/* * sbasis.h - S-power basis function class * * Authors: * Nathan Hurst * Michael Sloan * * Copyright (C) 2006-2007 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef SEEN_SBASIS_H #define SEEN_SBASIS_H #include #include #include #include "linear.h" #include "interval.h" #include "utils.h" #include "exception.h" namespace Geom { /*** An empty SBasis is identically 0. */ class SBasis : public std::vector{ public: SBasis() {} explicit SBasis(double a) { push_back(Linear(a,a)); } SBasis(SBasis const & a) : std::vector(a) {} SBasis(Linear const & bo) { push_back(bo); } //IMPL: FragmentConcept typedef double output_type; inline bool isZero() const { if(empty()) return true; for(unsigned i = 0; i < size(); i++) { if(!(*this)[i].isZero()) return false; } return true; } inline bool isConstant() const { if (empty()) return true; for (unsigned i = 0; i < size(); i++) { if(!(*this)[i].isConstant()) return false; } return true; } bool isFinite() const; inline double at0() const { if(empty()) return 0; else return (*this)[0][0]; } inline double at1() const{ if(empty()) return 0; else return (*this)[0][1]; } double valueAt(double t) const { double s = t*(1-t); double p0 = 0, p1 = 0; double sk = 1; //TODO: rewrite as horner for(unsigned k = 0; k < size(); k++) { p0 += sk*(*this)[k][0]; p1 += sk*(*this)[k][1]; sk *= s; } return (1-t)*p0 + t*p1; } double valueAndDerivative(double t, double &der) const { double s = t*(1-t); double p0 = 0, p1 = 0; double sk = 1; //TODO: rewrite as horner for(unsigned k = 0; k < size(); k++) { p0 += sk*(*this)[k][0]; p1 += sk*(*this)[k][1]; sk *= s; } // p0 and p1 at this point form a linear approximation at t der = p1 - p0; return (1-t)*p0 + t*p1; } double operator()(double t) const { return valueAt(t); } std::vector valueAndDerivatives(double /*t*/, unsigned /*n*/) const { //TODO throwNotImplemented(0); } SBasis toSBasis() const { return SBasis(*this); } double tailError(unsigned tail) const; // compute f(g) SBasis operator()(SBasis const & g) const; Linear operator[](unsigned i) const { assert(i < size()); return std::vector::operator[](i); } //MUTATOR PRISON Linear& operator[](unsigned i) { return this->at(i); } //remove extra zeros void normalize() { while(!empty() && 0 == back()[0] && 0 == back()[1]) pop_back(); } void truncate(unsigned k) { if(k < size()) resize(k); } }; //TODO: figure out how to stick this in linear, while not adding an sbasis dep inline SBasis Linear::toSBasis() const { return SBasis(*this); } //implemented in sbasis-roots.cpp Interval bounds_exact(SBasis const &a); Interval bounds_fast(SBasis const &a, int order = 0); Interval bounds_local(SBasis const &a, const Interval &t, int order = 0); inline SBasis reverse(SBasis const &a) { SBasis result; result.reserve(a.size()); for(unsigned k = 0; k < a.size(); k++) result.push_back(reverse(a[k])); return result; } //IMPL: ScalableConcept inline SBasis operator-(const SBasis& p) { if(p.isZero()) return SBasis(); SBasis result; result.reserve(p.size()); for(unsigned i = 0; i < p.size(); i++) { result.push_back(-p[i]); } return result; } SBasis operator*(SBasis const &a, double k); inline SBasis operator*(double k, SBasis const &a) { return a*k; } inline SBasis operator/(SBasis const &a, double k) { return a*(1./k); } SBasis& operator*=(SBasis& a, double b); inline SBasis& operator/=(SBasis& a, double b) { return (a*=(1./b)); } //IMPL: AddableConcept SBasis operator+(const SBasis& a, const SBasis& b); SBasis operator-(const SBasis& a, const SBasis& b); SBasis& operator+=(SBasis& a, const SBasis& b); SBasis& operator-=(SBasis& a, const SBasis& b); //TODO: remove? inline SBasis operator+(const SBasis & a, Linear const & b) { if(b.isZero()) return a; if(a.isZero()) return b; SBasis result(a); result[0] += b; return result; } inline SBasis operator-(const SBasis & a, Linear const & b) { if(b.isZero()) return a; SBasis result(a); result[0] -= b; return result; } inline SBasis& operator+=(SBasis& a, const Linear& b) { if(a.isZero()) a.push_back(b); else a[0] += b; return a; } inline SBasis& operator-=(SBasis& a, const Linear& b) { if(a.isZero()) a.push_back(-b); else a[0] -= b; return a; } //IMPL: OffsetableConcept inline SBasis operator+(const SBasis & a, double b) { if(a.isZero()) return Linear(b, b); SBasis result(a); result[0] += b; return result; } inline SBasis operator-(const SBasis & a, double b) { if(a.isZero()) return Linear(-b, -b); SBasis result(a); result[0] -= b; return result; } inline SBasis& operator+=(SBasis& a, double b) { if(a.isZero()) a.push_back(Linear(b,b)); else a[0] += b; return a; } inline SBasis& operator-=(SBasis& a, double b) { if(a.isZero()) a.push_back(Linear(-b,-b)); else a[0] -= b; return a; } SBasis shift(SBasis const &a, int sh); SBasis shift(Linear const &a, int sh); inline SBasis truncate(SBasis const &a, unsigned terms) { SBasis c; c.insert(c.begin(), a.begin(), a.begin() + std::min(terms, (unsigned)a.size())); return c; } SBasis multiply(SBasis const &a, SBasis const &b); SBasis integral(SBasis const &c); SBasis derivative(SBasis const &a); SBasis sqrt(SBasis const &a, int k); // return a kth order approx to 1/a) SBasis reciprocal(Linear const &a, int k); SBasis divide(SBasis const &a, SBasis const &b, int k); inline SBasis operator*(SBasis const & a, SBasis const & b) { return multiply(a, b); } inline SBasis& operator*=(SBasis& a, SBasis const & b) { a = multiply(a, b); return a; } //valuation: degree of the first non zero coefficient. inline unsigned valuation(SBasis const &a, double tol=0){ unsigned val=0; while( val roots(SBasis const & s); std::vector > multi_roots(SBasis const &f, std::vector const &levels, double htol=1e-7, double vtol=1e-7, double a=0, double b=1); } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 : #endif