From 914d6b4d88b5e62592a48b34ac79b7a00bc40c38 Mon Sep 17 00:00:00 2001 From: ko1 Date: Fri, 28 Sep 2007 10:18:53 +0000 Subject: * benchmark/driver.rb: fix notations. * benchmark/bm_loop_whileloop.rb: ditto. * benchmark/bm_loop_whileloop2.rb: ditto. * benchmark/bm_app_uri.rb: added. * benchmark/bm_vm1_ivar_set.rb: ditto. * benchmark/bm_so_binary_trees.rb: added from Computer Language Benchmarks Game (http://shootout.alioth.debian.org/). * benchmark/bm_so_fannkuch.rb: ditto. * benchmark/bm_so_mandelbrot.rb: ditto. * benchmark/bm_so_meteor_contest.rb: ditto. * benchmark/bm_so_nbody.rb: ditto. * benchmark/bm_so_nsieve.rb: ditto. * benchmark/bm_so_nsieve_bits.rb: ditto. * benchmark/bm_so_partial_sums.rb: ditto. * benchmark/bm_so_pidigits.rb: ditto. * benchmark/bm_so_spectralnorm.rb: ditto. git-svn-id: http://svn.ruby-lang.org/repos/ruby/trunk@13548 b2dd03c8-39d4-4d8f-98ff-823fe69b080e --- benchmark/bm_app_uri.rb | 8 + benchmark/bm_loop_whileloop.rb | 4 +- benchmark/bm_loop_whileloop2.rb | 3 +- benchmark/bm_so_binary_trees.rb | 57 ++++ benchmark/bm_so_fannkuch.rb | 45 +++ benchmark/bm_so_mandelbrot.rb | 57 ++++ benchmark/bm_so_meteor_contest.rb | 564 ++++++++++++++++++++++++++++++++++++++ benchmark/bm_so_nbody.rb | 148 ++++++++++ benchmark/bm_so_nsieve.rb | 35 +++ benchmark/bm_so_nsieve_bits.rb | 42 +++ benchmark/bm_so_partial_sums.rb | 31 +++ benchmark/bm_so_pidigits.rb | 92 +++++++ benchmark/bm_so_spectralnorm.rb | 50 ++++ benchmark/bm_vm1_ivar_set.rb | 6 + benchmark/driver.rb | 2 + 15 files changed, 1140 insertions(+), 4 deletions(-) create mode 100644 benchmark/bm_app_uri.rb create mode 100644 benchmark/bm_so_binary_trees.rb create mode 100644 benchmark/bm_so_fannkuch.rb create mode 100644 benchmark/bm_so_mandelbrot.rb create mode 100644 benchmark/bm_so_meteor_contest.rb create mode 100644 benchmark/bm_so_nbody.rb create mode 100644 benchmark/bm_so_nsieve.rb create mode 100644 benchmark/bm_so_nsieve_bits.rb create mode 100644 benchmark/bm_so_partial_sums.rb create mode 100644 benchmark/bm_so_pidigits.rb create mode 100644 benchmark/bm_so_spectralnorm.rb create mode 100644 benchmark/bm_vm1_ivar_set.rb (limited to 'benchmark') diff --git a/benchmark/bm_app_uri.rb b/benchmark/bm_app_uri.rb new file mode 100644 index 000000000..49fe5a81a --- /dev/null +++ b/benchmark/bm_app_uri.rb @@ -0,0 +1,8 @@ +require 'uri' + +100_000.times{ + uri = URI.parse('http://www.ruby-lang.org') + uri.scheme + uri.host + uri.port +} diff --git a/benchmark/bm_loop_whileloop.rb b/benchmark/bm_loop_whileloop.rb index 5500af6d0..43d35e113 100644 --- a/benchmark/bm_loop_whileloop.rb +++ b/benchmark/bm_loop_whileloop.rb @@ -1,4 +1,4 @@ -i = 0 -while i<30000000 # benchmark loop 1 +i=0 +while i<30_000_000 # benchmark loop 1 i+=1 end diff --git a/benchmark/bm_loop_whileloop2.rb b/benchmark/bm_loop_whileloop2.rb index 56480f31b..e51498966 100644 --- a/benchmark/bm_loop_whileloop2.rb +++ b/benchmark/bm_loop_whileloop2.rb @@ -1,5 +1,4 @@ i=0 -while i<6000000 # benchmark loop 2 +while i< 6_000_000 # benchmark loop 2 i+=1 end - diff --git a/benchmark/bm_so_binary_trees.rb b/benchmark/bm_so_binary_trees.rb new file mode 100644 index 000000000..138c5290f --- /dev/null +++ b/benchmark/bm_so_binary_trees.rb @@ -0,0 +1,57 @@ +# The Computer Language Shootout Benchmarks +# http://shootout.alioth.debian.org +# +# contributed by Jesse Millikan + +# disable output +def STDOUT.write_ *args +end + +def item_check(tree) + if tree[0] == nil + tree[1] + else + tree[1] + item_check(tree[0]) - item_check(tree[2]) + end +end + +def bottom_up_tree(item, depth) + if depth > 0 + item_item = 2 * item + depth -= 1 + [bottom_up_tree(item_item - 1, depth), item, bottom_up_tree(item_item, depth)] + else + [nil, item, nil] + end +end + +max_depth = 12 # 16 # ARGV[0].to_i +min_depth = 4 + +max_depth = min_depth + 2 if min_depth + 2 > max_depth + +stretch_depth = max_depth + 1 +stretch_tree = bottom_up_tree(0, stretch_depth) + +puts "stretch tree of depth #{stretch_depth}\t check: #{item_check(stretch_tree)}" +stretch_tree = nil + +long_lived_tree = bottom_up_tree(0, max_depth) + +min_depth.step(max_depth + 1, 2) do |depth| + iterations = 2**(max_depth - depth + min_depth) + + check = 0 + + for i in 1..iterations + temp_tree = bottom_up_tree(i, depth) + check += item_check(temp_tree) + + temp_tree = bottom_up_tree(-i, depth) + check += item_check(temp_tree) + end + + puts "#{iterations * 2}\t trees of depth #{depth}\t check: #{check}" +end + +puts "long lived tree of depth #{max_depth}\t check: #{item_check(long_lived_tree)}" diff --git a/benchmark/bm_so_fannkuch.rb b/benchmark/bm_so_fannkuch.rb new file mode 100644 index 000000000..23298a8a3 --- /dev/null +++ b/benchmark/bm_so_fannkuch.rb @@ -0,0 +1,45 @@ +# The Computer Language Shootout +# http://shootout.alioth.debian.org/ +# Contributed by Sokolov Yura +# Modified by Ryan Williams + +def fannkuch(n) + maxFlips, m, r, check = 0, n-1, n, 0 + count = (1..n).to_a + perm = (1..n).to_a + + while true + if check < 30 + puts "#{perm}" + check += 1 + end + + while r != 1 + count[r-1] = r + r -= 1 + end + + if perm[0] != 1 and perm[m] != n + perml = perm.clone #.dup + flips = 0 + while (k = perml.first ) != 1 + perml = perml.slice!(0, k).reverse + perml + flips += 1 + end + maxFlips = flips if flips > maxFlips + end + while true + if r==n then return maxFlips end + perm.insert r,perm.shift + break if (count[r] -= 1) > 0 + r += 1 + end + end +end + +def puts *args +end + +N = 10 # (ARGV[0] || 1).to_i +puts "Pfannkuchen(#{N}) = #{fannkuch(N)}" + diff --git a/benchmark/bm_so_mandelbrot.rb b/benchmark/bm_so_mandelbrot.rb new file mode 100644 index 000000000..2c0587886 --- /dev/null +++ b/benchmark/bm_so_mandelbrot.rb @@ -0,0 +1,57 @@ +# The Computer Language Benchmarks Game +# http://shootout.alioth.debian.org/ +# +# contributed by Karl von Laudermann +# modified by Jeremy Echols + +size = 600 # ARGV[0].to_i + +puts "P4\n#{size} #{size}" + +ITER = 49 # Iterations - 1 for easy for..in looping +LIMIT_SQUARED = 4.0 # Presquared limit + +byte_acc = 0 +bit_num = 0 + +count_size = size - 1 # Precomputed size for easy for..in looping + +# For..in loops are faster than .upto, .downto, .times, etc. +for y in 0..count_size + for x in 0..count_size + zr = 0.0 + zi = 0.0 + cr = (2.0*x/size)-1.5 + ci = (2.0*y/size)-1.0 + escape = false + + # To make use of the for..in code, we use a dummy variable, + # like one would in C + for dummy in 0..ITER + tr = zr*zr - zi*zi + cr + ti = 2*zr*zi + ci + zr, zi = tr, ti + + if (zr*zr+zi*zi) > LIMIT_SQUARED + escape = true + break + end + end + + byte_acc = (byte_acc << 1) | (escape ? 0b0 : 0b1) + bit_num += 1 + + # Code is very similar for these cases, but using separate blocks + # ensures we skip the shifting when it's unnecessary, which is most cases. + if (bit_num == 8) + print byte_acc.chr + byte_acc = 0 + bit_num = 0 + elsif (x == count_size) + byte_acc <<= (8 - bit_num) + print byte_acc.chr + byte_acc = 0 + bit_num = 0 + end + end +end diff --git a/benchmark/bm_so_meteor_contest.rb b/benchmark/bm_so_meteor_contest.rb new file mode 100644 index 000000000..5dd720c34 --- /dev/null +++ b/benchmark/bm_so_meteor_contest.rb @@ -0,0 +1,564 @@ +#!/usr/bin/env ruby +# +# The Computer Language Shootout +# http://shootout.alioth.debian.org +# contributed by Kevin Barnes (Ruby novice) + +# PROGRAM: the main body is at the bottom. +# 1) read about the problem here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/ +# 2) see how I represent a board as a bitmask by reading the blank_board comments +# 3) read as your mental paths take you + +def print *args +end + +# class to represent all information about a particular rotation of a particular piece +class Rotation + # an array (by location) containing a bit mask for how the piece maps at the given location. + # if the rotation is illegal at that location the mask will contain false + attr_reader :start_masks + + # maps a direction to a relative location. these differ depending on whether it is an even or + # odd row being mapped from + @@rotation_even_adder = { :west => -1, :east => 1, :nw => -7, :ne => -6, :sw => 5, :se => 6 } + @@rotation_odd_adder = { :west => -1, :east => 1, :nw => -6, :ne => -5, :sw => 6, :se => 7 } + + def initialize( directions ) + @even_offsets, @odd_offsets = normalize_offsets( get_values( directions )) + + @even_mask = mask_for_offsets( @even_offsets) + @odd_mask = mask_for_offsets( @odd_offsets) + + @start_masks = Array.new(60) + + # create the rotational masks by placing the base mask at the location and seeing if + # 1) it overlaps the boundries and 2) it produces a prunable board. if either of these + # is true the piece cannot be placed + 0.upto(59) do | offset | + mask = is_even(offset) ? (@even_mask << offset) : (@odd_mask << offset) + if (blank_board & mask == 0 && !prunable(blank_board | mask, 0, true)) then + imask = compute_required( mask, offset) + @start_masks[offset] = [ mask, imask, imask | mask ] + else + @start_masks[offset] = false + end + end + end + + def compute_required( mask, offset ) + board = blank_board + 0.upto(offset) { | i | board |= 1 << i } + board |= mask + return 0 if (!prunable(board | mask, offset)) + board = flood_fill(board,58) + count = 0 + imask = 0 + 0.upto(59) do | i | + if (board[i] == 0) then + imask |= (1 << i) + count += 1 + end + end + (count > 0 && count < 5) ? imask : 0 + end + + def flood_fill( board, location) + return board if (board[location] == 1) + board |= 1 << location + row, col = location.divmod(6) + board = flood_fill( board, location - 1) if (col > 0) + board = flood_fill( board, location + 1) if (col < 4) + if (row % 2 == 0) then + board = flood_fill( board, location - 7) if (col > 0 && row > 0) + board = flood_fill( board, location - 6) if (row > 0) + board = flood_fill( board, location + 6) if (row < 9) + board = flood_fill( board, location + 5) if (col > 0 && row < 9) + else + board = flood_fill( board, location - 5) if (col < 4 && row > 0) + board = flood_fill( board, location - 6) if (row > 0) + board = flood_fill( board, location + 6) if (row < 9) + board = flood_fill( board, location + 7) if (col < 4 && row < 9) + end + board + end + + # given a location, produces a list of relative locations covered by the piece at this rotation + def offsets( location) + if is_even( location) then + @even_offsets.collect { | value | value + location } + else + @odd_offsets.collect { | value | value + location } + end + end + + # returns a set of offsets relative to the top-left most piece of the rotation (by even or odd rows) + # this is hard to explain. imagine we have this partial board: + # 0 0 0 0 0 x [positions 0-5] + # 0 0 1 1 0 x [positions 6-11] + # 0 0 1 0 0 x [positions 12-17] + # 0 1 0 0 0 x [positions 18-23] + # 0 1 0 0 0 x [positions 24-29] + # 0 0 0 0 0 x [positions 30-35] + # ... + # The top-left of the piece is at position 8, the + # board would be passed as a set of positions (values array) containing [8,9,14,19,25] not necessarily in that + # sorted order. Since that array starts on an odd row, the offsets for an odd row are: [0,1,6,11,17] obtained + # by subtracting 8 from everything. Now imagine the piece shifted up and to the right so it's on an even row: + # 0 0 0 1 1 x [positions 0-5] + # 0 0 1 0 0 x [positions 6-11] + # 0 0 1 0 0 x [positions 12-17] + # 0 1 0 0 0 x [positions 18-23] + # 0 0 0 0 0 x [positions 24-29] + # 0 0 0 0 0 x [positions 30-35] + # ... + # Now the positions are [3,4,8,14,19] which after subtracting the lowest value (3) gives [0,1,5,11,16] thus, the + # offsets for this particular piece are (in even, odd order) [0,1,5,11,16],[0,1,6,11,17] which is what + # this function would return + def normalize_offsets( values) + min = values.min + even_min = is_even(min) + other_min = even_min ? min + 6 : min + 7 + other_values = values.collect do | value | + if is_even(value) then + value + 6 - other_min + else + value + 7 - other_min + end + end + values.collect! { | value | value - min } + + if even_min then + [values, other_values] + else + [other_values, values] + end + end + + # produce a bitmask representation of an array of offset locations + def mask_for_offsets( offsets ) + mask = 0 + offsets.each { | value | mask = mask + ( 1 << value ) } + mask + end + + # finds a "safe" position that a position as described by a list of directions can be placed + # without falling off any edge of the board. the values returned a location to place the first piece + # at so it will fit after making the described moves + def start_adjust( directions ) + south = east = 0; + directions.each do | direction | + east += 1 if ( direction == :sw || direction == :nw || direction == :west ) + south += 1 if ( direction == :nw || direction == :ne ) + end + south * 6 + east + end + + # given a set of directions places the piece (as defined by a set of directions) on the board at + # a location that will not take it off the edge + def get_values ( directions ) + start = start_adjust(directions) + values = [ start ] + directions.each do | direction | + if (start % 12 >= 6) then + start += @@rotation_odd_adder[direction] + else + start += @@rotation_even_adder[direction] + end + values += [ start ] + end + + # some moves take you back to an existing location, we'll strip duplicates + values.uniq + end +end + +# describes a piece and caches information about its rotations to as to be efficient for iteration +# ATTRIBUTES: +# rotations -- all the rotations of the piece +# type -- a numeic "name" of the piece +# masks -- an array by location of all legal rotational masks (a n inner array) for that location +# placed -- the mask that this piece was last placed at (not a location, but the actual mask used) +class Piece + attr_reader :rotations, :type, :masks + attr_accessor :placed + + # transform hashes that change one direction into another when you either flip or rotate a set of directions + @@flip_converter = { :west => :west, :east => :east, :nw => :sw, :ne => :se, :sw => :nw, :se => :ne } + @@rotate_converter = { :west => :nw, :east => :se, :nw => :ne, :ne => :east, :sw => :west, :se => :sw } + + def initialize( directions, type ) + @type = type + @rotations = Array.new(); + @map = {} + + generate_rotations( directions ) + directions.collect! { | value | @@flip_converter[value] } + generate_rotations( directions ) + + # creates the masks AND a map that returns [location, rotation] for any given mask + # this is used when a board is found and we want to draw it, otherwise the map is unused + @masks = Array.new(); + 0.upto(59) do | i | + even = true + @masks[i] = @rotations.collect do | rotation | + mask = rotation.start_masks[i] + @map[mask[0]] = [ i, rotation ] if (mask) + mask || nil + end + @masks[i].compact! + end + end + + # rotates a set of directions through all six angles and adds a Rotation to the list for each one + def generate_rotations( directions ) + 6.times do + rotations.push( Rotation.new(directions)) + directions.collect! { | value | @@rotate_converter[value] } + end + end + + # given a board string, adds this piece to the board at whatever location/rotation + # important: the outbound board string is 5 wide, the normal location notation is six wide (padded) + def fill_string( board_string) + location, rotation = @map[@placed] + rotation.offsets(location).each do | offset | + row, col = offset.divmod(6) + board_string[ row*5 + col, 1 ] = @type.to_s + end + end +end + +# a blank bit board having this form: +# +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 0 0 0 0 0 1 +# 1 1 1 1 1 1 +# +# where left lest significant bit is the top left and the most significant is the lower right +# the actual board only consists of the 0 places, the 1 places are blockers to keep things from running +# off the edges or bottom +def blank_board + 0b111111100000100000100000100000100000100000100000100000100000100000 +end + +def full_board + 0b111111111111111111111111111111111111111111111111111111111111111111 +end + +# determines if a location (bit position) is in an even row +def is_even( location) + (location % 12) < 6 +end + +# support function that create three utility maps: +# $converter -- for each row an array that maps a five bit row (via array mapping) +# to the a a five bit representation of the bits below it +# $bit_count -- maps a five bit row (via array mapping) to the number of 1s in the row +# @@new_regions -- maps a five bit row (via array mapping) to an array of "region" arrays +# a region array has three values the first is a mask of bits in the region, +# the second is the count of those bits and the third is identical to the first +# examples: +# 0b10010 => [ 0b01100, 2, 0b01100 ], [ 0b00001, 1, 0b00001] +# 0b01010 => [ 0b10000, 1, 0b10000 ], [ 0b00100, 1, 0b00100 ], [ 0b00001, 1, 0b00001] +# 0b10001 => [ 0b01110, 3, 0b01110 ] +def create_collector_support + odd_map = [0b11, 0b110, 0b1100, 0b11000, 0b10000] + even_map = [0b1, 0b11, 0b110, 0b1100, 0b11000] + + all_odds = Array.new(0b100000) + all_evens = Array.new(0b100000) + bit_counts = Array.new(0b100000) + new_regions = Array.new(0b100000) + 0.upto(0b11111) do | i | + bit_count = odd = even = 0 + 0.upto(4) do | bit | + if (i[bit] == 1) then + bit_count += 1 + odd |= odd_map[bit] + even |= even_map[bit] + end + end + all_odds[i] = odd + all_evens[i] = even + bit_counts[i] = bit_count + new_regions[i] = create_regions( i) + end + + $converter = [] + 10.times { | row | $converter.push((row % 2 == 0) ? all_evens : all_odds) } + $bit_counts = bit_counts + $regions = new_regions.collect { | set | set.collect { | value | [ value, bit_counts[value], value] } } +end + +# determines if a board is punable, meaning that there is no possibility that it +# can be filled up with pieces. A board is prunable if there is a grouping of unfilled spaces +# that are not a multiple of five. The following board is an example of a prunable board: +# 0 0 1 0 0 +# 0 1 0 0 0 +# 1 1 0 0 0 +# 0 1 0 0 0 +# 0 0 0 0 0 +# ... +# +# This board is prunable because the top left corner is only 3 bits in area, no piece will ever fit it +# parameters: +# board -- an initial bit board (6 bit padded rows, see blank_board for format) +# location -- starting location, everything above and to the left is already full +# slotting -- set to true only when testing initial pieces, when filling normally +# additional assumptions are possible +# +# Algorithm: +# The algorithm starts at the top row (as determined by location) and iterates a row at a time +# maintainng counts of active open areas (kept in the collector array) each collector contains +# three values at the start of an iteration: +# 0: mask of bits that would be adjacent to the collector in this row +# 1: the number of bits collected so far +# 2: a scratch space starting as zero, but used during the computation to represent +# the empty bits in the new row that are adjacent (position 0) +# The exact procedure is described in-code +def prunable( board, location, slotting = false) + collectors = [] + # loop accross the rows + (location / 6).to_i.upto(9) do | row_on | + # obtain a set of regions representing the bits of the curent row. + regions = $regions[(board >> (row_on * 6)) & 0b11111] + converter = $converter[row_on] + + # track the number of collectors at the start of the cycle so that + # we don't compute against newly created collectors, only existing collectors + initial_collector_count = collectors.length + + # loop against the regions. For each region of the row + # we will see if it connects to one or more existing collectors. + # if it connects to 1 collector, the bits from the region are added to the + # bits of the collector and the mask is placed in collector[2] + # If the region overlaps more than one collector then all the collectors + # it overlaps with are merged into the first one (the others are set to nil in the array) + # if NO collectors are found then the region is copied as a new collector + regions.each do | region | + collector_found = nil + region_mask = region[2] + initial_collector_count.times do | collector_num | + collector = collectors[collector_num] + if (collector) then + collector_mask = collector[0] + if (collector_mask & region_mask != 0) then + if (collector_found) then + collector_found[0] |= collector_mask + collector_found[1] += collector[1] + collector_found[2] |= collector[2] + collectors[collector_num] = nil + else + collector_found = collector + collector[1] += region[1] + collector[2] |= region_mask + end + end + end + end + if (collector_found == nil) then + collectors.push(Array.new(region)) + end + end + + # check the existing collectors, if any collector overlapped no bits in the region its [2] value will + # be zero. The size of any such reaason is tested if it is not a muliple of five true is returned since + # the board is prunable. if it is a multiple of five it is removed. + # Collector that are still active have a new adjacent value [0] set based n the matched bits + # and have [2] cleared out for the next cycle. + collectors.length.times do | collector_num | + collector = collectors[collector_num] + if (collector) then + if (collector[2] == 0) then + return true if (collector[1] % 5 != 0) + collectors[collector_num] = nil + else + # if a collector matches all bits in the row then we can return unprunable early for the + # follwing reasons: + # 1) there can be no more unavailable bits bince we fill from the top left downward + # 2) all previous regions have been closed or joined so only this region can fail + # 3) this region must be good since there can never be only 1 region that is nuot + # a multiple of five + # this rule only applies when filling normally, so we ignore the rule if we are "slotting" + # in pieces to see what configurations work for them (the only other time this algorithm is used). + return false if (collector[2] == 0b11111 && !slotting) + collector[0] = converter[collector[2]] + collector[2] = 0 + end + end + end + + # get rid of all the empty converters for the next round + collectors.compact! + end + return false if (collectors.length <= 1) # 1 collector or less and the region is fine + collectors.any? { | collector | (collector[1] % 5) != 0 } # more than 1 and we test them all for bad size +end + +# creates a region given a row mask. see prunable for what a "region" is +def create_regions( value ) + regions = [] + cur_region = 0 + 5.times do | bit | + if (value[bit] == 0) then + cur_region |= 1 << bit + else + if (cur_region != 0 ) then + regions.push( cur_region) + cur_region = 0; + end + end + end + regions.push(cur_region) if (cur_region != 0) + regions +end + +# find up to the counted number of solutions (or all solutions) and prints the final result +def find_all + find_top( 1) + find_top( 0) + print_results +end + +# show the board +def print_results + print "#{@boards_found} solutions found\n\n" + print_full_board( @min_board) + print "\n" + print_full_board( @max_board) + print "\n" +end + +# finds solutions. This special version of the main function is only used for the top level +# the reason for it is basically to force a particular ordering on how the rotations are tested for +# the first piece. It is called twice, first looking for placements of the odd rotations and then +# looking for placements of the even locations. +# +# WHY? +# Since any found solution has an inverse we want to maximize finding solutions that are not already found +# as an inverse. The inverse will ALWAYS be 3 one of the piece configurations that is exactly 3 rotations away +# (an odd number). Checking even vs odd then produces a higher probability of finding more pieces earlier +# in the cycle. We still need to keep checking all the permutations, but our probability of finding one will +# diminsh over time. Since we are TOLD how many to search for this lets us exit before checking all pieces +# this bennifit is very great when seeking small numbers of solutions and is 0 when looking for more than the +# maximum number +def find_top( rotation_skip) + board = blank_board + (@pieces.length-1).times do + piece = @pieces.shift + piece.masks[0].each do | mask, imask, cmask | + if ((rotation_skip += 1) % 2 == 0) then + piece.placed = mask + find( 1, 1, board | mask) + end + end + @pieces.push(piece) + end + piece = @pieces.shift + @pieces.push(piece) +end + +# the normail find routine, iterates through the available pieces, checks all rotations at the current location +# and adds any boards found. depth is acheived via recursion. the overall approach is described +# here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/ +# parameters: +# start_location -- where to start looking for place for the next piece at +# placed -- number of pieces placed +# board -- current state of the board +# +# see in-code comments +def find( start_location, placed, board) + # find the next location to place a piece by looking for an empty bit + while board[start_location] == 1 + start_location += 1 + end + + @pieces.length.times do + piece = @pieces.shift + piece.masks[start_location].each do | mask, imask, cmask | + if ( board & cmask == imask) then + piece.placed = mask + if (placed == 9) then + add_board + else + find( start_location + 1, placed + 1, board | mask) + end + end + end + @pieces.push(piece) + end +end + +# print the board +def print_full_board( board_string) + 10.times do | row | + print " " if (row % 2 == 1) + 5.times do | col | + print "#{board_string[row*5 + col,1]} " + end + print "\n" + end +end + +# when a board is found we "draw it" into a string and then flip that string, adding both to +# the list (hash) of solutions if they are unique. +def add_board + board_string = "99999999999999999999999999999999999999999999999999" + @all_pieces.each { | piece | piece.fill_string( board_string ) } + save( board_string) + save( board_string.reverse) +end + +# adds a board string to the list (if new) and updates the current best/worst board +def save( board_string) + if (@all_boards[board_string] == nil) then + @min_board = board_string if (board_string < @min_board) + @max_board = board_string if (board_string > @max_board) + @all_boards.store(board_string,true) + @boards_found += 1 + + # the exit motif is a time saver. Ideally the function should return, but those tests + # take noticable time (performance). + if (@boards_found == @stop_count) then + print_results + exit(0) + end + end +end + + +## +## MAIN BODY :) +## +create_collector_support +@pieces = [ + Piece.new( [ :nw, :ne, :east, :east ], 2), + Piece.new( [ :ne, :se, :east, :ne ], 7), + Piece.new( [ :ne, :east, :ne, :nw ], 1), + Piece.new( [ :east, :sw, :sw, :se ], 6), + Piece.new( [ :east, :ne, :se, :ne ], 5), + Piece.new( [ :east, :east, :east, :se ], 0), + Piece.new( [ :ne, :nw, :se, :east, :se ], 4), + Piece.new( [ :se, :se, :se, :west ], 9), + Piece.new( [ :se, :se, :east, :se ], 8), + Piece.new( [ :east, :east, :sw, :se ], 3) + ]; + +@all_pieces = Array.new( @pieces) + +@min_board = "99999999999999999999999999999999999999999999999999" +@max_board = "00000000000000000000000000000000000000000000000000" +@stop_count = ARGV[0].to_i || 2089 +@all_boards = {} +@boards_found = 0 + +find_all ######## DO IT!!! + diff --git a/benchmark/bm_so_nbody.rb b/benchmark/bm_so_nbody.rb new file mode 100644 index 000000000..709d58b7f --- /dev/null +++ b/benchmark/bm_so_nbody.rb @@ -0,0 +1,148 @@ +# The Computer Language Shootout +# http://shootout.alioth.debian.org +# +# Optimized for Ruby by Jesse Millikan +# From version ported by Michael Neumann from the C gcc version, +# which was written by Christoph Bauer. + +SOLAR_MASS = 4 * Math::PI**2 +DAYS_PER_YEAR = 365.24 + +def _puts *args +end + +class Planet + attr_accessor :x, :y, :z, :vx, :vy, :vz, :mass + + def initialize(x, y, z, vx, vy, vz, mass) + @x, @y, @z = x, y, z + @vx, @vy, @vz = vx * DAYS_PER_YEAR, vy * DAYS_PER_YEAR, vz * DAYS_PER_YEAR + @mass = mass * SOLAR_MASS + end + + def move_from_i(bodies, nbodies, dt, i) + while i < nbodies + b2 = bodies[i] + dx = @x - b2.x + dy = @y - b2.y + dz = @z - b2.z + + distance = Math.sqrt(dx * dx + dy * dy + dz * dz) + mag = dt / (distance * distance * distance) + b_mass_mag, b2_mass_mag = @mass * mag, b2.mass * mag + + @vx -= dx * b2_mass_mag + @vy -= dy * b2_mass_mag + @vz -= dz * b2_mass_mag + b2.vx += dx * b_mass_mag + b2.vy += dy * b_mass_mag + b2.vz += dz * b_mass_mag + i += 1 + end + + @x += dt * @vx + @y += dt * @vy + @z += dt * @vz + end +end + +def energy(bodies) + e = 0.0 + nbodies = bodies.size + + for i in 0 ... nbodies + b = bodies[i] + e += 0.5 * b.mass * (b.vx * b.vx + b.vy * b.vy + b.vz * b.vz) + for j in (i + 1) ... nbodies + b2 = bodies[j] + dx = b.x - b2.x + dy = b.y - b2.y + dz = b.z - b2.z + distance = Math.sqrt(dx * dx + dy * dy + dz * dz) + e -= (b.mass * b2.mass) / distance + end + end + e +end + +def offset_momentum(bodies) + px, py, pz = 0.0, 0.0, 0.0 + + for b in bodies + m = b.mass + px += b.vx * m + py += b.vy * m + pz += b.vz * m + end + + b = bodies[0] + b.vx = - px / SOLAR_MASS + b.vy = - py / SOLAR_MASS + b.vz = - pz / SOLAR_MASS +end + +BODIES = [ + # sun + Planet.new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0), + + # jupiter + Planet.new( + 4.84143144246472090e+00, + -1.16032004402742839e+00, + -1.03622044471123109e-01, + 1.66007664274403694e-03, + 7.69901118419740425e-03, + -6.90460016972063023e-05, + 9.54791938424326609e-04), + + # saturn + Planet.new( + 8.34336671824457987e+00, + 4.12479856412430479e+00, + -4.03523417114321381e-01, + -2.76742510726862411e-03, + 4.99852801234917238e-03, + 2.30417297573763929e-05, + 2.85885980666130812e-04), + + # uranus + Planet.new( + 1.28943695621391310e+01, + -1.51111514016986312e+01, + -2.23307578892655734e-01, + 2.96460137564761618e-03, + 2.37847173959480950e-03, + -2.96589568540237556e-05, + 4.36624404335156298e-05), + + # neptune + Planet.new( + 1.53796971148509165e+01, + -2.59193146099879641e+01, + 1.79258772950371181e-01, + 2.68067772490389322e-03, + 1.62824170038242295e-03, + -9.51592254519715870e-05, + 5.15138902046611451e-05) +] + +init = 200_000 # ARGV[0] +n = Integer(init) + +offset_momentum(BODIES) + +puts "%.9f" % energy(BODIES) + +nbodies = BODIES.size +dt = 0.01 + +n.times do + i = 0 + while i < nbodies + b = BODIES[i] + b.move_from_i(BODIES, nbodies, dt, i + 1) + i += 1 + end +end + +puts "%.9f" % energy(BODIES) diff --git a/benchmark/bm_so_nsieve.rb b/benchmark/bm_so_nsieve.rb new file mode 100644 index 000000000..59aead589 --- /dev/null +++ b/benchmark/bm_so_nsieve.rb @@ -0,0 +1,35 @@ +# The Computer Language Shootout +# http://shootout.alioth.debian.org/ +# +# contributed by Glenn Parker, March 2005 +# modified by Evan Phoenix, Sept 2006 + +def sieve(m) + flags = Flags.dup[0,m] + count = 0 + pmax = m - 1 + p = 2 + while p <= pmax + unless flags[p].zero? + count += 1 + mult = p + while mult <= pmax + flags[mult] = 0 + mult += p + end + end + p += 1 + end + count +end + +n = 9 # (ARGV[0] || 2).to_i +Flags = ("\x1" * ( 2 ** n * 10_000)).unpack("c*") + +n.downto(n-2) do |exponent| + break if exponent < 0 + m = (1 << exponent) * 10_000 + # m = (2 ** exponent) * 10_000 + count = sieve(m) + printf "Primes up to %8d %8d\n", m, count +end diff --git a/benchmark/bm_so_nsieve_bits.rb b/benchmark/bm_so_nsieve_bits.rb new file mode 100644 index 000000000..693b2f246 --- /dev/null +++ b/benchmark/bm_so_nsieve_bits.rb @@ -0,0 +1,42 @@ +#!/usr/bin/ruby +# +# The Great Computer Language Shootout +# http://shootout.alioth.debian.org/ +# +# nsieve-bits in Ruby +# Contributed by Glenn Parker, March 2005 + +CharExponent = 3 +BitsPerChar = 1 << CharExponent +LowMask = BitsPerChar - 1 + +def sieve(m) + items = "\xFF" * ((m / BitsPerChar) + 1) + masks = "" + BitsPerChar.times do |b| + masks << (1 << b).chr + end + + count = 0 + pmax = m - 1 + 2.step(pmax, 1) do |p| + if items[p >> CharExponent][p & LowMask] == 1 + count += 1 + p.step(pmax, p) do |mult| + a = mult >> CharExponent + b = mult & LowMask + items[a] -= masks[b] if items[a][b] != 0 + end + end + end + count +end + +n = 9 # (ARGV[0] || 2).to_i +n.step(n - 2, -1) do |exponent| + break if exponent < 0 + m = 2 ** exponent * 10_000 + count = sieve(m) + printf "Primes up to %8d %8d\n", m, count +end + diff --git a/benchmark/bm_so_partial_sums.rb b/benchmark/bm_so_partial_sums.rb new file mode 100644 index 000000000..41f0a5fb8 --- /dev/null +++ b/benchmark/bm_so_partial_sums.rb @@ -0,0 +1,31 @@ +n = 2_500_000 # (ARGV.shift || 1).to_i + +alt = 1.0 ; s0 = s1 = s2 = s3 = s4 = s5 = s6 = s7 = s8 = 0.0 + +1.upto(n) do |d| + d = d.to_f ; d2 = d * d ; d3 = d2 * d ; ds = Math.sin(d) ; dc = Math.cos(d) + + s0 += (2.0 / 3.0) ** (d - 1.0) + s1 += 1.0 / Math.sqrt(d) + s2 += 1.0 / (d * (d + 1.0)) + s3 += 1.0 / (d3 * ds * ds) + s4 += 1.0 / (d3 * dc * dc) + s5 += 1.0 / d + s6 += 1.0 / d2 + s7 += alt / d + s8 += alt / (2.0 * d - 1.0) + + alt = -alt +end + +if false + printf("%.9f\t(2/3)^k\n", s0) + printf("%.9f\tk^-0.5\n", s1) + printf("%.9f\t1/k(k+1)\n", s2) + printf("%.9f\tFlint Hills\n", s3) + printf("%.9f\tCookson Hills\n", s4) + printf("%.9f\tHarmonic\n", s5) + printf("%.9f\tRiemann Zeta\n", s6) + printf("%.9f\tAlternating Harmonic\n", s7) + printf("%.9f\tGregory\n", s8) +end diff --git a/benchmark/bm_so_pidigits.rb b/benchmark/bm_so_pidigits.rb new file mode 100644 index 000000000..acffe71ae --- /dev/null +++ b/benchmark/bm_so_pidigits.rb @@ -0,0 +1,92 @@ +# The Great Computer Language Shootout +# http://shootout.alioth.debian.org/ +# +# contributed by Gabriele Renzi + +class PiDigitSpigot + + def initialize() + @z = Transformation.new 1,0,0,1 + @x = Transformation.new 0,0,0,0 + @inverse = Transformation.new 0,0,0,0 + end + + def next! + @y = @z.extract(3) + if safe? @y + @z = produce(@y) + @y + else + @z = consume @x.next!() + next!() + end + end + + def safe?(digit) + digit == @z.extract(4) + end + + def produce(i) + @inverse.qrst(10,-10*i,0,1).compose(@z) + end + + def consume(a) + @z.compose(a) + end +end + + +class Transformation + attr_reader :q, :r, :s, :t + def initialize (q, r, s, t) + @q,@r,@s,@t,@k = q,r,s,t,0 + end + + def next!() + @q = @k = @k + 1 + @r = 4 * @k + 2 + @s = 0 + @t = 2 * @k + 1 + self + end + + def extract(j) + (@q * j + @r) / (@s * j + @t) + end + + def compose(a) + self.class.new( @q * a.q, + @q * a.r + r * a.t, + @s * a.q + t * a.s, + @s * a.r + t * a.t + ) + end + + def qrst *args + initialize *args + self + end + + +end + + +WIDTH = 10 +n = 2_500 # Integer(ARGV[0]) +j = 0 + +digits = PiDigitSpigot.new + +while n > 0 + if n >= WIDTH + WIDTH.times {print digits.next!} + j += WIDTH + else + n.times {print digits.next!} + (WIDTH-n).times {print " "} + j += n + end + puts "\t:"+j.to_s + n -= WIDTH +end + diff --git a/benchmark/bm_so_spectralnorm.rb b/benchmark/bm_so_spectralnorm.rb new file mode 100644 index 000000000..3617da523 --- /dev/null +++ b/benchmark/bm_so_spectralnorm.rb @@ -0,0 +1,50 @@ +# The Computer Language Shootout +# http://shootout.alioth.debian.org/ +# Contributed by Sokolov Yura + +def eval_A(i,j) + return 1.0/((i+j)*(i+j+1)/2+i+1) +end + +def eval_A_times_u(u) + v, i = nil, nil + (0..u.length-1).collect { |i| + v = 0 + for j in 0..u.length-1 + v += eval_A(i,j)*u[j] + end + v + } +end + +def eval_At_times_u(u) + v, i = nil, nil + (0..u.length-1).collect{|i| + v = 0 + for j in 0..u.length-1 + v += eval_A(j,i)*u[j] + end + v + } +end + +def eval_AtA_times_u(u) + return eval_At_times_u(eval_A_times_u(u)) +end + +n = 500 # ARGV[0].to_i + +u=[1]*n +for i in 1..10 + v=eval_AtA_times_u(u) + u=eval_AtA_times_u(v) +end +vBv=0 +vv=0 +for i in 0..n-1 + vBv += u[i]*v[i] + vv += v[i]*v[i] +end + +str = "%0.9f" % (Math.sqrt(vBv/vv)), "\n" +# print str diff --git a/benchmark/bm_vm1_ivar_set.rb b/benchmark/bm_vm1_ivar_set.rb new file mode 100644 index 000000000..023e397e9 --- /dev/null +++ b/benchmark/bm_vm1_ivar_set.rb @@ -0,0 +1,6 @@ +i = 0 +while i<30_000_000 # while loop 1 + i+= 1 + @a = 1 + @b = 2 +end diff --git a/benchmark/driver.rb b/benchmark/driver.rb index cb5a6d373..2de699cb1 100644 --- a/benchmark/driver.rb +++ b/benchmark/driver.rb @@ -77,6 +77,7 @@ class BenchmarkDriver if @verbose message '-----------------------------------------------------------' message 'raw data:' + message message PP.pp(@results, "", 79) message message "Elapesed time: #{Time.now - @start_time} (sec)" @@ -158,6 +159,7 @@ class BenchmarkDriver output output '-----------------------------------------------------------' output name + output output File.read(file) output end -- cgit