/********************************************************************** process.c - $Author$ $Date$ created at: Tue Aug 10 14:30:50 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/signal.h" #include "vm_core.h" #include #include #include #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef __DJGPP__ #include #endif #include #include #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif #ifndef EXIT_FAILURE #define EXIT_FAILURE 1 #endif struct timeval rb_time_interval(VALUE); #ifdef HAVE_SYS_WAIT_H # include #endif #ifdef HAVE_SYS_RESOURCE_H # include #endif #include "ruby/st.h" #ifdef __EMX__ #undef HAVE_GETPGRP #endif #ifdef HAVE_SYS_TIMES_H #include #endif #ifdef HAVE_GRP_H #include #endif #if defined(HAVE_TIMES) || defined(_WIN32) static VALUE S_Tms; #endif #ifndef WIFEXITED #define WIFEXITED(w) (((w) & 0xff) == 0) #endif #ifndef WIFSIGNALED #define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f)) #endif #ifndef WIFSTOPPED #define WIFSTOPPED(w) (((w) & 0xff) == 0x7f) #endif #ifndef WEXITSTATUS #define WEXITSTATUS(w) (((w) >> 8) & 0xff) #endif #ifndef WTERMSIG #define WTERMSIG(w) ((w) & 0x7f) #endif #ifndef WSTOPSIG #define WSTOPSIG WEXITSTATUS #endif #if defined(__APPLE__) && ( defined(__MACH__) || defined(__DARWIN__) ) && !defined(__MacOS_X__) #define __MacOS_X__ 1 #endif #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) #define HAVE_44BSD_SETUID 1 #define HAVE_44BSD_SETGID 1 #endif #ifdef __NetBSD__ #undef HAVE_SETRUID #undef HAVE_SETRGID #endif #if defined(__MacOS_X__) || defined(__bsdi__) #define BROKEN_SETREUID 1 #define BROKEN_SETREGID 1 #endif #ifdef BROKEN_SETREUID #define setreuid ruby_setreuid #endif #ifdef BROKEN_SETREGID #define setregid ruby_setregid #endif #if defined(HAVE_44BSD_SETUID) || defined(__MacOS_X__) #if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID) #define OBSOLETE_SETREUID 1 #endif #if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID) #define OBSOLETE_SETREGID 1 #endif #endif #define preserving_errno(stmts) \ do {int saved_errno = errno; stmts; errno = saved_errno;} while (0) /* * call-seq: * Process.pid => fixnum * * Returns the process id of this process. Not available on all * platforms. * * Process.pid #=> 27415 */ static VALUE get_pid(void) { rb_secure(2); return PIDT2NUM(getpid()); } /* * call-seq: * Process.ppid => fixnum * * Returns the process id of the parent of this process. Always * returns 0 on NT. Not available on all platforms. * * puts "I am #{Process.pid}" * Process.fork { puts "Dad is #{Process.ppid}" } * * produces: * * I am 27417 * Dad is 27417 */ static VALUE get_ppid(void) { rb_secure(2); #ifdef _WIN32 return INT2FIX(0); #else return PIDT2NUM(getppid()); #endif } /********************************************************************* * * Document-class: Process::Status * * Process::Status encapsulates the information on the * status of a running or terminated system process. The built-in * variable $? is either +nil+ or a * Process::Status object. * * fork { exit 99 } #=> 26557 * Process.wait #=> 26557 * $?.class #=> Process::Status * $?.to_i #=> 25344 * $? >> 8 #=> 99 * $?.stopped? #=> false * $?.exited? #=> true * $?.exitstatus #=> 99 * * Posix systems record information on processes using a 16-bit * integer. The lower bits record the process status (stopped, * exited, signaled) and the upper bits possibly contain additional * information (for example the program's return code in the case of * exited processes). Pre Ruby 1.8, these bits were exposed directly * to the Ruby program. Ruby now encapsulates these in a * Process::Status object. To maximize compatibility, * however, these objects retain a bit-oriented interface. In the * descriptions that follow, when we talk about the integer value of * _stat_, we're referring to this 16 bit value. */ static VALUE rb_cProcStatus; VALUE rb_last_status_get(void) { return GET_VM()->last_status; } void rb_last_status_set(int status, rb_pid_t pid) { rb_vm_t *vm = GET_VM(); vm->last_status = rb_obj_alloc(rb_cProcStatus); rb_iv_set(vm->last_status, "status", INT2FIX(status)); rb_iv_set(vm->last_status, "pid", PIDT2NUM(pid)); } static void rb_last_status_clear(void) { rb_vm_t *vm = GET_VM(); vm->last_status = Qnil; } /* * call-seq: * stat.to_i => fixnum * stat.to_int => fixnum * * Returns the bits in _stat_ as a Fixnum. Poking * around in these bits is platform dependent. * * fork { exit 0xab } #=> 26566 * Process.wait #=> 26566 * sprintf('%04x', $?.to_i) #=> "ab00" */ static VALUE pst_to_i(VALUE st) { return rb_iv_get(st, "status"); } /* * call-seq: * stat.pid => fixnum * * Returns the process ID that this status object represents. * * fork { exit } #=> 26569 * Process.wait #=> 26569 * $?.pid #=> 26569 */ static VALUE pst_pid(VALUE st) { return rb_iv_get(st, "pid"); } static void pst_message(VALUE str, rb_pid_t pid, int status) { char buf[256]; snprintf(buf, sizeof(buf), "pid %ld", (long)pid); rb_str_cat2(str, buf); if (WIFSTOPPED(status)) { int stopsig = WSTOPSIG(status); const char *signame = ruby_signal_name(stopsig); if (signame) { snprintf(buf, sizeof(buf), " stopped SIG%s (signal %d)", signame, stopsig); } else { snprintf(buf, sizeof(buf), " stopped signal %d", stopsig); } rb_str_cat2(str, buf); } if (WIFSIGNALED(status)) { int termsig = WTERMSIG(status); const char *signame = ruby_signal_name(termsig); if (signame) { snprintf(buf, sizeof(buf), " SIG%s (signal %d)", signame, termsig); } else { snprintf(buf, sizeof(buf), " signal %d", termsig); } rb_str_cat2(str, buf); } if (WIFEXITED(status)) { snprintf(buf, sizeof(buf), " exit %d", WEXITSTATUS(status)); rb_str_cat2(str, buf); } #ifdef WCOREDUMP if (WCOREDUMP(status)) { rb_str_cat2(str, " (core dumped)"); } #endif } /* * call-seq: * stat.to_s => string * * Show pid and exit status as a string. */ static VALUE pst_to_s(VALUE st) { rb_pid_t pid; int status; VALUE str; pid = NUM2LONG(pst_pid(st)); status = NUM2INT(pst_to_i(st)); str = rb_str_buf_new(0); pst_message(str, pid, status); return str; } /* * call-seq: * stat.inspect => string * * Override the inspection method. */ static VALUE pst_inspect(VALUE st) { rb_pid_t pid; int status; VALUE str; pid = NUM2LONG(pst_pid(st)); status = NUM2INT(pst_to_i(st)); str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st))); pst_message(str, pid, status); rb_str_cat2(str, ">"); return str; } /* * call-seq: * stat == other => true or false * * Returns +true+ if the integer value of _stat_ * equals other. */ static VALUE pst_equal(VALUE st1, VALUE st2) { if (st1 == st2) return Qtrue; return rb_equal(pst_to_i(st1), st2); } /* * call-seq: * stat & num => fixnum * * Logical AND of the bits in _stat_ with num. * * fork { exit 0x37 } * Process.wait * sprintf('%04x', $?.to_i) #=> "3700" * sprintf('%04x', $? & 0x1e00) #=> "1600" */ static VALUE pst_bitand(VALUE st1, VALUE st2) { int status = NUM2INT(st1) & NUM2INT(st2); return INT2NUM(status); } /* * call-seq: * stat >> num => fixnum * * Shift the bits in _stat_ right num places. * * fork { exit 99 } #=> 26563 * Process.wait #=> 26563 * $?.to_i #=> 25344 * $? >> 8 #=> 99 */ static VALUE pst_rshift(VALUE st1, VALUE st2) { int status = NUM2INT(st1) >> NUM2INT(st2); return INT2NUM(status); } /* * call-seq: * stat.stopped? => true or false * * Returns +true+ if this process is stopped. This is only * returned if the corresponding wait call had the * WUNTRACED flag set. */ static VALUE pst_wifstopped(VALUE st) { int status = NUM2INT(st); if (WIFSTOPPED(status)) return Qtrue; else return Qfalse; } /* * call-seq: * stat.stopsig => fixnum or nil * * Returns the number of the signal that caused _stat_ to stop * (or +nil+ if self is not stopped). */ static VALUE pst_wstopsig(VALUE st) { int status = NUM2INT(st); if (WIFSTOPPED(status)) return INT2NUM(WSTOPSIG(status)); return Qnil; } /* * call-seq: * stat.signaled? => true or false * * Returns +true+ if _stat_ terminated because of * an uncaught signal. */ static VALUE pst_wifsignaled(VALUE st) { int status = NUM2INT(st); if (WIFSIGNALED(status)) return Qtrue; else return Qfalse; } /* * call-seq: * stat.termsig => fixnum or nil * * Returns the number of the signal that caused _stat_ to * terminate (or +nil+ if self was not terminated by an * uncaught signal). */ static VALUE pst_wtermsig(VALUE st) { int status = NUM2INT(st); if (WIFSIGNALED(status)) return INT2NUM(WTERMSIG(status)); return Qnil; } /* * call-seq: * stat.exited? => true or false * * Returns +true+ if _stat_ exited normally (for * example using an exit() call or finishing the * program). */ static VALUE pst_wifexited(VALUE st) { int status = NUM2INT(st); if (WIFEXITED(status)) return Qtrue; else return Qfalse; } /* * call-seq: * stat.exitstatus => fixnum or nil * * Returns the least significant eight bits of the return code of * _stat_. Only available if exited? is * +true+. * * fork { } #=> 26572 * Process.wait #=> 26572 * $?.exited? #=> true * $?.exitstatus #=> 0 * * fork { exit 99 } #=> 26573 * Process.wait #=> 26573 * $?.exited? #=> true * $?.exitstatus #=> 99 */ static VALUE pst_wexitstatus(VALUE st) { int status = NUM2INT(st); if (WIFEXITED(status)) return INT2NUM(WEXITSTATUS(status)); return Qnil; } /* * call-seq: * stat.success? => true, false or nil * * Returns +true+ if _stat_ is successful, +false+ if not. * Returns +nil+ if exited? is not +true+. */ static VALUE pst_success_p(VALUE st) { int status = NUM2INT(st); if (!WIFEXITED(status)) return Qnil; return WEXITSTATUS(status) == EXIT_SUCCESS ? Qtrue : Qfalse; } /* * call-seq: * stat.coredump? => true or false * * Returns +true+ if _stat_ generated a coredump * when it terminated. Not available on all platforms. */ static VALUE pst_wcoredump(VALUE st) { #ifdef WCOREDUMP int status = NUM2INT(st); if (WCOREDUMP(status)) return Qtrue; else return Qfalse; #else return Qfalse; #endif } #if !defined(HAVE_WAITPID) && !defined(HAVE_WAIT4) #define NO_WAITPID static st_table *pid_tbl; #else struct waitpid_arg { rb_pid_t pid; int *st; int flags; }; #endif static VALUE rb_waitpid_blocking(void *data) { rb_pid_t result; #ifndef NO_WAITPID struct waitpid_arg *arg = data; #endif TRAP_BEG; #if defined NO_WAITPID result = wait(data); #elif defined HAVE_WAITPID result = waitpid(arg->pid, arg->st, arg->flags); #else /* HAVE_WAIT4 */ result = wait4(arg->pid, arg->st, arg->flags, NULL); #endif TRAP_END; return (VALUE)result; } rb_pid_t rb_waitpid(rb_pid_t pid, int *st, int flags) { rb_pid_t result; #ifndef NO_WAITPID struct waitpid_arg arg; arg.pid = pid; arg.st = st; arg.flags = flags; result = (rb_pid_t)rb_thread_blocking_region(rb_waitpid_blocking, &arg, RB_UBF_DFL, 0); if (result < 0) { #if 0 if (errno == EINTR) { rb_thread_polling(); goto retry; } #endif return -1; } #else /* NO_WAITPID */ if (pid_tbl && st_lookup(pid_tbl, pid, (st_data_t *)st)) { rb_last_status_set(*st, pid); st_delete(pid_tbl, (st_data_t*)&pid, NULL); return pid; } if (flags) { rb_raise(rb_eArgError, "can't do waitpid with flags"); } for (;;) { result = (rb_pid_t)rb_thread_blocking_region(rb_waitpid_blocking, st, RB_UBF_DFL); if (result < 0) { if (errno == EINTR) { rb_thread_schedule(); continue; } return -1; } if (result == pid) { break; } if (!pid_tbl) pid_tbl = st_init_numtable(); st_insert(pid_tbl, pid, (st_data_t)st); if (!rb_thread_alone()) rb_thread_schedule(); } #endif if (result > 0) { rb_last_status_set(*st, result); } return result; } #ifdef NO_WAITPID struct wait_data { rb_pid_t pid; int status; }; static int wait_each(rb_pid_t pid, int status, struct wait_data *data) { if (data->status != -1) return ST_STOP; data->pid = pid; data->status = status; return ST_DELETE; } static int waitall_each(rb_pid_t pid, int status, VALUE ary) { rb_last_status_set(status, pid); rb_ary_push(ary, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()); return ST_DELETE; } #endif /* [MG]:FIXME: I wasn't sure how this should be done, since ::wait() has historically been documented as if it didn't take any arguments despite the fact that it's just an alias for ::waitpid(). The way I have it below is more truthful, but a little confusing. I also took the liberty of putting in the pid values, as they're pretty useful, and it looked as if the original 'ri' output was supposed to contain them after "[...]depending on the value of aPid:". The 'ansi' and 'bs' formats of the ri output don't display the definition list for some reason, but the plain text one does. */ /* * call-seq: * Process.wait() => fixnum * Process.wait(pid=-1, flags=0) => fixnum * Process.waitpid(pid=-1, flags=0) => fixnum * * Waits for a child process to exit, returns its process id, and * sets $? to a Process::Status object * containing information on that process. Which child it waits on * depends on the value of _pid_: * * > 0:: Waits for the child whose process ID equals _pid_. * * 0:: Waits for any child whose process group ID equals that of the * calling process. * * -1:: Waits for any child process (the default if no _pid_ is * given). * * < -1:: Waits for any child whose process group ID equals the absolute * value of _pid_. * * The _flags_ argument may be a logical or of the flag values * Process::WNOHANG (do not block if no child available) * or Process::WUNTRACED (return stopped children that * haven't been reported). Not all flags are available on all * platforms, but a flag value of zero will work on all platforms. * * Calling this method raises a SystemError if there are * no child processes. Not available on all platforms. * * include Process * fork { exit 99 } #=> 27429 * wait #=> 27429 * $?.exitstatus #=> 99 * * pid = fork { sleep 3 } #=> 27440 * Time.now #=> Wed Apr 09 08:57:09 CDT 2003 * waitpid(pid, Process::WNOHANG) #=> nil * Time.now #=> Wed Apr 09 08:57:09 CDT 2003 * waitpid(pid, 0) #=> 27440 * Time.now #=> Wed Apr 09 08:57:12 CDT 2003 */ static VALUE proc_wait(int argc, VALUE *argv) { VALUE vpid, vflags; rb_pid_t pid; int flags, status; rb_secure(2); flags = 0; rb_scan_args(argc, argv, "02", &vpid, &vflags); if (argc == 0) { pid = -1; } else { pid = NUM2PIDT(vpid); if (argc == 2 && !NIL_P(vflags)) { flags = NUM2UINT(vflags); } } if ((pid = rb_waitpid(pid, &status, flags)) < 0) rb_sys_fail(0); if (pid == 0) { rb_last_status_clear(); return Qnil; } return PIDT2NUM(pid); } /* * call-seq: * Process.wait2(pid=-1, flags=0) => [pid, status] * Process.waitpid2(pid=-1, flags=0) => [pid, status] * * Waits for a child process to exit (see Process::waitpid for exact * semantics) and returns an array containing the process id and the * exit status (a Process::Status object) of that * child. Raises a SystemError if there are no child * processes. * * Process.fork { exit 99 } #=> 27437 * pid, status = Process.wait2 * pid #=> 27437 * status.exitstatus #=> 99 */ static VALUE proc_wait2(int argc, VALUE *argv) { VALUE pid = proc_wait(argc, argv); if (NIL_P(pid)) return Qnil; return rb_assoc_new(pid, rb_last_status_get()); } /* * call-seq: * Process.waitall => [ [pid1,status1], ...] * * Waits for all children, returning an array of * _pid_/_status_ pairs (where _status_ is a * Process::Status object). * * fork { sleep 0.2; exit 2 } #=> 27432 * fork { sleep 0.1; exit 1 } #=> 27433 * fork { exit 0 } #=> 27434 * p Process.waitall * * produces: * * [[27434, #], * [27433, #], * [27432, #]] */ static VALUE proc_waitall(void) { VALUE result; rb_pid_t pid; int status; rb_secure(2); result = rb_ary_new(); #ifdef NO_WAITPID if (pid_tbl) { st_foreach(pid_tbl, waitall_each, result); } #else rb_last_status_clear(); #endif for (pid = -1;;) { #ifdef NO_WAITPID pid = wait(&status); #else pid = rb_waitpid(-1, &status, 0); #endif if (pid == -1) { if (errno == ECHILD) break; #ifdef NO_WAITPID if (errno == EINTR) { rb_thread_schedule(); continue; } #endif rb_sys_fail(0); } #ifdef NO_WAITPID rb_last_status_set(status, pid); #endif rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get())); } return result; } static VALUE detach_process_watcher(void *arg) { rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg; int status; while ((cpid = rb_waitpid(pid, &status, 0)) == 0) { /* wait while alive */ } return rb_last_status_get(); } VALUE rb_detach_process(rb_pid_t pid) { return rb_thread_create(detach_process_watcher, (void*)(VALUE)pid); } /* * call-seq: * Process.detach(pid) => thread * * Some operating systems retain the status of terminated child * processes until the parent collects that status (normally using * some variant of wait(). If the parent never collects * this status, the child stays around as a zombie process. * Process::detach prevents this by setting up a * separate Ruby thread whose sole job is to reap the status of the * process _pid_ when it terminates. Use detach * only when you do not intent to explicitly wait for the child to * terminate. * * The waiting thread returns the exit status of the detached process * when it terminates, so you can use Thread#join to * know the result. If specified _pid_ is not a valid child process * ID, the thread returns +nil+ immediately. * * In this first example, we don't reap the first child process, so * it appears as a zombie in the process status display. * * p1 = fork { sleep 0.1 } * p2 = fork { sleep 0.2 } * Process.waitpid(p2) * sleep 2 * system("ps -ho pid,state -p #{p1}") * * produces: * * 27389 Z * * In the next example, Process::detach is used to reap * the child automatically. * * p1 = fork { sleep 0.1 } * p2 = fork { sleep 0.2 } * Process.detach(p1) * Process.waitpid(p2) * sleep 2 * system("ps -ho pid,state -p #{p1}") * * (produces no output) */ static VALUE proc_detach(VALUE obj, VALUE pid) { rb_secure(2); return rb_detach_process(NUM2PIDT(pid)); } #ifndef HAVE_STRING_H char *strtok(); #endif void rb_thread_stop_timer_thread(void); void rb_thread_start_timer_thread(void); void rb_thread_reset_timer_thread(void); #define before_exec() \ (rb_enable_interrupt(), rb_thread_stop_timer_thread()) #define after_exec() \ (rb_thread_start_timer_thread(), rb_disable_interrupt()) extern char *dln_find_exe(const char *fname, const char *path); static void security(const char *str) { if (rb_env_path_tainted()) { if (rb_safe_level() > 0) { rb_raise(rb_eSecurityError, "Insecure PATH - %s", str); } } } static int proc_exec_v(char **argv, const char *prog) { if (!prog) prog = argv[0]; prog = dln_find_exe(prog, 0); if (!prog) { errno = ENOENT; return -1; } #if (defined(MSDOS) && !defined(DJGPP)) || defined(__human68k__) || defined(__EMX__) || defined(OS2) { #if defined(__human68k__) #define COMMAND "command.x" #endif #if defined(__EMX__) || defined(OS2) /* OS/2 emx */ #define COMMAND "cmd.exe" #endif #if (defined(MSDOS) && !defined(DJGPP)) #define COMMAND "command.com" #endif char *extension; if ((extension = strrchr(prog, '.')) != NULL && strcasecmp(extension, ".bat") == 0) { char **new_argv; char *p; int n; for (n = 0; argv[n]; n++) /* no-op */; new_argv = ALLOCA_N(char*, n + 2); for (; n > 0; n--) new_argv[n + 1] = argv[n]; new_argv[1] = strcpy(ALLOCA_N(char, strlen(argv[0]) + 1), argv[0]); for (p = new_argv[1]; *p != '\0'; p++) if (*p == '/') *p = '\\'; new_argv[0] = COMMAND; argv = new_argv; prog = dln_find_exe(argv[0], 0); if (!prog) { errno = ENOENT; return -1; } } } #endif /* MSDOS or __human68k__ or __EMX__ */ before_exec(); execv(prog, argv); preserving_errno(after_exec()); return -1; } int rb_proc_exec_n(int argc, VALUE *argv, const char *prog) { char **args; int i; args = ALLOCA_N(char*, argc+1); for (i=0; i()~&|\\$;'`\"\n",*s)) { #if defined(MSDOS) int status; before_exec(); status = system(str); after_exec(); if (status != -1) exit(status); #elif defined(__human68k__) || defined(__CYGWIN32__) || defined(__EMX__) char *shell = dln_find_exe("sh", 0); int status = -1; before_exec(); if (shell) execl(shell, "sh", "-c", str, (char *) NULL); else status = system(str); after_exec(); if (status != -1) exit(status); #else before_exec(); execl("/bin/sh", "sh", "-c", str, (char *)NULL); preserving_errno(after_exec()); #endif return -1; } } a = argv = ALLOCA_N(char*, (s-str)/2+2); ss = ALLOCA_N(char, s-str+1); memcpy(ss, str, s-str); ss[s-str] = '\0'; if ((*a++ = strtok(ss, " \t")) != 0) { while ((t = strtok(NULL, " \t")) != 0) { *a++ = t; } *a = NULL; } if (argv[0]) { return proc_exec_v(argv, 0); } errno = ENOENT; #endif /* _WIN32 */ return -1; } #if defined(_WIN32) #define HAVE_SPAWNV 1 #endif #if !defined(HAVE_FORK) && defined(HAVE_SPAWNV) #if defined(_WIN32) #define proc_spawn_v(argv, prog) rb_w32_aspawn(P_NOWAIT, prog, argv) #else static rb_pid_t proc_spawn_v(char **argv, char *prog) { char *extension; rb_pid_t status; if (!prog) prog = argv[0]; security(prog); prog = dln_find_exe(prog, 0); if (!prog) return -1; #if defined(__human68k__) if ((extension = strrchr(prog, '.')) != NULL && strcasecmp(extension, ".bat") == 0) { char **new_argv; char *p; int n; for (n = 0; argv[n]; n++) /* no-op */; new_argv = ALLOCA_N(char*, n + 2); for (; n > 0; n--) new_argv[n + 1] = argv[n]; new_argv[1] = strcpy(ALLOCA_N(char, strlen(argv[0]) + 1), argv[0]); for (p = new_argv[1]; *p != '\0'; p++) if (*p == '/') *p = '\\'; new_argv[0] = COMMAND; argv = new_argv; prog = dln_find_exe(argv[0], 0); if (!prog) { errno = ENOENT; return -1; } } #endif before_exec(); status = spawnv(P_WAIT, prog, argv); rb_last_status_set(status == -1 ? 127 : status, 0); after_exec(); return status; } #endif static rb_pid_t proc_spawn_n(int argc, VALUE *argv, VALUE prog) { char **args; int i; args = ALLOCA_N(char*, argc + 1); for (i = 0; i < argc; i++) { args[i] = RSTRING_PTR(argv[i]); } args[i] = (char*) 0; if (args[0]) return proc_spawn_v(args, prog ? RSTRING_PTR(prog) : 0); return -1; } #if defined(_WIN32) #define proc_spawn(str) rb_w32_spawn(P_NOWAIT, str, 0) #else static rb_pid_t proc_spawn(char *str) { char *s, *t; char **argv, **a; rb_pid_t status; for (s = str; *s; s++) { if (*s != ' ' && !ISALPHA(*s) && strchr("*?{}[]<>()~&|\\$;'`\"\n",*s)) { char *shell = dln_find_exe("sh", 0); before_exec(); status = shell?spawnl(P_WAIT,shell,"sh","-c",str,(char*)NULL):system(str); rb_last_status_set(status == -1 ? 127 : status, 0); after_exec(); return status; } } a = argv = ALLOCA_N(char*, (s - str) / 2 + 2); s = ALLOCA_N(char, s - str + 1); strcpy(s, str); if (*a++ = strtok(s, " \t")) { while (t = strtok(NULL, " \t")) *a++ = t; *a = NULL; } return argv[0] ? proc_spawn_v(argv, 0) : -1; } #endif #endif VALUE rb_check_argv(int argc, VALUE *argv) { VALUE tmp, prog; int i; const char *name = 0; if (argc == 0) { rb_raise(rb_eArgError, "wrong number of arguments"); } prog = 0; tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { if (RARRAY_LEN(tmp) != 2) { rb_raise(rb_eArgError, "wrong first argument"); } prog = RARRAY_PTR(tmp)[0]; argv[0] = RARRAY_PTR(tmp)[1]; SafeStringValue(prog); StringValueCStr(prog); prog = rb_str_new4(prog); name = RSTRING_PTR(prog); } for (i = 0; i < argc; i++) { SafeStringValue(argv[i]); argv[i] = rb_str_new4(argv[i]); StringValueCStr(argv[i]); } security(name ? name : RSTRING_PTR(argv[0])); return prog; } /* * call-seq: * exec(command [, arg, ...]) * * Replaces the current process by running the given external _command_. * If +exec+ is given a single argument, that argument is * taken as a line that is subject to shell expansion before being * executed. If multiple arguments are given, the second and subsequent * arguments are passed as parameters to _command_ with no shell * expansion. If the first argument is a two-element array, the first * element is the command to be executed, and the second argument is * used as the argv[0] value, which may show up in process * listings. In MSDOS environments, the command is executed in a * subshell; otherwise, one of the exec(2) system calls is * used, so the running command may inherit some of the environment of * the original program (including open file descriptors). * * Raises SystemCallError if the _command_ couldn't execute (typically * Errno::ENOENT when it was not found). * * exec "echo *" # echoes list of files in current directory * # never get here * * * exec "echo", "*" # echoes an asterisk * # never get here */ VALUE rb_f_exec(int argc, VALUE *argv) { struct rb_exec_arg e; VALUE prog; prog = rb_check_argv(argc, argv); if (!prog && argc == 1) { e.argc = 0; e.argv = 0; e.prog = RSTRING_PTR(argv[0]); } else { e.argc = argc; e.argv = argv; e.prog = prog ? RSTRING_PTR(prog) : 0; } rb_exec(&e); rb_sys_fail(e.prog); return Qnil; /* dummy */ } int rb_exec(const struct rb_exec_arg *e) { int argc = e->argc; VALUE *argv = e->argv; const char *prog = e->prog; if (argc == 0) { rb_proc_exec(prog); } else { rb_proc_exec_n(argc, argv, prog); } #ifndef FD_CLOEXEC preserving_errno({ fprintf(stderr, "%s:%d: command not found: %s\n", rb_sourcefile(), rb_sourceline(), prog); }); #endif return -1; } static int rb_exec_atfork(void* arg) { rb_thread_atfork(); return rb_exec(arg); } #ifdef HAVE_FORK #ifdef FD_CLOEXEC #if SIZEOF_INT == SIZEOF_LONG #define proc_syswait (VALUE (*)(VALUE))rb_syswait #else static VALUE proc_syswait(VALUE pid) { rb_syswait((int)pid); return Qnil; } #endif #endif /* * Forks child process, and returns the process ID in the parent * process. * * If +status+ is given, protects from any exceptions and sets the * jump status to it. * * In the child process, just returns 0 if +chfunc+ is +NULL+. * Otherwise +chfunc+ will be called with +charg+, and then the child * process exits with +EXIT_SUCCESS+ when it returned zero. * * In the case of the function is called and returns non-zero value, * the child process exits with non-+EXIT_SUCCESS+ value (normaly * 127). And, on the platforms where +FD_CLOEXEC+ is available, * +errno+ is propagated to the parent process, and this function * returns -1 in the parent process. On the other platforms, just * returns pid. * * +chfunc+ must not raise any exceptions. */ rb_pid_t rb_fork(int *status, int (*chfunc)(void*), void *charg) { rb_pid_t pid; int err, state = 0; #ifdef FD_CLOEXEC int ep[2]; #endif #ifndef __VMS #define prefork() ( \ rb_io_flush(rb_stdout), \ rb_io_flush(rb_stderr) \ ) #else #define prefork() ((void)0) #endif prefork(); #ifdef FD_CLOEXEC if (chfunc) { if (pipe(ep)) return -1; if (fcntl(ep[1], F_SETFD, FD_CLOEXEC)) { preserving_errno((close(ep[0]), close(ep[1]))); return -1; } } #endif for (; (pid = fork()) < 0; prefork()) { switch (errno) { case EAGAIN: #if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif if (!status && !chfunc) { rb_thread_sleep(1); continue; } else { rb_protect((VALUE (*)())rb_thread_sleep, 1, &state); if (status) *status = state; if (!state) continue; } default: #ifdef FD_CLOEXEC if (chfunc) { preserving_errno((close(ep[0]), close(ep[1]))); } #endif if (state && !status) rb_jump_tag(state); return -1; } } if (!pid) { rb_thread_reset_timer_thread(); if (chfunc) { #ifdef FD_CLOEXEC close(ep[0]); #endif if (!(*chfunc)(charg)) _exit(EXIT_SUCCESS); #ifdef FD_CLOEXEC err = errno; write(ep[1], &err, sizeof(err)); #endif #if EXIT_SUCCESS == 127 _exit(EXIT_FAILURE); #else _exit(127); #endif } rb_thread_start_timer_thread(); } #ifdef FD_CLOEXEC else if (chfunc) { close(ep[1]); if ((state = read(ep[0], &err, sizeof(err))) < 0) { err = errno; } close(ep[0]); if (state) { if (status) { rb_protect(proc_syswait, (VALUE)pid, status); } else { rb_syswait(pid); } errno = err; return -1; } } #endif return pid; } #endif /* * call-seq: * Kernel.fork [{ block }] => fixnum or nil * Process.fork [{ block }] => fixnum or nil * * Creates a subprocess. If a block is specified, that block is run * in the subprocess, and the subprocess terminates with a status of * zero. Otherwise, the +fork+ call returns twice, once in * the parent, returning the process ID of the child, and once in * the child, returning _nil_. The child process can exit using * Kernel.exit! to avoid running any * at_exit functions. The parent process should * use Process.wait to collect the termination statuses * of its children or use Process.detach to register * disinterest in their status; otherwise, the operating system * may accumulate zombie processes. * * The thread calling fork is the only thread in the created child process. * fork doesn't copy other threads. */ static VALUE rb_f_fork(VALUE obj) { #ifdef HAVE_FORK rb_pid_t pid; rb_secure(2); switch (pid = rb_fork(0, 0, 0)) { case 0: #ifdef linux after_exec(); #endif rb_thread_atfork(); if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; case -1: rb_sys_fail("fork(2)"); return Qnil; default: return PIDT2NUM(pid); } #else rb_notimplement(); #endif } /* * call-seq: * Process.exit!(fixnum=-1) * * Exits the process immediately. No exit handlers are * run. fixnum is returned to the underlying system as the * exit status. * * Process.exit!(0) */ static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) { VALUE status; int istatus; rb_secure(4); if (rb_scan_args(argc, argv, "01", &status) == 1) { switch (status) { case Qtrue: istatus = EXIT_SUCCESS; break; case Qfalse: istatus = EXIT_FAILURE; break; default: istatus = NUM2INT(status); break; } } else { istatus = EXIT_FAILURE; } _exit(istatus); return Qnil; /* not reached */ } void rb_exit(int status) { if (GET_THREAD()->tag) { VALUE args[2]; args[0] = INT2NUM(status); args[1] = rb_str_new2("exit"); rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); } ruby_finalize(); exit(status); } /* * call-seq: * exit(integer=0) * Kernel::exit(integer=0) * Process::exit(integer=0) * * Initiates the termination of the Ruby script by raising the * SystemExit exception. This exception may be caught. The * optional parameter is used to return a status code to the invoking * environment. * * begin * exit * puts "never get here" * rescue SystemExit * puts "rescued a SystemExit exception" * end * puts "after begin block" * * produces: * * rescued a SystemExit exception * after begin block * * Just prior to termination, Ruby executes any at_exit functions * (see Kernel::at_exit) and runs any object finalizers (see * ObjectSpace::define_finalizer). * * at_exit { puts "at_exit function" } * ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) * exit * * produces: * * at_exit function * in finalizer */ VALUE rb_f_exit(int argc, VALUE *argv) { VALUE status; int istatus; rb_secure(4); if (rb_scan_args(argc, argv, "01", &status) == 1) { switch (status) { case Qtrue: istatus = EXIT_SUCCESS; break; case Qfalse: istatus = EXIT_FAILURE; break; default: istatus = NUM2INT(status); #if EXIT_SUCCESS != 0 if (istatus == 0) istatus = EXIT_SUCCESS; #endif break; } } else { istatus = EXIT_SUCCESS; } rb_exit(istatus); return Qnil; /* not reached */ } /* * call-seq: * abort * Kernel::abort * Process::abort * * Terminate execution immediately, effectively by calling * Kernel.exit(1). If _msg_ is given, it is written * to STDERR prior to terminating. */ VALUE rb_f_abort(int argc, VALUE *argv) { extern void ruby_error_print(void); rb_secure(4); if (argc == 0) { if (!NIL_P(GET_THREAD()->errinfo)) { ruby_error_print(); } rb_exit(EXIT_FAILURE); } else { VALUE args[2]; rb_scan_args(argc, argv, "1", &args[1]); StringValue(argv[0]); rb_io_puts(argc, argv, rb_stderr); args[0] = INT2NUM(EXIT_FAILURE); rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); } return Qnil; /* not reached */ } #if defined(sun) #define signal(a,b) sigset(a,b) #else # if defined(POSIX_SIGNAL) # define signal(a,b) posix_signal(a,b) # endif #endif void rb_syswait(rb_pid_t pid) { static int overriding; #ifdef SIGHUP RETSIGTYPE (*hfunc)(int); #endif #ifdef SIGQUIT RETSIGTYPE (*qfunc)(int); #endif RETSIGTYPE (*ifunc)(int); int status; int i, hooked = Qfalse; if (!overriding) { #ifdef SIGHUP hfunc = signal(SIGHUP, SIG_IGN); #endif #ifdef SIGQUIT qfunc = signal(SIGQUIT, SIG_IGN); #endif ifunc = signal(SIGINT, SIG_IGN); overriding = Qtrue; hooked = Qtrue; } do { i = rb_waitpid(pid, &status, 0); } while (i == -1 && errno == EINTR); if (hooked) { #ifdef SIGHUP signal(SIGHUP, hfunc); #endif #ifdef SIGQUIT signal(SIGQUIT, qfunc); #endif signal(SIGINT, ifunc); overriding = Qfalse; } } rb_pid_t rb_spawn(int argc, VALUE *argv) { rb_pid_t status; VALUE prog; prog = rb_check_argv(argc, argv); if (!prog && argc == 1) { --argc; prog = *argv++; } #if defined HAVE_FORK { struct rb_exec_arg earg; earg.argc = argc; earg.argv = argv; earg.prog = prog ? RSTRING_PTR(prog) : 0; status = rb_fork(&status, rb_exec_atfork, &earg); if (prog && argc) argv[0] = prog; } #elif defined HAVE_SPAWNV if (!argc) { status = proc_spawn(RSTRING_PTR(prog)); } else { status = proc_spawn_n(argc, argv, prog); } if (prog && argc) argv[0] = prog; #else if (prog && argc) argv[0] = prog; if (argc) prog = rb_ary_join(rb_ary_new4(argc, argv), rb_str_new2(" ")); status = system(StringValuePtr(prog)); # if defined(__human68k__) || defined(__DJGPP__) rb_last_status_set(status == -1 ? 127 : status, 0); # else rb_last_status_set((status & 0xff) << 8, 0); # endif #endif return status; } /* * call-seq: * system(cmd [, arg, ...]) => true or false * * Executes _cmd_ in a subshell, returning +true+ if the command * gives zero exit status, +false+ for non zero exit status. Returns * +nil+ if command execution fails. An error status is available in * $?. The arguments are processed in the same way as * for Kernel::exec. * * system("echo *") * system("echo", "*") * * produces: * * config.h main.rb * * */ #if defined(SIGCLD) && !defined(SIGCHLD) # define SIGCHLD SIGCLD #endif static VALUE rb_f_system(int argc, VALUE *argv) { int status; #ifdef SIGCHLD RETSIGTYPE (*chfunc)(int); chfunc = signal(SIGCHLD, SIG_DFL); #endif status = rb_spawn(argc, argv); #if defined(HAVE_FORK) || defined(HAVE_SPAWNV) if (status > 0) { rb_syswait(status); } #endif #ifdef SIGCHLD signal(SIGCHLD, chfunc); #endif if (status < 0) { return Qnil; } status = NUM2INT(rb_last_status_get()); if (status == EXIT_SUCCESS) return Qtrue; return Qfalse; } /* * call-seq: * spawn(cmd [, arg, ...]) => pid * * Similar to Kernel::system except for not waiting for * end of _cmd_, but returns its pid. */ static VALUE rb_f_spawn(int argc, VALUE *argv) { rb_pid_t pid; pid = rb_spawn(argc, argv); if (pid == -1) rb_sys_fail(RSTRING_PTR(argv[0])); #if defined(HAVE_FORK) || defined(HAVE_SPAWNV) return PIDT2NUM(pid); #else return Qnil; #endif } /* * call-seq: * sleep([duration]) => fixnum * * Suspends the current thread for _duration_ seconds (which may be any number, * including a +Float+ with fractional seconds). Returns the actual number of * seconds slept (rounded), which may be less than that asked for if another * thread calls Thread#run. Zero arguments causes +sleep+ to sleep * forever. * * Time.new #=> Wed Apr 09 08:56:32 CDT 2003 * sleep 1.2 #=> 1 * Time.new #=> Wed Apr 09 08:56:33 CDT 2003 * sleep 1.9 #=> 2 * Time.new #=> Wed Apr 09 08:56:35 CDT 2003 */ static VALUE rb_f_sleep(int argc, VALUE *argv) { int beg, end; beg = time(0); if (argc == 0) { rb_thread_sleep_forever(); } else if (argc == 1) { rb_thread_wait_for(rb_time_interval(argv[0])); } else { rb_raise(rb_eArgError, "wrong number of arguments"); } end = time(0) - beg; return INT2FIX(end); } /* * call-seq: * Process.getpgrp => integer * * Returns the process group ID for this process. Not available on * all platforms. * * Process.getpgid(0) #=> 25527 * Process.getpgrp #=> 25527 */ static VALUE proc_getpgrp(void) { rb_pid_t pgrp; rb_secure(2); #if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) pgrp = getpgrp(); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #else # ifdef HAVE_GETPGID pgrp = getpgid(0); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); # else rb_notimplement(); # endif #endif } /* * call-seq: * Process.setpgrp => 0 * * Equivalent to setpgid(0,0). Not available on all * platforms. */ static VALUE proc_setpgrp(void) { rb_secure(2); /* check for posix setpgid() first; this matches the posix */ /* getpgrp() above. It appears that configure will set SETPGRP_VOID */ /* even though setpgrp(0,0) would be prefered. The posix call avoids */ /* this confusion. */ #ifdef HAVE_SETPGID if (setpgid(0,0) < 0) rb_sys_fail(0); #elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID) if (setpgrp() < 0) rb_sys_fail(0); #else rb_notimplement(); #endif return INT2FIX(0); } /* * call-seq: * Process.getpgid(pid) => integer * * Returns the process group ID for the given process id. Not * available on all platforms. * * Process.getpgid(Process.ppid()) #=> 25527 */ static VALUE proc_getpgid(VALUE obj, VALUE pid) { #if defined(HAVE_GETPGID) && !defined(__CHECKER__) rb_pid_t i; rb_secure(2); i = getpgid(NUM2PIDT(pid)); if (i < 0) rb_sys_fail(0); return PIDT2NUM(i); #else rb_notimplement(); #endif } /* * call-seq: * Process.setpgid(pid, integer) => 0 * * Sets the process group ID of _pid_ (0 indicates this * process) to integer. Not available on all platforms. */ static VALUE proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp) { #ifdef HAVE_SETPGID rb_pid_t ipid, ipgrp; rb_secure(2); ipid = NUM2PIDT(pid); ipgrp = NUM2PIDT(pgrp); if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0); return INT2FIX(0); #else rb_notimplement(); #endif } /* * call-seq: * Process.setsid => fixnum * * Establishes this process as a new session and process group * leader, with no controlling tty. Returns the session id. Not * available on all platforms. * * Process.setsid #=> 27422 */ static VALUE proc_setsid(void) { #if defined(HAVE_SETSID) rb_pid_t pid; rb_secure(2); pid = setsid(); if (pid < 0) rb_sys_fail(0); return PIDT2NUM(pid); #elif defined(HAVE_SETPGRP) && defined(TIOCNOTTY) rb_pid_t pid; int ret; rb_secure(2); pid = getpid(); #if defined(SETPGRP_VOID) ret = setpgrp(); /* If `pid_t setpgrp(void)' is equivalent to setsid(), `ret' will be the same value as `pid', and following open() will fail. In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */ #else ret = setpgrp(0, pid); #endif if (ret == -1) rb_sys_fail(0); if ((fd = open("/dev/tty", O_RDWR)) >= 0) { ioctl(fd, TIOCNOTTY, NULL); close(fd); } return PIDT2NUM(pid); #else rb_notimplement(); #endif } /* * call-seq: * Process.getpriority(kind, integer) => fixnum * * Gets the scheduling priority for specified process, process group, * or user. kind indicates the kind of entity to find: one * of Process::PRIO_PGRP, * Process::PRIO_USER, or * Process::PRIO_PROCESS. _integer_ is an id * indicating the particular process, process group, or user (an id * of 0 means _current_). Lower priorities are more favorable * for scheduling. Not available on all platforms. * * Process.getpriority(Process::PRIO_USER, 0) #=> 19 * Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19 */ static VALUE proc_getpriority(VALUE obj, VALUE which, VALUE who) { #ifdef HAVE_GETPRIORITY int prio, iwhich, iwho; rb_secure(2); iwhich = NUM2INT(which); iwho = NUM2INT(who); errno = 0; prio = getpriority(iwhich, iwho); if (errno) rb_sys_fail(0); return INT2FIX(prio); #else rb_notimplement(); #endif } /* * call-seq: * Process.setpriority(kind, integer, priority) => 0 * * See Process#getpriority. * * Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0 * Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0 * Process.getpriority(Process::PRIO_USER, 0) #=> 19 * Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19 */ static VALUE proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio) { #ifdef HAVE_GETPRIORITY int iwhich, iwho, iprio; rb_secure(2); iwhich = NUM2INT(which); iwho = NUM2INT(who); iprio = NUM2INT(prio); if (setpriority(iwhich, iwho, iprio) < 0) rb_sys_fail(0); return INT2FIX(0); #else rb_notimplement(); #endif } #if SIZEOF_RLIM_T == SIZEOF_INT # define RLIM2NUM(v) UINT2NUM(v) # define NUM2RLIM(v) NUM2UINT(v) #elif SIZEOF_RLIM_T == SIZEOF_LONG # define RLIM2NUM(v) ULONG2NUM(v) # define NUM2RLIM(v) NUM2ULONG(v) #elif SIZEOF_RLIM_T == SIZEOF_LONG_LONG # define RLIM2NUM(v) ULL2NUM(v) # define NUM2RLIM(v) NUM2ULL(v) #endif /* * call-seq: * Process.getrlimit(resource) => [cur_limit, max_limit] * * Gets the resource limit of the process. * _cur_limit_ means current (soft) limit and * _max_limit_ means maximum (hard) limit. * * _resource_ indicates the kind of resource to limit: * such as Process::RLIMIT_CORE, * Process::RLIMIT_CPU, etc. * See Process.setrlimit for details. * * _cur_limit_ and _max_limit_ may be Process::RLIM_INFINITY, * Process::RLIM_SAVED_MAX or * Process::RLIM_SAVED_CUR. * See Process.setrlimit and the system getrlimit(2) manual for details. */ static VALUE proc_getrlimit(VALUE obj, VALUE resource) { #if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM) struct rlimit rlim; rb_secure(2); if (getrlimit(NUM2INT(resource), &rlim) < 0) { rb_sys_fail("getrlimit"); } return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max)); #else rb_notimplement(); #endif } /* * call-seq: * Process.setrlimit(resource, cur_limit, max_limit) => nil * Process.setrlimit(resource, cur_limit) => nil * * Sets the resource limit of the process. * _cur_limit_ means current (soft) limit and * _max_limit_ means maximum (hard) limit. * * If _max_limit_ is not given, _cur_limit_ is used. * * _resource_ indicates the kind of resource to limit. * The list of resources are OS dependent. * Ruby may support following resources. * * [Process::RLIMIT_CORE] core size (bytes) (SUSv3) * [Process::RLIMIT_CPU] CPU time (seconds) (SUSv3) * [Process::RLIMIT_DATA] data segment (bytes) (SUSv3) * [Process::RLIMIT_FSIZE] file size (bytes) (SUSv3) * [Process::RLIMIT_NOFILE] file descriptors (number) (SUSv3) * [Process::RLIMIT_STACK] stack size (bytes) (SUSv3) * [Process::RLIMIT_AS] total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite) * [Process::RLIMIT_MEMLOCK] total size for mlock(2) (bytes) (4.4BSD, GNU/Linux) * [Process::RLIMIT_NPROC] number of processes for the user (number) (4.4BSD, GNU/Linux) * [Process::RLIMIT_RSS] resident memory size (bytes) (4.2BSD, GNU/Linux) * [Process::RLIMIT_SBSIZE] all socket buffers (bytes) (NetBSD, FreeBSD) * * Other Process::RLIMIT_??? constants may be defined. * * _cur_limit_ and _max_limit_ may be Process::RLIM_INFINITY, * which means that the resource is not limited. * They may be Process::RLIM_SAVED_MAX or * Process::RLIM_SAVED_CUR too. * See system setrlimit(2) manual for details. * */ static VALUE proc_setrlimit(int argc, VALUE *argv, VALUE obj) { #if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM) VALUE resource, rlim_cur, rlim_max; struct rlimit rlim; rb_secure(2); rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max); if (rlim_max == Qnil) rlim_max = rlim_cur; rlim.rlim_cur = NUM2RLIM(rlim_cur); rlim.rlim_max = NUM2RLIM(rlim_max); if (setrlimit(NUM2INT(resource), &rlim) < 0) { rb_sys_fail("setrlimit"); } return Qnil; #else rb_notimplement(); #endif } static int under_uid_switch = 0; static void check_uid_switch(void) { rb_secure(2); if (under_uid_switch) { rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method"); } } static int under_gid_switch = 0; static void check_gid_switch(void) { rb_secure(2); if (under_gid_switch) { rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method"); } } /********************************************************************* * Document-class: Process::Sys * * The Process::Sys module contains UID and GID * functions which provide direct bindings to the system calls of the * same names instead of the more-portable versions of the same * functionality found in the Process, * Process::UID, and Process::GID modules. */ /* * call-seq: * Process::Sys.setuid(integer) => nil * * Set the user ID of the current process to _integer_. Not * available on all platforms. * */ static VALUE p_sys_setuid(VALUE obj, VALUE id) { #if defined HAVE_SETUID check_uid_switch(); if (setuid(NUM2UIDT(id)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setruid(integer) => nil * * Set the real user ID of the calling process to _integer_. * Not available on all platforms. * */ static VALUE p_sys_setruid(VALUE obj, VALUE id) { #if defined HAVE_SETRUID check_uid_switch(); if (setruid(NUM2UIDT(id)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.seteuid(integer) => nil * * Set the effective user ID of the calling process to * _integer_. Not available on all platforms. * */ static VALUE p_sys_seteuid(VALUE obj, VALUE id) { #if defined HAVE_SETEUID check_uid_switch(); if (seteuid(NUM2UIDT(id)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setreuid(rid, eid) => nil * * Sets the (integer) real and/or effective user IDs of the current * process to _rid_ and _eid_, respectively. A value of * -1 for either means to leave that ID unchanged. Not * available on all platforms. * */ static VALUE p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid) { #if defined HAVE_SETREUID check_uid_switch(); if (setreuid(NUM2UIDT(rid),NUM2UIDT(eid)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setresuid(rid, eid, sid) => nil * * Sets the (integer) real, effective, and saved user IDs of the * current process to _rid_, _eid_, and _sid_ respectively. A * value of -1 for any value means to * leave that ID unchanged. Not available on all platforms. * */ static VALUE p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid) { #if defined HAVE_SETRESUID check_uid_switch(); if (setresuid(NUM2UIDT(rid),NUM2UIDT(eid),NUM2UIDT(sid)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process.uid => fixnum * Process::UID.rid => fixnum * Process::Sys.getuid => fixnum * * Returns the (real) user ID of this process. * * Process.uid #=> 501 */ static VALUE proc_getuid(VALUE obj) { rb_uid_t uid = getuid(); return UIDT2NUM(uid); } /* * call-seq: * Process.uid= integer => numeric * * Sets the (integer) user ID for this process. Not available on all * platforms. */ static VALUE proc_setuid(VALUE obj, VALUE id) { rb_uid_t uid; check_uid_switch(); uid = NUM2UIDT(id); #if defined(HAVE_SETRESUID) && !defined(__CHECKER__) if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREUID if (setreuid(uid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRUID if (setruid(uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID { if (geteuid() == uid) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #else rb_notimplement(); #endif return id; } /******************************************************************** * * Document-class: Process::UID * * The Process::UID module contains a collection of * module functions which can be used to portably get, set, and * switch the current process's real, effective, and saved user IDs. * */ static rb_uid_t SAVED_USER_ID = -1; #ifdef BROKEN_SETREUID int setreuid(rb_uid_t ruid, rb_uid_t euid) { if (ruid != -1 && ruid != getuid()) { if (euid == -1) euid = geteuid(); if (setuid(ruid) < 0) return -1; } if (euid != -1 && euid != geteuid()) { if (seteuid(euid) < 0) return -1; } return 0; } #endif /* * call-seq: * Process::UID.change_privilege(integer) => fixnum * * Change the current process's real and effective user ID to that * specified by _integer_. Returns the new user ID. Not * available on all platforms. * * [Process.uid, Process.euid] #=> [0, 0] * Process::UID.change_privilege(31) #=> 31 * [Process.uid, Process.euid] #=> [31, 31] */ static VALUE p_uid_change_privilege(VALUE obj, VALUE id) { rb_uid_t uid; check_uid_switch(); uid = NUM2UIDT(id); if (geteuid() == 0) { /* root-user */ #if defined(HAVE_SETRESUID) if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETUID) if (setuid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (getuid() == uid) { if (SAVED_USER_ID == uid) { if (setreuid(-1, uid) < 0) rb_sys_fail(0); } else { if (uid == 0) { /* (r,e,s) == (root, root, x) */ if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0); if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */ if (setreuid(uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else { if (setreuid(0, -1) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; if (setreuid(uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } } } else { if (setreuid(uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } #elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID) if (getuid() == uid) { if (SAVED_USER_ID == uid) { if (seteuid(uid) < 0) rb_sys_fail(0); } else { if (uid == 0) { if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; if (setruid(0) < 0) rb_sys_fail(0); } else { if (setruid(0) < 0) rb_sys_fail(0); SAVED_USER_ID = 0; if (seteuid(uid) < 0) rb_sys_fail(0); if (setruid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } } } else { if (seteuid(uid) < 0) rb_sys_fail(0); if (setruid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } #else rb_notimplement(); #endif } else { /* unprivileged user */ #if defined(HAVE_SETRESUID) if (setresuid((getuid() == uid)? -1: uid, (geteuid() == uid)? -1: uid, (SAVED_USER_ID == uid)? -1: uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (SAVED_USER_ID == uid) { if (setreuid((getuid() == uid)? -1: uid, (geteuid() == uid)? -1: uid) < 0) rb_sys_fail(0); } else if (getuid() != uid) { if (setreuid(uid, (geteuid() == uid)? -1: uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else if (/* getuid() == uid && */ geteuid() != uid) { if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setreuid(uid, -1) < 0) rb_sys_fail(0); } else { /* getuid() == uid && geteuid() == uid */ if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0); if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setreuid(uid, -1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID) if (SAVED_USER_ID == uid) { if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0); if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0); } else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) { if (getuid() != uid) { if (setruid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else { if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setruid(uid) < 0) rb_sys_fail(0); } } else if (/* geteuid() != uid && */ getuid() == uid) { if (seteuid(uid) < 0) rb_sys_fail(0); if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; if (setruid(uid) < 0) rb_sys_fail(0); } else { errno = EPERM; rb_sys_fail(0); } #elif defined HAVE_44BSD_SETUID if (getuid() == uid) { /* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */ if (setuid(uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; } else { errno = EPERM; rb_sys_fail(0); } #elif defined HAVE_SETEUID if (getuid() == uid && SAVED_USER_ID == uid) { if (seteuid(uid) < 0) rb_sys_fail(0); } else { errno = EPERM; rb_sys_fail(0); } #elif defined HAVE_SETUID if (getuid() == uid && SAVED_USER_ID == uid) { if (setuid(uid) < 0) rb_sys_fail(0); } else { errno = EPERM; rb_sys_fail(0); } #else rb_notimplement(); #endif } return id; } /* * call-seq: * Process::Sys.setgid(integer) => nil * * Set the group ID of the current process to _integer_. Not * available on all platforms. * */ static VALUE p_sys_setgid(VALUE obj, VALUE id) { #if defined HAVE_SETGID check_gid_switch(); if (setgid(NUM2GIDT(id)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setrgid(integer) => nil * * Set the real group ID of the calling process to _integer_. * Not available on all platforms. * */ static VALUE p_sys_setrgid(VALUE obj, VALUE id) { #if defined HAVE_SETRGID check_gid_switch(); if (setrgid(NUM2GIDT(id)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setegid(integer) => nil * * Set the effective group ID of the calling process to * _integer_. Not available on all platforms. * */ static VALUE p_sys_setegid(VALUE obj, VALUE id) { #if defined HAVE_SETEGID check_gid_switch(); if (setegid(NUM2GIDT(id)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setregid(rid, eid) => nil * * Sets the (integer) real and/or effective group IDs of the current * process to rid and eid, respectively. A value of * -1 for either means to leave that ID unchanged. Not * available on all platforms. * */ static VALUE p_sys_setregid(VALUE obj, VALUE rid, VALUE eid) { #if defined HAVE_SETREGID check_gid_switch(); if (setregid(NUM2GIDT(rid),NUM2GIDT(eid)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.setresgid(rid, eid, sid) => nil * * Sets the (integer) real, effective, and saved user IDs of the * current process to rid, eid, and sid * respectively. A value of -1 for any value means to * leave that ID unchanged. Not available on all platforms. * */ static VALUE p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid) { #if defined HAVE_SETRESGID check_gid_switch(); if (setresgid(NUM2GIDT(rid),NUM2GIDT(eid),NUM2GIDT(sid)) != 0) rb_sys_fail(0); #else rb_notimplement(); #endif return Qnil; } /* * call-seq: * Process::Sys.issetugid => true or false * * Returns +true+ if the process was created as a result * of an execve(2) system call which had either of the setuid or * setgid bits set (and extra privileges were given as a result) or * if it has changed any of its real, effective or saved user or * group IDs since it began execution. * */ static VALUE p_sys_issetugid(VALUE obj) { #if defined HAVE_ISSETUGID rb_secure(2); if (issetugid()) { return Qtrue; } else { return Qfalse; } #else rb_notimplement(); return Qnil; /* not reached */ #endif } /* * call-seq: * Process.gid => fixnum * Process::GID.rid => fixnum * Process::Sys.getgid => fixnum * * Returns the (real) group ID for this process. * * Process.gid #=> 500 */ static VALUE proc_getgid(VALUE obj) { rb_gid_t gid = getgid(); return GIDT2NUM(gid); } /* * call-seq: * Process.gid= fixnum => fixnum * * Sets the group ID for this process. */ static VALUE proc_setgid(VALUE obj, VALUE id) { rb_gid_t gid; check_gid_switch(); gid = NUM2GIDT(id); #if defined(HAVE_SETRESGID) && !defined(__CHECKER__) if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRGID if (setrgid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID { if (getegid() == gid) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #else rb_notimplement(); #endif return GIDT2NUM(gid); } static size_t maxgroups = 32; /* * call-seq: * Process.groups => array * * Get an Array of the gids of groups in the * supplemental group access list for this process. * * Process.groups #=> [27, 6, 10, 11] * */ static VALUE proc_getgroups(VALUE obj) { #ifdef HAVE_GETGROUPS VALUE ary; size_t ngroups; rb_gid_t *groups; int i; groups = ALLOCA_N(rb_gid_t, maxgroups); ngroups = getgroups(maxgroups, groups); if (ngroups == -1) rb_sys_fail(0); ary = rb_ary_new(); for (i = 0; i < ngroups; i++) rb_ary_push(ary, GIDT2NUM(groups[i])); return ary; #else rb_notimplement(); return Qnil; #endif } /* * call-seq: * Process.groups= array => array * * Set the supplemental group access list to the given * Array of group IDs. * * Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] * Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11] * Process.groups #=> [27, 6, 10, 11] * */ static VALUE proc_setgroups(VALUE obj, VALUE ary) { #ifdef HAVE_SETGROUPS size_t ngroups; rb_gid_t *groups; int i; struct group *gr; Check_Type(ary, T_ARRAY); ngroups = RARRAY_LEN(ary); if (ngroups > maxgroups) rb_raise(rb_eArgError, "too many groups, %lu max", (unsigned long)maxgroups); groups = ALLOCA_N(rb_gid_t, ngroups); for (i = 0; i < ngroups && i < RARRAY_LEN(ary); i++) { VALUE g = RARRAY_PTR(ary)[i]; if (FIXNUM_P(g)) { groups[i] = NUM2GIDT(g); } else { VALUE tmp = rb_check_string_type(g); if (NIL_P(tmp)) { groups[i] = NUM2GIDT(g); } else { gr = getgrnam(RSTRING_PTR(tmp)); if (gr == NULL) rb_raise(rb_eArgError, "can't find group for %s", RSTRING_PTR(tmp)); groups[i] = gr->gr_gid; } } } i = setgroups(ngroups, groups); if (i == -1) rb_sys_fail(0); return proc_getgroups(obj); #else rb_notimplement(); return Qnil; #endif } /* * call-seq: * Process.initgroups(username, gid) => array * * Initializes the supplemental group access list by reading the * system group database and using all groups of which the given user * is a member. The group with the specified gid is also * added to the list. Returns the resulting Array of the * gids of all the groups in the supplementary group access list. Not * available on all platforms. * * Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] * Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11] * Process.groups #=> [30, 6, 10, 11] * */ static VALUE proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp) { #ifdef HAVE_INITGROUPS if (initgroups(StringValuePtr(uname), NUM2GIDT(base_grp)) != 0) { rb_sys_fail(0); } return proc_getgroups(obj); #else rb_notimplement(); return Qnil; #endif } /* * call-seq: * Process.maxgroups => fixnum * * Returns the maximum number of gids allowed in the supplemental * group access list. * * Process.maxgroups #=> 32 */ static VALUE proc_getmaxgroups(VALUE obj) { return INT2FIX(maxgroups); } /* * call-seq: * Process.maxgroups= fixnum => fixnum * * Sets the maximum number of gids allowed in the supplemental group * access list. */ static VALUE proc_setmaxgroups(VALUE obj, VALUE val) { size_t ngroups = FIX2INT(val); if (ngroups > 4096) ngroups = 4096; maxgroups = ngroups; return INT2FIX(maxgroups); } /* * call-seq: * Process.daemon() => fixnum * Process.daemon(nochdir=nil,noclose=nil) => fixnum * * Detach the process from controlling terminal and run in * the background as system daemon. Unless the argument * nochdir is true (i.e. non false), it changes the current * working directory to the root ("/"). Unless the argument * noclose is true, daemon() will redirect standard input, * standard output and standard error to /dev/null. */ static VALUE proc_daemon(int argc, VALUE *argv) { VALUE nochdir, noclose; int n; rb_secure(2); rb_scan_args(argc, argv, "02", &nochdir, &noclose); #if defined(HAVE_DAEMON) n = daemon(RTEST(nochdir), RTEST(noclose)); if (n < 0) rb_sys_fail("daemon"); return INT2FIX(n); #elif defined(HAVE_FORK) switch (rb_fork(0, 0, 0)) { case -1: return (-1); case 0: break; default: _exit(0); } proc_setsid(); if (!RTEST(nochdir)) (void)chdir("/"); if (!RTEST(noclose) && (n = open("/dev/null", O_RDWR, 0)) != -1) { (void)dup2(n, 0); (void)dup2(n, 1); (void)dup2(n, 2); if (n > 2) (void)close (n); } return INT2FIX(0); #else rb_notimplement(); #endif } /******************************************************************** * * Document-class: Process::GID * * The Process::GID module contains a collection of * module functions which can be used to portably get, set, and * switch the current process's real, effective, and saved group IDs. * */ static int SAVED_GROUP_ID = -1; #ifdef BROKEN_SETREGID int setregid(rb_gid_t rgid, rb_gid_t egid) { if (rgid != -1 && rgid != getgid()) { if (egid == -1) egid = getegid(); if (setgid(rgid) < 0) return -1; } if (egid != -1 && egid != getegid()) { if (setegid(egid) < 0) return -1; } return 0; } #endif /* * call-seq: * Process::GID.change_privilege(integer) => fixnum * * Change the current process's real and effective group ID to that * specified by _integer_. Returns the new group ID. Not * available on all platforms. * * [Process.gid, Process.egid] #=> [0, 0] * Process::GID.change_privilege(33) #=> 33 * [Process.gid, Process.egid] #=> [33, 33] */ static VALUE p_gid_change_privilege(VALUE obj, VALUE id) { rb_gid_t gid; check_gid_switch(); gid = NUM2GIDT(id); if (geteuid() == 0) { /* root-user */ #if defined(HAVE_SETRESGID) if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined HAVE_SETGID if (setgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (getgid() == gid) { if (SAVED_GROUP_ID == gid) { if (setregid(-1, gid) < 0) rb_sys_fail(0); } else { if (gid == 0) { /* (r,e,s) == (root, y, x) */ if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0); if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */ if (setregid(gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else { /* (r,e,s) == (z, y, x) */ if (setregid(0, 0) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; if (setregid(gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } } } else { if (setregid(gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } #elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID) if (getgid() == gid) { if (SAVED_GROUP_ID == gid) { if (setegid(gid) < 0) rb_sys_fail(0); } else { if (gid == 0) { if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; if (setrgid(0) < 0) rb_sys_fail(0); } else { if (setrgid(0) < 0) rb_sys_fail(0); SAVED_GROUP_ID = 0; if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } } } else { if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } #else rb_notimplement(); #endif } else { /* unprivileged user */ #if defined(HAVE_SETRESGID) if (setresgid((getgid() == gid)? -1: gid, (getegid() == gid)? -1: gid, (SAVED_GROUP_ID == gid)? -1: gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (SAVED_GROUP_ID == gid) { if (setregid((getgid() == gid)? -1: gid, (getegid() == gid)? -1: gid) < 0) rb_sys_fail(0); } else if (getgid() != gid) { if (setregid(gid, (getegid() == gid)? -1: gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else if (/* getgid() == gid && */ getegid() != gid) { if (setregid(getegid(), gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setregid(gid, -1) < 0) rb_sys_fail(0); } else { /* getgid() == gid && getegid() == gid */ if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0); if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setregid(gid, -1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID) if (SAVED_GROUP_ID == gid) { if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0); if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0); } else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) { if (getgid() != gid) { if (setrgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else { if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setrgid(gid) < 0) rb_sys_fail(0); } } else if (/* getegid() != gid && */ getgid() == gid) { if (setegid(gid) < 0) rb_sys_fail(0); if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; if (setrgid(gid) < 0) rb_sys_fail(0); } else { errno = EPERM; rb_sys_fail(0); } #elif defined HAVE_44BSD_SETGID if (getgid() == gid) { /* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */ if (setgid(gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; } else { errno = EPERM; rb_sys_fail(0); } #elif defined HAVE_SETEGID if (getgid() == gid && SAVED_GROUP_ID == gid) { if (setegid(gid) < 0) rb_sys_fail(0); } else { errno = EPERM; rb_sys_fail(0); } #elif defined HAVE_SETGID if (getgid() == gid && SAVED_GROUP_ID == gid) { if (setgid(gid) < 0) rb_sys_fail(0); } else { errno = EPERM; rb_sys_fail(0); } #else rb_notimplement(); #endif } return id; } /* * call-seq: * Process.euid => fixnum * Process::UID.eid => fixnum * Process::Sys.geteuid => fixnum * * Returns the effective user ID for this process. * * Process.euid #=> 501 */ static VALUE proc_geteuid(VALUE obj) { rb_uid_t euid = geteuid(); return UIDT2NUM(euid); } /* * call-seq: * Process.euid= integer * * Sets the effective user ID for this process. Not available on all * platforms. */ static VALUE proc_seteuid(VALUE obj, VALUE euid) { rb_uid_t uid; check_uid_switch(); uid = NUM2UIDT(euid); #if defined(HAVE_SETRESUID) && !defined(__CHECKER__) if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREUID if (setreuid(-1, uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETEUID if (seteuid(uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID if (uid == getuid()) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } #else rb_notimplement(); #endif return euid; } static rb_uid_t rb_seteuid_core(rb_uid_t euid) { rb_uid_t uid; check_uid_switch(); uid = getuid(); #if defined(HAVE_SETRESUID) && !defined(__CHECKER__) if (uid != euid) { if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0); SAVED_USER_ID = euid; } else { if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (setreuid(-1, euid) < 0) rb_sys_fail(0); if (uid != euid) { if (setreuid(euid,uid) < 0) rb_sys_fail(0); if (setreuid(uid,euid) < 0) rb_sys_fail(0); SAVED_USER_ID = euid; } #elif defined HAVE_SETEUID if (seteuid(euid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID if (geteuid() == 0) rb_sys_fail(0); if (setuid(euid) < 0) rb_sys_fail(0); #else rb_notimplement(); #endif return euid; } /* * call-seq: * Process::UID.grant_privilege(integer) => fixnum * Process::UID.eid= integer => fixnum * * Set the effective user ID, and if possible, the saved user ID of * the process to the given _integer_. Returns the new * effective user ID. Not available on all platforms. * * [Process.uid, Process.euid] #=> [0, 0] * Process::UID.grant_privilege(31) #=> 31 * [Process.uid, Process.euid] #=> [0, 31] */ static VALUE p_uid_grant_privilege(VALUE obj, VALUE id) { rb_seteuid_core(NUM2UIDT(id)); return id; } /* * call-seq: * Process.egid => fixnum * Process::GID.eid => fixnum * Process::Sys.geteid => fixnum * * Returns the effective group ID for this process. Not available on * all platforms. * * Process.egid #=> 500 */ static VALUE proc_getegid(VALUE obj) { rb_gid_t egid = getegid(); return GIDT2NUM(egid); } /* * call-seq: * Process.egid = fixnum => fixnum * * Sets the effective group ID for this process. Not available on all * platforms. */ static VALUE proc_setegid(VALUE obj, VALUE egid) { rb_gid_t gid; check_gid_switch(); gid = NUM2GIDT(egid); #if defined(HAVE_SETRESGID) && !defined(__CHECKER__) if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(-1, gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETEGID if (setegid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID if (gid == getgid()) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } #else rb_notimplement(); #endif return egid; } static rb_gid_t rb_setegid_core(rb_gid_t egid) { rb_gid_t gid; check_gid_switch(); gid = getgid(); #if defined(HAVE_SETRESGID) && !defined(__CHECKER__) if (gid != egid) { if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = egid; } else { if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0); } #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (setregid(-1, egid) < 0) rb_sys_fail(0); if (gid != egid) { if (setregid(egid,gid) < 0) rb_sys_fail(0); if (setregid(gid,egid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = egid; } #elif defined HAVE_SETEGID if (setegid(egid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID if (geteuid() == 0 /* root user */) rb_sys_fail(0); if (setgid(egid) < 0) rb_sys_fail(0); #else rb_notimplement(); #endif return egid; } /* * call-seq: * Process::GID.grant_privilege(integer) => fixnum * Process::GID.eid = integer => fixnum * * Set the effective group ID, and if possible, the saved group ID of * the process to the given _integer_. Returns the new * effective group ID. Not available on all platforms. * * [Process.gid, Process.egid] #=> [0, 0] * Process::GID.grant_privilege(31) #=> 33 * [Process.gid, Process.egid] #=> [0, 33] */ static VALUE p_gid_grant_privilege(VALUE obj, VALUE id) { rb_setegid_core(NUM2GIDT(id)); return id; } /* * call-seq: * Process::UID.re_exchangeable? => true or false * * Returns +true+ if the real and effective user IDs of a * process may be exchanged on the current platform. * */ static VALUE p_uid_exchangeable(void) { #if defined(HAVE_SETRESUID) && !defined(__CHECKER__) return Qtrue; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) return Qtrue; #else return Qfalse; #endif } /* * call-seq: * Process::UID.re_exchange => fixnum * * Exchange real and effective user IDs and return the new effective * user ID. Not available on all platforms. * * [Process.uid, Process.euid] #=> [0, 31] * Process::UID.re_exchange #=> 0 * [Process.uid, Process.euid] #=> [31, 0] */ static VALUE p_uid_exchange(VALUE obj) { rb_uid_t uid, euid; check_uid_switch(); uid = getuid(); euid = geteuid(); #if defined(HAVE_SETRESUID) && !defined(__CHECKER__) if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID) if (setreuid(euid,uid) < 0) rb_sys_fail(0); SAVED_USER_ID = uid; #else rb_notimplement(); #endif return UIDT2NUM(uid); } /* * call-seq: * Process::GID.re_exchangeable? => true or false * * Returns +true+ if the real and effective group IDs of a * process may be exchanged on the current platform. * */ static VALUE p_gid_exchangeable(void) { #if defined(HAVE_SETRESGID) && !defined(__CHECKER__) return Qtrue; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) return Qtrue; #else return Qfalse; #endif } /* * call-seq: * Process::GID.re_exchange => fixnum * * Exchange real and effective group IDs and return the new effective * group ID. Not available on all platforms. * * [Process.gid, Process.egid] #=> [0, 33] * Process::GID.re_exchange #=> 0 * [Process.gid, Process.egid] #=> [33, 0] */ static VALUE p_gid_exchange(VALUE obj) { rb_gid_t gid, egid; check_gid_switch(); gid = getgid(); egid = getegid(); #if defined(HAVE_SETRESGID) && !defined(__CHECKER__) if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID) if (setregid(egid,gid) < 0) rb_sys_fail(0); SAVED_GROUP_ID = gid; #else rb_notimplement(); #endif return GIDT2NUM(gid); } /* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */ /* * call-seq: * Process::UID.sid_available? => true or false * * Returns +true+ if the current platform has saved user * ID functionality. * */ static VALUE p_uid_have_saved_id(void) { #if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS) return Qtrue; #else return Qfalse; #endif } #if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS) static VALUE p_uid_sw_ensure(rb_uid_t id) { under_uid_switch = 0; id = rb_seteuid_core(id); return UIDT2NUM(id); } /* * call-seq: * Process::UID.switch => fixnum * Process::UID.switch {|| block} => object * * Switch the effective and real user IDs of the current process. If * a block is given, the user IDs will be switched back * after the block is executed. Returns the new effective user ID if * called without a block, and the return value of the block if one * is given. * */ static VALUE p_uid_switch(VALUE obj) { rb_uid_t uid, euid; check_uid_switch(); uid = getuid(); euid = geteuid(); if (uid != euid) { proc_seteuid(obj, UIDT2NUM(uid)); if (rb_block_given_p()) { under_uid_switch = 1; return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID); } else { return UIDT2NUM(euid); } } else if (euid != SAVED_USER_ID) { proc_seteuid(obj, UIDT2NUM(SAVED_USER_ID)); if (rb_block_given_p()) { under_uid_switch = 1; return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid); } else { return UIDT2NUM(uid); } } else { errno = EPERM; rb_sys_fail(0); } } #else static VALUE p_uid_sw_ensure(VALUE obj) { under_uid_switch = 0; return p_uid_exchange(obj); } static VALUE p_uid_switch(VALUE obj) { rb_uid_t uid, euid; check_uid_switch(); uid = getuid(); euid = geteuid(); if (uid == euid) { errno = EPERM; rb_sys_fail(0); } p_uid_exchange(obj); if (rb_block_given_p()) { under_uid_switch = 1; return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj); } else { return UIDT2NUM(euid); } } #endif /* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */ /* * call-seq: * Process::GID.sid_available? => true or false * * Returns +true+ if the current platform has saved group * ID functionality. * */ static VALUE p_gid_have_saved_id(void) { #if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS) return Qtrue; #else return Qfalse; #endif } #if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS) static VALUE p_gid_sw_ensure(rb_gid_t id) { under_gid_switch = 0; id = rb_setegid_core(id); return GIDT2NUM(id); } /* * call-seq: * Process::GID.switch => fixnum * Process::GID.switch {|| block} => object * * Switch the effective and real group IDs of the current process. If * a block is given, the group IDs will be switched back * after the block is executed. Returns the new effective group ID if * called without a block, and the return value of the block if one * is given. * */ static VALUE p_gid_switch(VALUE obj) { int gid, egid; check_gid_switch(); gid = getgid(); egid = getegid(); if (gid != egid) { proc_setegid(obj, GIDT2NUM(gid)); if (rb_block_given_p()) { under_gid_switch = 1; return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID); } else { return GIDT2NUM(egid); } } else if (egid != SAVED_GROUP_ID) { proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID)); if (rb_block_given_p()) { under_gid_switch = 1; return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid); } else { return GIDT2NUM(gid); } } else { errno = EPERM; rb_sys_fail(0); } } #else static VALUE p_gid_sw_ensure(VALUE obj) { under_gid_switch = 0; return p_gid_exchange(obj); } static VALUE p_gid_switch(VALUE obj) { rb_gid_t gid, egid; check_gid_switch(); gid = getgid(); egid = getegid(); if (gid == egid) { errno = EPERM; rb_sys_fail(0); } p_gid_exchange(obj); if (rb_block_given_p()) { under_gid_switch = 1; return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj); } else { return GIDT2NUM(egid); } } #endif /* * call-seq: * Process.times => aStructTms * * Returns a Tms structure (see Struct::Tms * on page 388) that contains user and system CPU times for this * process. * * t = Process.times * [ t.utime, t.stime ] #=> [0.0, 0.02] */ VALUE rb_proc_times(VALUE obj) { #if defined(HAVE_TIMES) && !defined(__CHECKER__) const double hertz = #ifdef HAVE__SC_CLK_TCK (double)sysconf(_SC_CLK_TCK); #else #ifndef HZ # ifdef CLK_TCK # define HZ CLK_TCK # else # define HZ 60 # endif #endif /* HZ */ HZ; #endif struct tms buf; volatile VALUE utime, stime, cutime, sctime; times(&buf); return rb_struct_new(S_Tms, utime = DOUBLE2NUM(buf.tms_utime / hertz), stime = DOUBLE2NUM(buf.tms_stime / hertz), cutime = DOUBLE2NUM(buf.tms_cutime / hertz), sctime = DOUBLE2NUM(buf.tms_cstime / hertz)); #else rb_notimplement(); #endif } VALUE rb_mProcess; VALUE rb_mProcUID; VALUE rb_mProcGID; VALUE rb_mProcID_Syscall; /* * The Process module is a collection of methods used to * manipulate processes. */ void Init_process(void) { rb_define_virtual_variable("$?", rb_last_status_get, 0); rb_define_virtual_variable("$$", get_pid, 0); rb_define_global_function("exec", rb_f_exec, -1); rb_define_global_function("fork", rb_f_fork, 0); rb_define_global_function("exit!", rb_f_exit_bang, -1); rb_define_global_function("system", rb_f_system, -1); rb_define_global_function("spawn", rb_f_spawn, -1); rb_define_global_function("sleep", rb_f_sleep, -1); rb_define_global_function("exit", rb_f_exit, -1); rb_define_global_function("abort", rb_f_abort, -1); rb_mProcess = rb_define_module("Process"); #ifdef WNOHANG rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG)); #else rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0)); #endif #ifdef WUNTRACED rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED)); #else rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0)); #endif rb_define_singleton_method(rb_mProcess, "exec", rb_f_exec, -1); rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0); rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1); rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1); rb_define_singleton_method(rb_mProcess, "exit", rb_f_exit, -1); rb_define_singleton_method(rb_mProcess, "abort", rb_f_abort, -1); rb_define_module_function(rb_mProcess, "kill", rb_f_kill, -1); /* in signal.c */ rb_define_module_function(rb_mProcess, "wait", proc_wait, -1); rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1); rb_define_module_function(rb_mProcess, "waitpid", proc_wait, -1); rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1); rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0); rb_define_module_function(rb_mProcess, "detach", proc_detach, 1); rb_cProcStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject); rb_undef_method(CLASS_OF(rb_cProcStatus), "new"); rb_define_method(rb_cProcStatus, "==", pst_equal, 1); rb_define_method(rb_cProcStatus, "&", pst_bitand, 1); rb_define_method(rb_cProcStatus, ">>", pst_rshift, 1); rb_define_method(rb_cProcStatus, "to_i", pst_to_i, 0); rb_define_method(rb_cProcStatus, "to_int", pst_to_i, 0); rb_define_method(rb_cProcStatus, "to_s", pst_to_s, 0); rb_define_method(rb_cProcStatus, "inspect", pst_inspect, 0); rb_define_method(rb_cProcStatus, "pid", pst_pid, 0); rb_define_method(rb_cProcStatus, "stopped?", pst_wifstopped, 0); rb_define_method(rb_cProcStatus, "stopsig", pst_wstopsig, 0); rb_define_method(rb_cProcStatus, "signaled?", pst_wifsignaled, 0); rb_define_method(rb_cProcStatus, "termsig", pst_wtermsig, 0); rb_define_method(rb_cProcStatus, "exited?", pst_wifexited, 0); rb_define_method(rb_cProcStatus, "exitstatus", pst_wexitstatus, 0); rb_define_method(rb_cProcStatus, "success?", pst_success_p, 0); rb_define_method(rb_cProcStatus, "coredump?", pst_wcoredump, 0); rb_define_module_function(rb_mProcess, "pid", get_pid, 0); rb_define_module_function(rb_mProcess, "ppid", get_ppid, 0); rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0); rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0); rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1); rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2); rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0); rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2); rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3); #ifdef HAVE_GETPRIORITY rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS)); rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP)); rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER)); #endif rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1); rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1); #ifdef RLIM2NUM #ifdef RLIM_INFINITY rb_define_const(rb_mProcess, "RLIM_INFINITY", RLIM2NUM(RLIM_INFINITY)); #endif #ifdef RLIM_SAVED_MAX rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", RLIM2NUM(RLIM_SAVED_MAX)); #endif #ifdef RLIM_SAVED_CUR rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", RLIM2NUM(RLIM_SAVED_CUR)); #endif #ifdef RLIMIT_CORE rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE)); #endif #ifdef RLIMIT_CPU rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU)); #endif #ifdef RLIMIT_DATA rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA)); #endif #ifdef RLIMIT_FSIZE rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE)); #endif #ifdef RLIMIT_NOFILE rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE)); #endif #ifdef RLIMIT_STACK rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK)); #endif #ifdef RLIMIT_AS rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS)); #endif #ifdef RLIMIT_MEMLOCK rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK)); #endif #ifdef RLIMIT_NPROC rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC)); #endif #ifdef RLIMIT_RSS rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS)); #endif #ifdef RLIMIT_SBSIZE rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE)); #endif #endif rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0); rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1); rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0); rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1); rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0); rb_define_module_function(rb_mProcess, "euid=", proc_seteuid, 1); rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0); rb_define_module_function(rb_mProcess, "egid=", proc_setegid, 1); rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2); rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0); rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1); rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0); rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1); rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1); rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0); #if defined(HAVE_TIMES) || defined(_WIN32) S_Tms = rb_struct_define("Tms", "utime", "stime", "cutime", "cstime", NULL); #endif SAVED_USER_ID = geteuid(); SAVED_GROUP_ID = getegid(); rb_mProcUID = rb_define_module_under(rb_mProcess, "UID"); rb_mProcGID = rb_define_module_under(rb_mProcess, "GID"); rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0); rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0); rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0); rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0); rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1); rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1); rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1); rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1); rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege"); rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege"); rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0); rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0); rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0); rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0); rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0); rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0); rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0); rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0); rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys"); rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0); rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0); rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0); rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0); rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1); rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1); rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1); rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1); rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1); rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1); rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2); rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2); rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3); rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3); rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0); } 0 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/* 
   Unix SMB/CIFS implementation.
   file opening and share modes
   Copyright (C) Andrew Tridgell 1992-1998
   Copyright (C) Jeremy Allison 2001-2004
   Copyright (C) Volker Lendecke 2005

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.