require 'test/unit' class RationalSub < Rational; end class Rational_Test < Test::Unit::TestCase def setup @complex = defined?(Complex) if @complex @keiju = Complex.instance_variable_get('@RCS_ID') end @unify = defined?(Rational::Unify) end def test_ratsub c = RationalSub.__send__(:new, 1) cc = RationalSub.__send__(:convert, 1) assert_kind_of(Numeric, c) assert_kind_of(Numeric, cc) if @unify assert_instance_of(Fixnum, c) assert_instance_of(Fixnum, cc) else assert_instance_of(RationalSub, c) assert_instance_of(RationalSub, cc) c2 = c + 1 assert_instance_of(RationalSub, c2) c2 = c - 1 assert_instance_of(RationalSub, c2) c3 = c - c2 assert_instance_of(RationalSub, c3) s = Marshal.dump(c) c5 = Marshal.load(s) assert_equal(c, c5) assert_instance_of(RationalSub, c5) end end def test_eql_p c = Rational(0) c2 = Rational(0) c3 = Rational(1) assert_equal(true, c.eql?(c2)) assert_equal(false, c.eql?(c3)) if @unify assert_equal(true, c.eql?(0)) else assert_equal(false, c.eql?(0)) end end def test_hash assert_instance_of(Fixnum, Rational(1,2).hash) h = {} h[Rational(0)] = 0 h[Rational(1,1)] = 1 h[Rational(2,1)] = 2 h[Rational(3,1)] = 3 assert_equal(4, h.size) assert_equal(2, h[Rational(2,1)]) h[Rational(0,1)] = 9 assert_equal(4, h.size) end def test_freeze c = Rational(1) c.freeze unless @unify assert_equal(true, c.frozen?) end assert_instance_of(String, c.to_s) end def test_new_bang # no unify & no reduce assert_instance_of(Rational, Rational.__send__(:new!, 2,1)) assert_equal([2,1], Rational.__send__(:new!, 2,1). instance_eval{[numerator, denominator]}) assert_equal([2,4], Rational.__send__(:new!, 2,4). instance_eval{[numerator, denominator]}) assert_equal([-2,4], Rational.__send__(:new!, -2,4). instance_eval{[numerator, denominator]}) assert_equal([-2,4], Rational.__send__(:new!, 2,-4). instance_eval{[numerator, denominator]}) assert_equal([2,4], Rational.__send__(:new!, -2,-4). instance_eval{[numerator, denominator]}) # to_i assert_equal([2,1], Rational.__send__(:new!, Rational(2)). instance_eval{[numerator, denominator]}) assert_equal([2,3], Rational.__send__(:new!, Rational(2), Rational(3)). instance_eval{[numerator, denominator]}) assert_equal([2,3], Rational.__send__(:new!, 2, Rational(3)). instance_eval{[numerator, denominator]}) assert_equal([1,1], Rational.__send__(:new!, 1.1). instance_eval{[numerator, denominator]}) assert_equal([-1,1], Rational.__send__(:new!, -1.1). instance_eval{[numerator, denominator]}) assert_equal([1,1], Rational.__send__(:new!, '1'). instance_eval{[numerator, denominator]}) assert_equal([0,1], Rational.__send__(:new!, nil). instance_eval{[numerator, denominator]}) assert_raise(ZeroDivisionError){Rational.__send__(:new!, 1, 0)} end =begin def test_reduce if @unify assert_instance_of(Fixnum, Rational.__send__(:reduce, 2,1)) else assert_instance_of(Rational, Rational.__send__(:reduce, 2,1)) assert_instance_of(Rational, Rational.__send__(:reduce, 2,1)) end assert_equal([2,1], Rational.__send__(:reduce, 2,1). instance_eval{[numerator, denominator]}) assert_equal([1,2], Rational.__send__(:reduce, 2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:reduce, -2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:reduce, 2,-4). instance_eval{[numerator, denominator]}) assert_equal([1,2], Rational.__send__(:reduce, -2,-4). instance_eval{[numerator, denominator]}) assert_raise(ArgumentError){Rational.__send__(:reduce, Rational(1,2),2)} assert_raise(ArgumentError){Rational.__send__(:reduce, 2,Rational(1,2))} assert_raise(ArgumentError){Rational. __send__(:reduce, Rational(1,2),Rational(1,2))} assert_raise(ArgumentError){Rational.__send__(:reduce, 1.1)} assert_raise(ArgumentError){Rational.__send__(:reduce, -1.1)} assert_raise(ArgumentError){Rational.__send__(:reduce, '1')} assert_raise(ArgumentError){Rational.__send__(:reduce, nil)} end =end def test_new if @unify assert_instance_of(Fixnum, Rational.__send__(:new, 2,1)) else assert_instance_of(Rational, Rational.__send__(:new, 2,1)) assert_equal([2,1], Rational.__send__(:new, 2,1). instance_eval{[numerator, denominator]}) end assert_equal([1,2], Rational.__send__(:new, 2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:new, -2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:new, 2,-4). instance_eval{[numerator, denominator]}) assert_equal([1,2], Rational.__send__(:new, -2,-4). instance_eval{[numerator, denominator]}) assert_raise(ArgumentError){Rational.__send__(:new, Rational(1,2),2)} assert_raise(ArgumentError){Rational.__send__(:new, 2,Rational(1,2))} assert_raise(ArgumentError){Rational.__send__(:new, Rational(1,2),Rational(1,2))} assert_raise(ArgumentError){Rational.__send__(:new, 1.1)} assert_raise(ArgumentError){Rational.__send__(:new, -1.1)} assert_raise(ArgumentError){Rational.__send__(:new, '1')} assert_raise(ArgumentError){Rational.__send__(:new, nil)} =begin assert_raise(ArgumentError){Rational.__send__(:new, Rational(1))} if @complex assert_raise(ArgumentError){Rational.__send__(:new, Complex(1))} end =end end def test_conv c = Rational(0,1) assert_equal(Rational.__send__(:new, 0,1), c) c = Rational(2**32, 2**32) assert_equal(Rational.__send__(:new, 2**32,2**32), c) assert_equal([1,1], [c.numerator,c.denominator]) c = Rational(-2**32, 2**32) assert_equal(Rational.__send__(:new, -2**32,2**32), c) assert_equal([-1,1], [c.numerator,c.denominator]) c = Rational(2**32, -2**32) assert_equal(Rational.__send__(:new, 2**32,-2**32), c) assert_equal([-1,1], [c.numerator,c.denominator]) c = Rational(-2**32, -2**32) assert_equal(Rational.__send__(:new, -2**32,-2**32), c) assert_equal([1,1], [c.numerator,c.denominator]) c = Rational(Rational(1,2),2) assert_equal(Rational.__send__(:new, 1,4), c) c = Rational(2,Rational(1,2)) assert_equal(Rational.__send__(:new, 4), c) c = Rational(Rational(1,2),Rational(1,2)) assert_equal(Rational.__send__(:new, 1), c) if @complex && !@keiju c = Rational(Complex(1,2),2) assert_equal(Complex.__send__(:new, Rational(1,2),1), c) c = Rational(2,Complex(1,2)) assert_equal(Complex.__send__(:new, Rational(2,5),Rational(-4,5)), c) c = Rational(Complex(1,2),Complex(1,2)) assert_equal(Rational.__send__(:new, 1), c) end assert_equal(Rational.__send__(:new, 3),Rational(3)) assert_equal(Rational.__send__(:new, 1),Rational(3,3)) assert_equal(3.3.to_r,Rational(3.3)) assert_equal(1,Rational(3.3,3.3)) assert_equal(Rational.__send__(:new, 3),Rational('3')) assert_equal(Rational.__send__(:new, 1),Rational('3.0','3.0')) assert_equal(Rational.__send__(:new, 1),Rational('3/3','3/3')) assert_raise(ArgumentError){Rational(nil)} assert_raise(ArgumentError){Rational('')} assert_raise(ArgumentError){Rational(Object.new)} assert_raise(ArgumentError){Rational()} assert_raise(ArgumentError){Rational(1,2,3)} end def test_attr c = Rational(4) assert_equal(4, c.numerator) assert_equal(1, c.denominator) c = Rational(4,5) assert_equal(4, c.numerator) assert_equal(5, c.denominator) c = Rational.__send__(:new, 4) assert_equal(4, c.numerator) assert_equal(1, c.denominator) c = Rational.__send__(:new, 4,5) assert_equal(4, c.numerator) assert_equal(5, c.denominator) c = Rational.__send__(:new!, 4) assert_equal(4, c.numerator) assert_equal(1, c.denominator) c = Rational.__send__(:new!, 4,5) assert_equal(4, c.numerator) assert_equal(5, c.denominator) end def test_attr2 c = Rational(1) if @unify =begin assert_equal(true, c.finite?) assert_equal(false, c.infinite?) assert_equal(false, c.nan?) assert_equal(true, c.integer?) assert_equal(false, c.float?) assert_equal(true, c.rational?) =end assert_equal(true, c.real?) =begin assert_equal(false, c.complex?) assert_equal(true, c.exact?) assert_equal(false, c.inexact?) =end else =begin assert_equal(true, c.finite?) assert_equal(false, c.infinite?) assert_equal(false, c.nan?) assert_equal(false, c.integer?) assert_equal(false, c.float?) assert_equal(true, c.rational?) =end assert_equal(true, c.real?) =begin assert_equal(false, c.complex?) assert_equal(true, c.exact?) assert_equal(false, c.inexact?) =end end =begin assert_equal(true, Rational(0).positive?) assert_equal(true, Rational(1).positive?) assert_equal(false, Rational(-1).positive?) assert_equal(false, Rational(0).negative?) assert_equal(false, Rational(1).negative?) assert_equal(true, Rational(-1).negative?) assert_equal(0, Rational(0).sign) assert_equal(1, Rational(2).sign) assert_equal(-1, Rational(-2).sign) =end assert_equal(true, Rational(0).zero?) assert_equal(true, Rational(0,1).zero?) assert_equal(false, Rational(1,1).zero?) assert_equal(nil, Rational(0).nonzero?) assert_equal(nil, Rational(0,1).nonzero?) assert_equal(Rational(1,1), Rational(1,1).nonzero?) end def test_uplus assert_equal(Rational(1), +Rational(1)) assert_equal(Rational(-1), +Rational(-1)) assert_equal(Rational(1,1), +Rational(1,1)) assert_equal(Rational(-1,1), +Rational(-1,1)) assert_equal(Rational(-1,1), +Rational(1,-1)) assert_equal(Rational(1,1), +Rational(-1,-1)) end def test_negate assert_equal(Rational(-1), -Rational(1)) assert_equal(Rational(1), -Rational(-1)) assert_equal(Rational(-1,1), -Rational(1,1)) assert_equal(Rational(1,1), -Rational(-1,1)) assert_equal(Rational(1,1), -Rational(1,-1)) assert_equal(Rational(-1,1), -Rational(-1,-1)) =begin assert_equal(0, Rational(0).negate) assert_equal(-2, Rational(2).negate) assert_equal(2, Rational(-2).negate) =end end def test_add c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(7,6), c + c2) assert_equal(Rational(5,2), c + 2) assert_equal(2.5, c + 2.0) end def test_sub c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(-1,6), c - c2) assert_equal(Rational(-3,2), c - 2) assert_equal(-1.5, c - 2.0) end def test_mul c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(1,3), c * c2) assert_equal(Rational(1,1), c * 2) assert_equal(1.0, c * 2.0) end def test_div c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(3,4), c / c2) assert_equal(Rational(1,4), c / 2) assert_equal(0.25, c / 2.0) assert_raise(ZeroDivisionError){Rational(1, 3) / 0} assert_raise(ZeroDivisionError){Rational(1, 3) / Rational(0)} end def assert_eql(exp, act, *args) unless Array === exp exp = [exp] end unless Array === act act = [act] end exp.zip(act).each do |e, a| na = [e, a] + args assert_equal(*na) na = [e.class, a] + args assert_instance_of(*na) end end def test_idiv c = Rational(1,2) c2 = Rational(2,3) assert_eql(0, c.div(c2)) assert_eql(0, c.div(2)) assert_eql(0, c.div(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal(2, c.div(c2)) assert_equal(-3, c.div(-c2)) assert_equal(-3, (-c).div(c2)) assert_equal(2, (-c).div(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal(1, c.div(c2)) assert_equal(-2, c.div(-c2)) assert_equal(-2, (-c).div(c2)) assert_equal(1, (-c).div(-c2)) unless @unify c = Rational(11) c2 = Rational(3) assert_equal(3, c.div(c2)) assert_equal(-4, c.div(-c2)) assert_equal(-4, (-c).div(c2)) assert_equal(3, (-c).div(-c2)) end end def test_modulo c = Rational(1,2) c2 = Rational(2,3) assert_eql(Rational(1,2), c.modulo(c2)) assert_eql(Rational(1,2), c.modulo(2)) assert_eql(0.5, c.modulo(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal(Rational(21,100), c.modulo(c2)) assert_equal(Rational(-119,100), c.modulo(-c2)) assert_equal(Rational(119,100), (-c).modulo(c2)) assert_equal(Rational(-21,100), (-c).modulo(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal(Rational(101,100), c.modulo(c2)) assert_equal(Rational(-99,100), c.modulo(-c2)) assert_equal(Rational(99,100), (-c).modulo(c2)) assert_equal(Rational(-101,100), (-c).modulo(-c2)) unless @unify c = Rational(11) c2 = Rational(3) assert_equal(2, c.modulo(c2)) assert_equal(-1, c.modulo(-c2)) assert_equal(1, (-c).modulo(c2)) assert_equal(-2, (-c).modulo(-c2)) end end def test_divmod c = Rational(1,2) c2 = Rational(2,3) assert_eql([0, Rational(1,2)], c.divmod(c2)) assert_eql([0, Rational(1,2)], c.divmod(2)) assert_eql([0, 0.5], c.divmod(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal([2, Rational(21,100)], c.divmod(c2)) assert_equal([-3, Rational(-119,100)], c.divmod(-c2)) assert_equal([-3, Rational(119,100)], (-c).divmod(c2)) assert_equal([2, Rational(-21,100)], (-c).divmod(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal([1, Rational(101,100)], c.divmod(c2)) assert_equal([-2, Rational(-99,100)], c.divmod(-c2)) assert_equal([-2, Rational(99,100)], (-c).divmod(c2)) assert_equal([1, Rational(-101,100)], (-c).divmod(-c2)) unless @unify c = Rational(11) c2 = Rational(3) assert_equal([3,2], c.divmod(c2)) assert_equal([-4,-1], c.divmod(-c2)) assert_equal([-4,1], (-c).divmod(c2)) assert_equal([3,-2], (-c).divmod(-c2)) end end =begin def test_quot c = Rational(1,2) c2 = Rational(2,3) assert_eql(0, c.quot(c2)) assert_eql(0, c.quot(2)) assert_eql(0, c.quot(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal(2, c.quot(c2)) assert_equal(-2, c.quot(-c2)) assert_equal(-2, (-c).quot(c2)) assert_equal(2, (-c).quot(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal(1, c.quot(c2)) assert_equal(-1, c.quot(-c2)) assert_equal(-1, (-c).quot(c2)) assert_equal(1, (-c).quot(-c2)) unless @unify c = Rational(11) c2 = Rational(3) assert_equal(3, c.quot(c2)) assert_equal(-3, c.quot(-c2)) assert_equal(-3, (-c).quot(c2)) assert_equal(3, (-c).quot(-c2)) end end =end def test_remainder c = Rational(1,2) c2 = Rational(2,3) assert_eql(Rational(1,2), c.remainder(c2)) assert_eql(Rational(1,2), c.remainder(2)) assert_eql(0.5, c.remainder(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal(Rational(21,100), c.remainder(c2)) assert_equal(Rational(21,100), c.remainder(-c2)) assert_equal(Rational(-21,100), (-c).remainder(c2)) assert_equal(Rational(-21,100), (-c).remainder(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal(Rational(101,100), c.remainder(c2)) assert_equal(Rational(101,100), c.remainder(-c2)) assert_equal(Rational(-101,100), (-c).remainder(c2)) assert_equal(Rational(-101,100), (-c).remainder(-c2)) unless @unify c = Rational(11) c2 = Rational(3) assert_equal(2, c.remainder(c2)) assert_equal(2, c.remainder(-c2)) assert_equal(-2, (-c).remainder(c2)) assert_equal(-2, (-c).remainder(-c2)) end end =begin def test_quotrem c = Rational(1,2) c2 = Rational(2,3) assert_eql([0, Rational(1,2)], c.quotrem(c2)) assert_eql([0, Rational(1,2)], c.quotrem(2)) assert_eql([0, 0.5], c.quotrem(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal([2, Rational(21,100)], c.quotrem(c2)) assert_equal([-2, Rational(21,100)], c.quotrem(-c2)) assert_equal([-2, Rational(-21,100)], (-c).quotrem(c2)) assert_equal([2, Rational(-21,100)], (-c).quotrem(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal([1, Rational(101,100)], c.quotrem(c2)) assert_equal([-1, Rational(101,100)], c.quotrem(-c2)) assert_equal([-1, Rational(-101,100)], (-c).quotrem(c2)) assert_equal([1, Rational(-101,100)], (-c).quotrem(-c2)) unless @unify c = Rational(11) c2 = Rational(3) assert_equal([3,2], c.quotrem(c2)) assert_equal([-3,2], c.quotrem(-c2)) assert_equal([-3,-2], (-c).quotrem(c2)) assert_equal([3,-2], (-c).quotrem(-c2)) end end =end def test_quo c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(3,4), c.quo(c2)) assert_equal(Rational(1,4), c.quo(2)) assert_equal(0.25, c.quo(2.0)) end def test_fdiv c = Rational(1,2) c2 = Rational(2,3) assert_equal(0.75, c.fdiv(c2)) assert_equal(0.25, c.fdiv(2)) assert_equal(0.25, c.fdiv(2.0)) end def test_expt c = Rational(1,2) c2 = Rational(2,3) r = c ** c2 assert_in_delta(0.6299, r, 0.001) assert_equal(Rational(1,4), c ** 2) assert_equal(Rational(4), c ** -2) assert_equal(Rational(1,4), (-c) ** 2) assert_equal(Rational(4), (-c) ** -2) assert_equal(0.25, c ** 2.0) assert_equal(4.0, c ** -2.0) assert_equal(Rational(1,4), c ** Rational(2)) assert_equal(Rational(4), c ** Rational(-2)) assert_equal(Rational(1), 0 ** Rational(0)) assert_equal(Rational(1), Rational(0) ** 0) assert_equal(Rational(1), Rational(0) ** Rational(0)) # p ** p x = 2 ** Rational(2) assert_equal(Rational(4), x) unless @unify assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(2) ** 2 assert_equal(Rational(4), x) unless @unify assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(2) ** Rational(2) assert_equal(Rational(4), x) unless @unify assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) # -p ** p x = (-2) ** Rational(2) assert_equal(Rational(4), x) unless @unify assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(-2) ** 2 assert_equal(Rational(4), x) unless @unify assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(-2) ** Rational(2) assert_equal(Rational(4), x) unless @unify assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) # p ** -p x = 2 ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(2) ** -2 assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(2) ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) # -p ** -p x = (-2) ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(-2) ** -2 assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(-2) ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) unless @unify # maybe bug mathn assert_raise(ZeroDivisionError){0 ** -1} end end def test_cmp assert_equal(-1, Rational(-1) <=> Rational(0)) assert_equal(0, Rational(0) <=> Rational(0)) assert_equal(+1, Rational(+1) <=> Rational(0)) assert_equal(-1, Rational(-1) <=> 0) assert_equal(0, Rational(0) <=> 0) assert_equal(+1, Rational(+1) <=> 0) assert_equal(-1, Rational(-1) <=> 0.0) assert_equal(0, Rational(0) <=> 0.0) assert_equal(+1, Rational(+1) <=> 0.0) assert_equal(-1, Rational(1,2) <=> Rational(2,3)) assert_equal(0, Rational(2,3) <=> Rational(2,3)) assert_equal(+1, Rational(2,3) <=> Rational(1,2)) f = 2**30-1 b = 2**30 assert_equal(0, Rational(f) <=> Rational(f)) assert_equal(-1, Rational(f) <=> Rational(b)) assert_equal(+1, Rational(b) <=> Rational(f)) assert_equal(0, Rational(b) <=> Rational(b)) assert_equal(-1, Rational(f-1) <=> Rational(f)) assert_equal(+1, Rational(f) <=> Rational(f-1)) assert_equal(-1, Rational(b-1) <=> Rational(b)) assert_equal(+1, Rational(b) <=> Rational(b-1)) assert_equal(false, Rational(0) < Rational(0)) assert_equal(true, Rational(0) <= Rational(0)) assert_equal(true, Rational(0) >= Rational(0)) assert_equal(false, Rational(0) > Rational(0)) end def test_equal assert(Rational(1,1) == Rational(1)) assert(Rational(1,1) == Rational.__send__(:new, 1)) assert(Rational(1,1) == Rational.__send__(:new, 1,1)) assert(Rational(1,1) == Rational.__send__(:new!, 1)) assert(Rational(1,1) == Rational.__send__(:new!, 1,1)) assert(Rational(-1,1) == Rational(-1)) assert(Rational(-1,1) == Rational.__send__(:new, -1)) assert(Rational(-1,1) == Rational.__send__(:new, -1,1)) assert(Rational(-1,1) == Rational.__send__(:new!, -1)) assert(Rational(-1,1) == Rational.__send__(:new!, -1,1)) assert_equal(false, Rational(2,1) == Rational(1)) assert_equal(true, Rational(2,1) != Rational(1)) assert_equal(false, Rational(1) == nil) assert_equal(false, Rational(1) == '') end def test_unify if @unify assert_instance_of(Fixnum, Rational(1,2) + Rational(1,2)) assert_instance_of(Fixnum, Rational(1,2) - Rational(1,2)) assert_instance_of(Fixnum, Rational(1,2) * 2) assert_instance_of(Fixnum, Rational(1,2) / Rational(1,2)) assert_instance_of(Fixnum, Rational(1,2).div(Rational(1,2))) assert_instance_of(Fixnum, Rational(1,2).quo(Rational(1,2))) assert_instance_of(Fixnum, Rational(1,2) ** -2) end end def test_math assert_equal(Rational(1,2), Rational(1,2).abs) assert_equal(Rational(1,2), Rational(-1,2).abs) if @complex && !@keiju assert_equal(Rational(1,2), Rational(1,2).magnitude) assert_equal(Rational(1,2), Rational(-1,2).magnitude) end assert_equal(1, Rational(1,2).numerator) assert_equal(2, Rational(1,2).denominator) end def test_trunc [[Rational(13, 5), [ 2, 3, 2, 3]], # 2.6 [Rational(5, 2), [ 2, 3, 2, 3]], # 2.5 [Rational(12, 5), [ 2, 3, 2, 2]], # 2.4 [Rational(-12,5), [-3, -2, -2, -2]], # -2.4 [Rational(-5, 2), [-3, -2, -2, -3]], # -2.5 [Rational(-13, 5), [-3, -2, -2, -3]], # -2.6 ].each do |i, a| assert_equal(a[0], i.floor) assert_equal(a[1], i.ceil) assert_equal(a[2], i.truncate) assert_equal(a[3], i.round) end end def test_to_s c = Rational(1,2) assert_instance_of(String, c.to_s) assert_equal('1/2', c.to_s) if @unify assert_equal('0', Rational(0,2).to_s) assert_equal('0', Rational(0,-2).to_s) else assert_equal('0/1', Rational(0,2).to_s) assert_equal('0/1', Rational(0,-2).to_s) end assert_equal('1/2', Rational(1,2).to_s) assert_equal('-1/2', Rational(-1,2).to_s) assert_equal('1/2', Rational(-1,-2).to_s) assert_equal('-1/2', Rational(1,-2).to_s) assert_equal('1/2', Rational(-1,-2).to_s) end def test_inspect c = Rational(1,2) assert_instance_of(String, c.inspect) assert_equal('(1/2)', c.inspect) end def test_marshal c = Rational(1,2) c.instance_eval{@ivar = 9} s = Marshal.dump(c) c2 = Marshal.load(s) assert_equal(c, c2) assert_equal(9, c2.instance_variable_get(:@ivar)) assert_instance_of(Rational, c2) assert_raise(ZeroDivisionError){ Marshal.load("\x04\bU:\rRational[\ai\x06i\x05") } end def test_parse assert_equal(Rational(5), '5'.to_r) assert_equal(Rational(-5), '-5'.to_r) assert_equal(Rational(5,3), '5/3'.to_r) assert_equal(Rational(-5,3), '-5/3'.to_r) # assert_equal(Rational(5,-3), '5/-3'.to_r) # assert_equal(Rational(-5,-3), '-5/-3'.to_r) assert_equal(Rational(5), '5.0'.to_r) assert_equal(Rational(-5), '-5.0'.to_r) assert_equal(Rational(5,3), '5.0/3'.to_r) assert_equal(Rational(-5,3), '-5.0/3'.to_r) # assert_equal(Rational(5,-3), '5.0/-3'.to_r) # assert_equal(Rational(-5,-3), '-5.0/-3'.to_r) assert_equal(Rational(5), '5e0'.to_r) assert_equal(Rational(-5), '-5e0'.to_r) assert_equal(Rational(5,3), '5e0/3'.to_r) assert_equal(Rational(-5,3), '-5e0/3'.to_r) # assert_equal(Rational(5,-3), '5e0/-3'.to_r) # assert_equal(Rational(-5,-3), '-5e0/-3'.to_r) assert_equal(Rational(33,100), '.33'.to_r) assert_equal(Rational(33,100), '0.33'.to_r) assert_equal(Rational(-33,100), '-.33'.to_r) assert_equal(Rational(-33,100), '-0.33'.to_r) assert_equal(Rational(-33,100), '-0.3_3'.to_r) assert_equal(Rational(1,2), '5e-1'.to_r) assert_equal(Rational(50), '5e+1'.to_r) assert_equal(Rational(1,2), '5.0e-1'.to_r) assert_equal(Rational(50), '5.0e+1'.to_r) assert_equal(Rational(50), '5e1'.to_r) assert_equal(Rational(50), '5E1'.to_r) assert_equal(Rational(500), '5e2'.to_r) assert_equal(Rational(5000), '5e3'.to_r) assert_equal(Rational(500000000000), '5e1_1'.to_r) assert_equal(Rational(5), Rational('5')) assert_equal(Rational(-5), Rational('-5')) assert_equal(Rational(5,3), Rational('5/3')) assert_equal(Rational(-5,3), Rational('-5/3')) # assert_equal(Rational(5,-3), Rational('5/-3')) # assert_equal(Rational(-5,-3), Rational('-5/-3')) assert_equal(Rational(5), Rational('5.0')) assert_equal(Rational(-5), Rational('-5.0')) assert_equal(Rational(5,3), Rational('5.0/3')) assert_equal(Rational(-5,3), Rational('-5.0/3')) # assert_equal(Rational(5,-3), Rational('5.0/-3')) # assert_equal(Rational(-5,-3), Rational('-5.0/-3')) assert_equal(Rational(5), Rational('5e0')) assert_equal(Rational(-5), Rational('-5e0')) assert_equal(Rational(5,3), Rational('5e0/3')) assert_equal(Rational(-5,3), Rational('-5e0/3')) # assert_equal(Rational(5,-3), Rational('5e0/-3')) # assert_equal(Rational(-5,-3), Rational('-5e0/-3')) assert_equal(Rational(33,100), Rational('.33')) assert_equal(Rational(33,100), Rational('0.33')) assert_equal(Rational(-33,100), Rational('-.33')) assert_equal(Rational(-33,100), Rational('-0.33')) assert_equal(Rational(-33,100), Rational('-0.3_3')) assert_equal(Rational(1,2), Rational('5e-1')) assert_equal(Rational(50), Rational('5e+1')) assert_equal(Rational(1,2), Rational('5.0e-1')) assert_equal(Rational(50), Rational('5.0e+1')) assert_equal(Rational(50), Rational('5e1')) assert_equal(Rational(50), Rational('5E1')) assert_equal(Rational(500), Rational('5e2')) assert_equal(Rational(5000), Rational('5e3')) assert_equal(Rational(500000000000), Rational('5e1_1')) assert_equal(Rational(0), ''.to_r) assert_equal(Rational(0), ' '.to_r) assert_equal(Rational(5), "\f\n\r\t\v5\0".to_r) assert_equal(Rational(0), '_'.to_r) assert_equal(Rational(0), '_5'.to_r) assert_equal(Rational(5), '5_'.to_r) assert_equal(Rational(5), '5x'.to_r) assert_equal(Rational(5), '5/_3'.to_r) assert_equal(Rational(5,3), '5/3_'.to_r) assert_equal(Rational(5,3), '5/3.3'.to_r) assert_equal(Rational(5,3), '5/3x'.to_r) assert_raise(ArgumentError){ Rational('')} assert_raise(ArgumentError){ Rational('_')} assert_raise(ArgumentError){ Rational("\f\n\r\t\v5\0")} assert_raise(ArgumentError){ Rational('_5')} assert_raise(ArgumentError){ Rational('5_')} assert_raise(ArgumentError){ Rational('5x')} assert_raise(ArgumentError){ Rational('5/_3')} assert_raise(ArgumentError){ Rational('5/3_')} assert_raise(ArgumentError){ Rational('5/3.3')} assert_raise(ArgumentError){ Rational('5/3x')} end =begin def test_reciprocal assert_equal(Rational(1,9), Rational(9,1).reciprocal) assert_equal(Rational(9,1), Rational(1,9).reciprocal) assert_equal(Rational(-1,9), Rational(-9,1).reciprocal) assert_equal(Rational(-9,1), Rational(-1,9).reciprocal) assert_equal(Rational(1,9), Rational(9,1).inverse) assert_equal(Rational(9,1), Rational(1,9).inverse) assert_equal(Rational(-1,9), Rational(-9,1).inverse) assert_equal(Rational(-9,1), Rational(-1,9).inverse) end =end def test_to_i assert_equal(1, Rational(3,2).to_i) assert_equal(1, Integer(Rational(3,2))) end def test_to_f assert_equal(1.5, Rational(3,2).to_f) assert_equal(1.5, Float(Rational(3,2))) end def test_to_c if @complex && !@keiju if @unify assert_equal(Rational(3,2), Rational(3,2).to_c) assert_equal(Rational(3,2), Complex(Rational(3,2))) else assert_equal(Complex(Rational(3,2)), Rational(3,2).to_c) assert_equal(Complex(Rational(3,2)), Complex(Rational(3,2))) end end end def test_to_r c = nil.to_r assert_equal([0,1] , [c.numerator, c.denominator]) c = 0.to_r assert_equal([0,1] , [c.numerator, c.denominator]) c = 1.to_r assert_equal([1,1] , [c.numerator, c.denominator]) c = 1.1.to_r assert_equal([2476979795053773, 2251799813685248], [c.numerator, c.denominator]) c = Rational(1,2).to_r assert_equal([1,2] , [c.numerator, c.denominator]) if @complex if @keiju assert_raise(NoMethodError){Complex(1,2).to_r} else assert_raise(RangeError){Complex(1,2).to_r} end end end def test_gcdlcm assert_equal(7, 91.gcd(-49)) assert_equal(5, 5.gcd(0)) assert_equal(5, 0.gcd(5)) assert_equal(70, 14.lcm(35)) assert_equal(0, 5.lcm(0)) assert_equal(0, 0.lcm(5)) assert_equal([5,0], 0.gcdlcm(5)) assert_equal([5,0], 5.gcdlcm(0)) assert_equal(1, 1073741827.gcd(1073741789)) assert_equal(1152921470247108503, 1073741827.lcm(1073741789)) assert_equal(1, 1073741789.gcd(1073741827)) assert_equal(1152921470247108503, 1073741789.lcm(1073741827)) end def test_supp assert_equal(true, 1.real?) assert_equal(true, 1.1.real?) assert_equal(1, 1.numerator) assert_equal(9, 9.numerator) assert_equal(1, 1.denominator) assert_equal(1, 9.denominator) assert_equal(1.0, 1.0.numerator) assert_equal(9.0, 9.0.numerator) assert_equal(1.0, 1.0.denominator) assert_equal(1.0, 9.0.denominator) =begin assert_equal(Rational(1,9), 9.reciprocal) assert_in_delta(0.1111, 9.0.reciprocal, 0.001) assert_equal(Rational(1,9), 9.inverse) assert_in_delta(0.1111, 9.0.inverse, 0.001) =end assert_equal(Rational(1,2), 1.quo(2)) assert_equal(Rational(5000000000), 10000000000.quo(2)) assert_equal(0.5, 1.0.quo(2)) assert_equal(Rational(1,4), Rational(1,2).quo(2)) assert_equal(0.5, 1.fdiv(2)) assert_equal(5000000000.0, 10000000000.fdiv(2)) assert_equal(0.5, 1.0.fdiv(2)) assert_equal(0.25, Rational(1,2).fdiv(2)) end def test_ruby19 assert_raise(NoMethodError){ Rational.new(1) } assert_raise(NoMethodError){ Rational.new!(1) } end def test_fixed_bug if @unify assert_instance_of(Fixnum, Rational(1,2) ** 0) # mathn's bug end n = Float::MAX.to_i * 2 assert_equal(1.0, Rational(n + 2, n + 1).to_f, '[ruby-dev:33852]') end def test_known_bug end end