)
test_ok($x == [1, 2, 3, 4, 5, 6, 7])

$done = false
$x = []
for i in 1 .. 7			# see how retry works in iterator loop
  if i == 4 and not $done
    $done = true
    retry
  end
  $x.push(i)
end
test_ok($x.size == 10)
test_ok($x == [1, 2, 3, 1, 2, 3, 4, 5, 6, 7])

# append method to built-in class
class Array
  def iter_test1
    collect{|e| [e, yield(e)]}.sort{|a,b|a[1]<=>b[1]}
  end
  def iter_test2
    a = collect{|e| [e, yield(e)]}
    a.sort{|a,b|a[1]<=>b[1]}
  end
end
$x = [[1,2],[3,4],[5,6]]
test_ok($x.iter_test1{|x|x} == $x.iter_test2{|x|x})

class IterTest
  def initialize(e); @body = e; end

  def each0(&block); @body.each(&block); end
  def each1(&block); @body.each {|*x| block.call(*x) } end
  def each2(&block); @body.each {|*x| block.call(x) } end
  def each3(&block); @body.each {|x| block.call(*x) } end
  def each4(&block); @body.each {|x| block.call(x) } end
  def each5; @body.each {|*x| yield(*x) } end
  def each6; @body.each {|*x| yield(x) } end
  def each7; @body.each {|x| yield(*x) } end
  def each8; @body.each {|x| yield(x) } end

  def f(a)
    a
  end
end
test_ok(IterTest.new(nil).method(:f).to_proc.call([1]) == [1])
m = /\w+/.match("abc")
test_ok(IterTest.new(nil).method(:f).to_proc.call([m]) == [m])

IterTest.new([0]).each0 {|x| test_ok(x == 0)}
IterTest.new([1]).each1 {|x| test_ok(x == 1)}
IterTest.new([2]).each2 {|x| test_ok(x == [2])}
#IterTest.new([3]).each3 {|x| test_ok(x == 3)}
IterTest.new([4]).each4 {|x| test_ok(x == 4)}
IterTest.new([5]).each5 {|x| test_ok(x == 5)}
IterTest.new([6]).each6 {|x| test_ok(x == [6])}
#IterTest.new([7]).each7 {|x| test_ok(x == 7)}
IterTest.new([8]).each8 {|x| test_ok(x == 8)}

IterTest.new([[0]]).each0 {|x| test_ok(x == [0])}
IterTest.new([[1]]).each1 {|x| test_ok(x == [1])}
IterTest.new([[2]]).each2 {|x| test_ok(x == [[2]])}
IterTest.new([[3]]).each3 {|x| test_ok(x == 3)}
IterTest.new([[4]]).each4 {|x| test_ok(x == [4])}
IterTest.new([[5]]).each5 {|x| test_ok(x == [5])}
IterTest.new([[6]]).each6 {|x| test_ok(x == [[6]])}
IterTest.new([[7]]).each7 {|x| test_ok(x == 7)}
IterTest.new([[8]]).each8 {|x| test_ok(x == [8])}

IterTest.new([[0,0]]).each0 {|x| test_ok(x == [0,0])}
IterTest.new([[8,8]]).each8 {|x| test_ok(x == [8,8])}

def m0(v)
  v
end

def m1
  m0(block_given?)
end
test_ok(m1{p 'test'})
test_ok(!m1)

def m
  m0(block_given?,&Proc.new{})
end
test_ok(m1{p 'test'})
test_ok(!m1)

class C
  include Enumerable
  def initialize
    @a = [1,2,3]
  end
  def each(&block)
    @a.each(&block)
  end
end

test_ok(C.new.collect{|n| n} == [1,2,3])

test_ok(Proc == lambda{}.class)
test_ok(Proc == Proc.new{}.class)
lambda{|a|test_ok(a==1)}.call(1)
def block_test(klass, &block)
  test_ok(klass === block)
end

block_test(NilClass)
block_test(Proc){}

def argument_test(state, proc, *args)
  x = state
  begin
    proc.call(*args)
  rescue ArgumentError
    x = !x
  end
  test_ok(x,2)
end

argument_test(true, lambda{||})
argument_test(false, lambda{||}, 1)
argument_test(true, lambda{|a,|}, 1)
argument_test(false, lambda{|a,|})
argument_test(false, lambda{|a,|}, 1,2)

def get_block(&block)
  block
end

test_ok(Proc == get_block{}.class)
argument_test(true, get_block{||})
argument_test(true, get_block{||}, 1)
argument_test(true, get_block{|a,|}, 1)
argument_test(true, get_block{|a,|})
argument_test(true, get_block{|a,|}, 1,2)

argument_test(true, get_block(&lambda{||}))
argument_test(false, get_block(&lambda{||}),1)
argument_test(true, get_block(&lambda{|a,|}),1)
argument_test(false, get_block(&lambda{|a,|}),1,2)

blk = get_block{11}
test_ok(blk.class == Proc)
test_ok(blk.to_proc.class == Proc)
test_ok(blk.clone.call == 11)
test_ok(get_block(&blk).class == Proc)

lmd = lambda{44}
test_ok(lmd.class == Proc)
test_ok(lmd.to_proc.class == Proc)
test_ok(lmd.clone.call == 44)
test_ok(get_block(&lmd).class == Proc)

test_ok(Proc.new{|a,| a}.call(1,2,3) == 1)
argument_test(true, Proc.new{|a,|}, 1,2)

test_ok(Proc.new{|&b| b.call(10)}.call {|x| x} == 10)
test_ok(Proc.new{|a,&b| b.call(a)}.call(12) {|x| x} == 12)

def test_return1
  Proc.new {
    return 55
  }.call + 5
end
test_ok(test_return1() == 55)
def test_return2
  lambda {
    return 55
  }.call + 5
end
test_ok(test_return2() == 60)

def proc_call(&b)
  b.call
end
def proc_yield()
  yield
end
def proc_return1
  proc_call{return 42}+1
end
test_ok(proc_return1() == 42)
def proc_return2
  proc_yield{return 42}+1
end
test_ok(proc_return2() == 42)

def ljump_test(state, proc, *args)
  x = state
  begin
    proc.call(*args)
  rescue LocalJumpError
    x = !x
  end
  test_ok(x,2)
end

ljump_test(false, get_block{break})
ljump_test(true, lambda{break})

def exit_value_test(&block)
  block.call
rescue LocalJumpError
  $!.exit_value
end

test_ok(45, exit_value_test{break 45})

test_ok(55, begin
              get_block{break 55}.call
            rescue LocalJumpError
              $!.exit_value
            end)

def block_call(&block)
  block.call
end

def block_get(&block)
  block
end

def test_b1
  block_call{break 11}
end
test_ok(test_b1() == 11)

def ljump_rescue(r)
  begin
    yield
  rescue LocalJumpError => e
    r if /from proc-closure/ =~ e.message
  end
end

def test_b2
  ljump_rescue(22) do
    block_get{break 21}.call
  end
end
test_ok(test_b2() == 22)

def test_b3
  ljump_rescue(33) do
    Proc.new{break 31}.call
  end
end
test_ok(test_b3() == 33)

def test_b4
  lambda{break 44}.call
end
test_ok(test_b4() == 44)

def test_b5
  ljump_rescue(55) do
    b = block_get{break 54}
    block_call(&b)
  end
end
test_ok(test_b5() == 55)

def test_b6
  b = lambda{break 67}
  block_call(&b)
  66
end
test_ok(test_b6() == 66)

def util_r7
  block_get{break 78}
end

def test_b7
  b = util_r7()
  ljump_rescue(77) do
    block_call(&b)
  end
end
test_ok(test_b7() == 77)

def util_b8(&block)
  block_call(&block)
end

def test_b8
  util_b8{break 88}
end
test_ok(test_b8() == 88)

def util_b9(&block)
  lambda{block.call}.call
end

def test_b9
  util_b9{break 99}
end
test_ok(test_b9() == 99)

def util_b10
  util_b9{break 100}
end

def test_b10
  util_b10()
end
test_ok(test_b10() == 100)

def test_b11
  ljump_rescue(111) do
    loop do
      Proc.new{break 110}.call
      break 112
    end
  end
end
test_ok(test_b11() == 111)

def test_b12
  loop do
    break lambda{break 122}.call
    break 121
  end
end
test_ok(test_b12() == 122)

def test_b13
  ljump_rescue(133) do
    while true
      Proc.new{break 130}.call
      break 131
    end
  end
end
test_ok(test_b13() == 133)

def test_b14
  while true
    break lambda{break 144}.call
    break 143
  end
end
test_ok(test_b14() == 144)

def test_b15
  [0].each {|c| yield 1 }
  156
end
test_ok(test_b15{|e| break 155 } == 155)

def marity_test(m)
  method = self.method(m)
  test_ok(method.arity == method.to_proc.arity, 2)
end
marity_test(:test_ok)
marity_test(:marity_test)
marity_test(:p)

lambda(&method(:test_ok)).call(true)
lambda(&get_block{|a,n| test_ok(a,n)}).call(true, 2)

class ITER_TEST1
   def a
     block_given?
   end
end

class ITER_TEST2 < ITER_TEST1
   def a
     test_ok(super)
     super
   end
end
test_ok(ITER_TEST2.new.a {})

class ITER_TEST3
  def foo x
    return yield if block_given?
    x
  end
end

class ITER_TEST4 < ITER_TEST3
  def foo x
    test_ok(super == yield)
    test_ok(super(x, &nil) == x)
  end
end

ITER_TEST4.new.foo(44){55}   

class ITER_TEST5
   def tt(aa)
     aa
   end

   def uu(a)
      class << self
         define_method(:tt) do |sym|
            super(sym)
         end
      end
   end

   def xx(*x)
     x.size
   end
end

a = ITER_TEST5.new
a.uu(12)
test_ok(a.tt(1) == 1)

class ITER_TEST6 < ITER_TEST5
   def xx(*a)
      a << 12
      super
   end
end

test_ok(ITER_TEST6.new.xx([24]) == 2)

test_check "float"
test_ok(2.6.floor == 2)
test_ok((-2.6).floor == -3)
test_ok(2.6.ceil == 3)
test_ok((-2.6).ceil == -2)
test_ok(2.6.truncate == 2)
test_ok((-2.6).truncate == -2)
test_ok(2.6.round == 3)
test_ok((-2.4).truncate == -2)
test_ok((13.4 % 1 - 0.4).abs < 0.0001)
nan = 0.0/0
def nan_test(x,y)
  test_ok(x != y)
  test_ok((x < y) == false)
  test_ok((x > y) == false)
  test_ok((x <= y) == false)
  test_ok((x >= y) == false)
end
nan_test(nan, nan)
nan_test(nan, 0)
nan_test(nan, 1)
nan_test(nan, -1)
nan_test(nan, 1000)
nan_test(nan, -1000)
nan_test(nan, 1_000_000_000_000)
nan_test(nan, -1_000_000_000_000)
nan_test(nan, 100.0);
nan_test(nan, -100.0);
nan_test(nan, 0.001);
nan_test(nan, -0.001);
nan_test(nan, 1.0/0);
nan_test(nan, -1.0/0);

#s = "3.7517675036461267e+17"
#test_ok(s == sprintf("%.16e", s.to_f))
f = 3.7517675036461267e+17
test_ok(f == sprintf("%.16e", f).to_f)


test_check "bignum"
def fact(n)
  return 1 if n == 0
  f = 1
  while n>0
    f *= n
    n -= 1
  end
  return f
end
$x = fact(40)
test_ok($x == $x)
test_ok($x == fact(40))
test_ok($x < $x+2)
test_ok($x > $x-2)
test_ok($x == 815915283247897734345611269596115894272000000000)
test_ok($x != 815915283247897734345611269596115894272000000001)
test_ok($x+1 == 815915283247897734345611269596115894272000000001)
test_ok($x/fact(20) == 335367096786357081410764800000)
$x = -$x
test_ok($x == -815915283247897734345611269596115894272000000000)
test_ok(2-(2**32) == -(2**32-2))
test_ok(2**32 - 5 == (2**32-3)-2)

$good = true;
for i in 1000..1014
  $good = false if ((1 << i) != (2**i))
end
test_ok($good)

$good = true;
n1= 1 << 1000
for i in 1000..1014
  $good = false if ((1 << i) != n1)
  n1 *= 2
end
test_ok($good)

$good = true;
n2=n1
for i in 1..10
  n1 = n1 / 2
  n2 = n2 >> 1
  $good = false if (n1 != n2)
end
test_ok($good)

$good = true;
for i in 4000..4096
  n1 = 1 << i;
  if (n1**2-1) / (n1+1) != (n1-1)
    p i
    $good = false
  end
end
test_ok($good)

b = 10**80
a = b * 9 + 7
test_ok(7 == a.modulo(b))
test_ok(-b + 7 == a.modulo(-b))
test_ok(b + -7 == (-a).modulo(b))
test_ok(-7 == (-a).modulo(-b))
test_ok(7 == a.remainder(b))
test_ok(7 == a.remainder(-b))
test_ok(-7 == (-a).remainder(b))
test_ok(-7 == (-a).remainder(-b))

test_ok(10**40+10**20 == 10000000000000000000100000000000000000000)
test_ok(10**40/10**20 == 100000000000000000000)

a = 677330545177305025495135714080
b = 14269972710765292560
test_ok(a % b == 0)
test_ok(-a % b == 0)

def shift_test(a)
  b = a / (2 ** 32)
  c = a >> 32
  test_ok(b == c)

  b = a * (2 ** 32)
  c = a << 32
  test_ok(b == c)
end

shift_test(-4518325415524767873)
shift_test(-0xfffffffffffffffff)

test_check "string & char"

test_ok("abcd" == "abcd")
test_ok("abcd" =~ /abcd/)
test_ok("abcd" === "abcd")
# compile time string concatenation
test_ok("ab" "cd" == "abcd")
test_ok("#{22}aa" "cd#{44}" == "22aacd44")
test_ok("#{22}aa" "cd#{44}" "55" "#{66}" == "22aacd445566")
test_ok("abc" !~ /^$/)
test_ok("abc\n" !~ /^$/)
test_ok("abc" !~ /^d*$/)
test_ok(("abc" =~ /d*$/) == 3)
test_ok("" =~ /^$/)
test_ok("\n" =~ /^$/)
test_ok("a\n\n" =~ /^$/)
test_ok("abcabc" =~ /.*a/ && $& == "abca")
test_ok("abcabc" =~ /.*c/ && $& == "abcabc")
test_ok("abcabc" =~ /.*?a/ && $& == "a")
test_ok("abcabc" =~ /.*?c/ && $& == "abc")
test_ok(/(.|\n)*?\n(b|\n)/ =~ "a\nb\n\n" && $& == "a\nb")

test_ok(/^(ab+)+b/ =~ "ababb" && $& == "ababb")
test_ok(/^(?:ab+)+b/ =~ "ababb" && $& == "ababb")
test_ok(/^(ab+)+/ =~ "ababb" && $& == "ababb")
test_ok(/^(?:ab+)+/ =~ "ababb" && $& == "ababb")

test_ok(/(\s+\d+){2}/ =~ " 1 2" && $& == " 1 2")
test_ok(/(?:\s+\d+){2}/ =~ " 1 2" && $& == " 1 2")

$x = <<END;
ABCD
ABCD
END
$x.gsub!(/((.|\n)*?)B((.|\n)*?)D/){$1+$3}
test_ok($x == "AC\nAC\n")

test_ok("foobar" =~ /foo(?=(bar)|(baz))/)
test_ok("foobaz" =~ /foo(?=(bar)|(baz))/)

$foo = "abc"
test_ok("#$foo = abc" == "abc = abc")
test_ok("#{$foo} = abc" == "abc = abc")

foo = "abc"
test_ok("#{foo} = abc" == "abc = abc")

test_ok('-' * 5 == '-----')
test_ok('-' * 1 == '-')
test_ok('-' * 0 == '')

foo = '-'
test_ok(foo * 5 == '-----')
test_ok(foo * 1 == '-')
test_ok(foo * 0 == '')

$x = "a.gif"
test_ok($x.sub(/.*\.([^\.]+)$/, '\1') == "gif")
test_ok($x.sub(/.*\.([^\.]+)$/, 'b.\1') == "b.gif")
test_ok($x.sub(/.*\.([^\.]+)$/, '\2') == "")
test_ok($x.sub(/.*\.([^\.]+)$/, 'a\2b') == "ab")
test_ok($x.sub(/.*\.([^\.]+)$/, '<\&>') == "<a.gif>")

# character constants(assumes ASCII)
test_ok("a"[0] == ?a)
test_ok(?a == ?a)
test_ok(?\C-a == 1)
test_ok(?\M-a == 225)
test_ok(?\M-\C-a == 129)
test_ok("a".upcase![0] == ?A)
test_ok("A".downcase![0] == ?a)
test_ok("abc".tr!("a-z", "A-Z") == "ABC")
test_ok("aabbcccc".tr_s!("a-z", "A-Z") == "ABC")
test_ok("abcc".squeeze!("a-z") == "abc")
test_ok("abcd".delete!("bc") == "ad")

$x = "abcdef"
$y = [ ?a, ?b, ?c, ?d, ?e, ?f ]
$bad = false
$x.each_byte {|i|
  if i != $y.shift
    $bad = true
    break
  end
}
test_ok(!$bad)

s = "a string"
s[0..s.size]="another string"
test_ok(s == "another string")

s = <<EOS
#{
[1,2,3].join(",")
}
EOS
test_ok(s == "1,2,3\n")
test_ok("Just".to_i(36) == 926381)
test_ok("-another".to_i(36) == -23200231779)
test_ok(1299022.to_s(36) == "ruby")
test_ok(-1045307475.to_s(36) == "-hacker")
test_ok("Just_another_Ruby_hacker".to_i(36) == 265419172580680477752431643787347)
test_ok(-265419172580680477752431643787347.to_s(36) == "-justanotherrubyhacker")

a = []
(0..255).each {|n|
  ch = [n].pack("C")                     
  a.push ch if /a#{Regexp.quote ch}b/x =~ "ab" 
}
test_ok(a.size == 0)

test_check "assignment"
a = nil
test_ok(defined?(a))
test_ok(a == nil)

# multiple asignment
a, b = 1, 2
test_ok(a == 1 && b == 2)

a, b = b, a
test_ok(a == 2 && b == 1)

a, = 1,2
test_ok(a == 1)

a, *b = 1, 2, 3
test_ok(a == 1 && b == [2, 3])

a, (b, c), d = 1, [2, 3], 4
test_ok(a == 1 && b == 2 && c == 3 && d == 4)

*a = 1, 2, 3
test_ok(a == [1, 2, 3])

*a = 4
test_ok(a == [4])

*a = nil
test_ok(a == [nil])

test_check "call"
def aaa(a, b=100, *rest)
  res = [a, b]
  res += rest if rest
  return res
end

# not enough argument
begin
  aaa()				# need at least 1 arg
  test_ok(false)
rescue
  test_ok(true)
end

begin
  aaa				# no arg given (exception raised)
  test_ok(false)
rescue
  test_ok(true)
end

test_ok(aaa(1) == [1, 100])
test_ok(aaa(1, 2) == [1, 2])
test_ok(aaa(1, 2, 3, 4) == [1, 2, 3, 4])
test_ok(aaa(1, *[2, 3, 4]) == [1, 2, 3, 4])

test_check "proc"
$proc = Proc.new{|i| i}
test_ok($proc.call(2) == 2)
test_ok($proc.call(3) == 3)

$proc = Proc.new{|i| i*2}
test_ok($proc.call(2) == 4)
test_ok($proc.call(3) == 6)

Proc.new{
  iii=5				# nested local variable
  $proc = Proc.new{|i|
    iii = i
  }
  $proc2 = Proc.new {
    $x = iii			# nested variables shared by procs
  }
  # scope of nested variables
  test_ok(defined?(iii))
}.call
test_ok(!defined?(iii))		# out of scope

loop{iii=5; test_ok(eval("defined? iii")); break}
loop {
  iii = 10
  def dyna_var_check
    loop {
      test_ok(!defined?(iii))
      break
    }
  end
  dyna_var_check
  break
}
$x=0
$proc.call(5)
$proc2.call
test_ok($x == 5)

if defined? Process.kill
  test_check "signal"

  $x = 0
  trap "SIGINT", Proc.new{|sig| $x = 2}
  Process.kill "SIGINT", $$
  sleep 0.1
  test_ok($x == 2)

  trap "SIGINT", Proc.new{raise "Interrupt"}

  x = false
  begin
    Process.kill "SIGINT", $$
    sleep 0.1
  rescue
    x = $!
  end
  test_ok(x && /Interrupt/ =~ x.message)
end

test_check "eval"
test_ok(eval("") == nil)
$bad=false
eval 'while false; $bad = true; print "foo\n" end'
test_ok(!$bad)

test_ok(eval('TRUE'))
test_ok(eval('true'))
test_ok(!eval('NIL'))
test_ok(!eval('nil'))
test_ok(!eval('FALSE'))
test_ok(!eval('false'))

$foo = 'test_ok(true)'
begin
  eval $foo
rescue
  test_ok(false)
end

test_ok(eval("$foo") == 'test_ok(true)')
test_ok(eval("true") == true)
i = 5
test_ok(eval("i == 5"))
test_ok(eval("i") == 5)
test_ok(eval("defined? i"))

# eval with binding
def test_ev
  local1 = "local1"
  lambda {
    local2 = "local2"
    return binding
  }.call
end

$x = test_ev
test_ok(eval("local1", $x) == "local1") # normal local var
test_ok(eval("local2", $x) == "local2") # nested local var
$bad = true
begin
  p eval("local1")
rescue NameError		# must raise error
  $bad = false
end
test_ok(!$bad)

module EvTest
  EVTEST1 = 25
  evtest2 = 125
  $x = binding
end
test_ok(eval("EVTEST1", $x) == 25)	# constant in module
test_ok(eval("evtest2", $x) == 125)	# local var in module
$bad = true
begin
  eval("EVTEST1")
rescue NameError		# must raise error
  $bad = false
end
test_ok(!$bad)

x = Proc.new{}
eval "i4 = 1", x
test_ok(eval("i4", x) == 1)
x = Proc.new{Proc.new{}}.call
eval "i4 = 22", x
test_ok(eval("i4", x) == 22)
$x = []
x = Proc.new{Proc.new{}}.call
eval "(0..9).each{|i5| $x[i5] = Proc.new{i5*2}}", x
test_ok($x[4].call == 8)

x = binding
eval "i = 1", x
test_ok(eval("i", x) == 1)
x = Proc.new{binding}.call
eval "i = 22", x
test_ok(eval("i", x) == 22)
$x = []
x = Proc.new{binding}.call
eval "(0..9).each{|i5| $x[i5] = Proc.new{i5*2}}", x
test_ok($x[4].call == 8)
x = Proc.new{binding}.call
eval "for i6 in 1..1; j6=i6; end", x
test_ok(eval("defined? i6", x))
test_ok(eval("defined? j6", x))

Proc.new {
  p = binding
  eval "foo11 = 1", p
  foo22 = 5
  Proc.new{foo11=22}.call
  Proc.new{foo22=55}.call
  test_ok(eval("foo11", p) == eval("foo11"))
  test_ok(eval("foo11") == 1)
  test_ok(eval("foo22", p) == eval("foo22"))
  test_ok(eval("foo22") == 55)
}.call

p1 = Proc.new{i7 = 0; Proc.new{i7}}.call
test_ok(p1.call == 0)
eval "i7=5", p1
test_ok(p1.call == 5)
test_ok(!defined?(i7))

p1 = Proc.new{i7 = 0; Proc.new{i7}}.call
i7 = nil
test_ok(p1.call == 0)
eval "i7=1", p1
test_ok(p1.call == 1)
eval "i7=5", p1
test_ok(p1.call == 5)
test_ok(i7 == nil)

test_check "system"
test_ok(`echo foobar` == "foobar\n")
test_ok(`./miniruby -e 'print "foobar"'` == 'foobar')

tmp = open("script_tmp", "w")
tmp.print "print $zzz\n";
tmp.close

test_ok(`./miniruby -s script_tmp -zzz` == 'true')
test_ok(`./miniruby -s script_tmp -zzz=555` == '555')

tmp = open("script_tmp", "w")
tmp.print "#! /usr/local/bin/ruby -s\n";
tmp.print "print $zzz\n";
tmp.close

test_ok(`./miniruby script_tmp -zzz=678` == '678')

tmp = open("script_tmp", "w")
tmp.print "this is a leading junk\n";
tmp.print "#! /usr/local/bin/ruby -s\n";
tmp.print "print $zzz\n";
tmp.print "__END__\n";
tmp.print "this is a trailing junk\n";
tmp.close

test_ok(`./miniruby -x script_tmp` == 'nil')
test_ok(`./miniruby -x script_tmp -zzz=555` == '555')

tmp = open("script_tmp", "w")
for i in 1..5
  tmp.print i, "\n"
end
tmp.close

`./miniruby -i.bak -pe 'sub(/^[0-9]+$/){$&.to_i * 5}' script_tmp`
done = true
tmp = open("script_tmp", "r")
while tmp.gets
  if $_.to_i % 5 != 0
    done = false
    break
  end
end
tmp.close
test_ok(done)
  
File.unlink "script_tmp" or `/bin/rm -f "script_tmp"`
File.unlink "script_tmp.bak" or `/bin/rm -f "script_tmp.bak"`

$bad = false
if (dir = File.dirname(File.dirname($0))) == '.'
  dir = ""
else
  dir << "/"
end

def valid_syntax?(code, fname)
  eval("BEGIN {return true}\n#{code}", nil, fname, 0)
rescue Exception
  puts $!.message
  false
end

for script in Dir["#{dir}{lib,sample,ext}/**/*.rb"]
  unless valid_syntax? IO::read(script), script
    $bad = true
  end
end
test_ok(!$bad)

test_check "const"
TEST1 = 1
TEST2 = 2

module Const
  TEST3 = 3
  TEST4 = 4
end

module Const2
  TEST3 = 6
  TEST4 = 8
end

include Const

test_ok([TEST1,TEST2,TEST3,TEST4] == [1,2,3,4])

include Const2
STDERR.print "intentionally redefines TEST3, TEST4\n" if $VERBOSE
test_ok([TEST1,TEST2,TEST3,TEST4] == [1,2,6,8])


test_ok((String <=> Object) == -1)
test_ok((Object <=> String) == 1)
test_ok((Array <=> String) == nil)

test_check "clone"
foo = Object.new
def foo.test
  "test"
end
bar = foo.clone
def bar.test2
  "test2"
end

test_ok(bar.test2 == "test2")
test_ok(bar.test == "test")
test_ok(foo.test == "test")  

begin
  foo.test2
  test_ok false
rescue NoMethodError
  test_ok true
end

module M001; end
module M002; end
module M003; include M002; end
module M002; include M001; end
module M003; include M002; end

test_ok(M003.ancestors == [M003, M002, M001])

test_check "marshal"
$x = [1,2,3,[4,5,"foo"],{1=>"bar"},2.5,fact(30)]
$y = Marshal.dump($x)
test_ok($x == Marshal.load($y))

StrClone=String.clone;
test_ok(Marshal.load(Marshal.dump(StrClone.new("abc"))).class == StrClone)

[[1,2,3,4], [81, 2, 118, 3146]].each { |w,x,y,z|
  a = (x.to_f + y.to_f / z.to_f) * Math.exp(w.to_f / (x.to_f + y.to_f / z.to_f))
  ma = Marshal.dump(a)
  b = Marshal.load(ma)
  test_ok(a == b)
}

test_check "pack"

$format = "c2x5CCxsdils_l_a6";
# Need the expression in here to force ary[5] to be numeric.  This avoids
# test2 failing because ary2 goes str->numeric->str and ary does not.
ary = [1,-100,127,128,32767,987.654321098 / 100.0,12345,123456,-32767,-123456,"abcdef"]
$x = ary.pack($format)
ary2 = $x.unpack($format)

test_ok(ary.length == ary2.length)
test_ok(ary.join(':') == ary2.join(':'))
test_ok($x =~ /def/)

$x = [-1073741825]
test_ok($x.pack("q").unpack("q") == $x)

test_check "math"
test_ok(Math.sqrt(4) == 2)

include Math
test_ok(sqrt(4) == 2)

test_check "struct"
struct_test = Struct.new("Test", :foo, :bar)
test_ok(struct_test == Struct::Test)

test = struct_test.new(1, 2)
test_ok(test.foo == 1 && test.bar == 2)
test_ok(test[0] == 1 && test[1] == 2)

a, b = test.to_a
test_ok(a == 1 && b == 2)

test[0] = 22
test_ok(test.foo == 22)

test.bar = 47
test_ok(test.bar == 47)

test_check "variable"
test_ok($$.instance_of?(Fixnum))

# read-only variable
begin
  $$ = 5
  test_ok false
rescue NameError
  test_ok true
end

foobar = "foobar"
$_ = foobar
test_ok($_ == foobar)

class Gods
  @@rule = "Uranus"		# private to Gods
  def ruler0
    @@rule
  end

  def self.ruler1		# <= per method definition style
    @@rule
  end		   
  class << self			# <= multiple method definition style
    def ruler2
      @@rule
    end
  end
end

module Olympians
  @@rule ="Zeus"
  def ruler3
    @@rule
  end
end

class Titans < Gods
  @@rule = "Cronus"		# do not affect @@rule in Gods
  include Olympians
  def ruler4
    @@rule
  end
end

test_ok(Gods.new.ruler0 == "Uranus")
test_ok(Gods.ruler1 == "Uranus")
test_ok(Gods.ruler2 == "Uranus")
test_ok(Titans.ruler1 == "Uranus")
test_ok(Titans.ruler2 == "Uranus")
atlas = Titans.new
test_ok(atlas.ruler0 == "Uranus")
test_ok(atlas.ruler3 == "Zeus")
test_ok(atlas.ruler4 == "Cronus")

test_check "trace"
$x = 1234
$y = 0
trace_var :$x, Proc.new{$y = $x}
$x = 40414
test_ok($y == $x)

untrace_var :$x
$x = 19660208
test_ok($y != $x)

trace_var :$x, Proc.new{$x *= 2}
$x = 5
test_ok($x == 10)

untrace_var :$x

test_check "defined?"

test_ok(defined?($x))		# global variable
test_ok(defined?($x) == 'global-variable')# returns description

foo=5
test_ok(defined?(foo))		# local variable

test_ok(defined?(Array))	# constant
test_ok(defined?(Object.new))	# method
test_ok(!defined?(Object.print))# private method
test_ok(defined?(1 == 2))	# operator expression

class Foo
  def foo
    p :foo
  end
  protected :foo
  def bar(f)
    test_ok(defined?(self.foo))
    test_ok(defined?(f.foo))
  end
end
f = Foo.new
test_ok(defined?(f.foo) == nil)
f.bar(f)

def defined_test
  return !defined?(yield)
end

test_ok(defined_test)		# not iterator
test_ok(!defined_test{})	# called as iterator

test_check "alias"
class Alias0
  def foo; "foo" end
end
class Alias1<Alias0
  alias bar foo
  def foo; "foo+" + super end
end
class Alias2<Alias1
  alias baz foo
  undef foo
end

x = Alias2.new
test_ok(x.bar == "foo")
test_ok(x.baz == "foo+foo")

# test_check for cache
test_ok(x.baz == "foo+foo")

class Alias3<Alias2
  def foo
    defined? super
  end
  def bar
    defined? super
  end
  def quux
    defined? super
  end
end
x = Alias3.new
test_ok(!x.foo)
test_ok(x.bar)
test_ok(!x.quux)

test_check "path"
test_ok(File.basename("a") == "a")
test_ok(File.basename("a/b") == "b")
test_ok(File.basename("a/b/") == "b")
test_ok(File.basename("/") == "/")
test_ok(File.basename("//") == "/")
test_ok(File.basename("///") == "/")
test_ok(File.basename("a/b////") == "b")
test_ok(File.basename("a.rb", ".rb") == "a")
test_ok(File.basename("a.rb///", ".rb") == "a")
test_ok(File.basename("a.rb///", ".*") == "a")
test_ok(File.basename("a.rb///", ".c") == "a.rb")
test_ok(File.dirname("a") == ".")
test_ok(File.dirname("/") == "/")
test_ok(File.dirname("/a") == "/")
test_ok(File.dirname("a/b") == "a")
test_ok(File.dirname("a/b/c") == "a/b")
test_ok(File.dirname("/a/b/c") == "/a/b")
test_ok(File.dirname("/a/b/") == "/a")
test_ok(File.dirname("/a/b///") == "/a")
case Dir.pwd
when %r'\A\w:'
  test_ok(/\A\w:\/\z/ =~ File.expand_path(".", "/"))
  test_ok(/\A\w:\/a\z/ =~ File.expand_path("a", "/"))
  dosish = true
when %r'\A//'
  test_ok(%r'\A//[^/]+/[^/]+\z' =~ File.expand_path(".", "/"))
  test_ok(%r'\A//[^/]+/[^/]+/a\z' =~ File.expand_path(".", "/"))
  dosish = true
else
  test_ok(File.expand_path(".", "/") == "/")
  test_ok(File.expand_path("sub", "/") == "/sub")
end
if dosish
  test_ok(File.expand_path("/", "//machine/share/sub") == "//machine/share")
  test_ok(File.expand_path("/dir", "//machine/share/sub") == "//machine/share/dir")
  test_ok(File.expand_path("/", "z:/sub") == "z:/")
  test_ok(File.expand_path("/dir", "z:/sub") == "z:/dir")
end
test_ok(File.expand_path(".", "//") == "//")
test_ok(File.expand_path("sub", "//") == "//sub")

test_check "gc"
begin
  1.upto(10000) {
    tmp = [0,1,2,3,4,5,6,7,8,9]
  }
  tmp = nil
  test_ok true
rescue
  test_ok false
end
class S
  def initialize(a)
    @a = a
  end
end
l=nil
100000.times {
  l = S.new(l)
}
GC.start
test_ok true   # reach here or dumps core
l = []
100000.times {
  l.push([l])
}
GC.start
test_ok true   # reach here or dumps core

if $failed > 0
  printf "test: %d failed %d\n", $ntest, $failed
else
  printf "end of test(test: %d)\n", $ntest
end