/* * Path - Series of continuous curves * * Copyright 2007 MenTaLguY * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef SEEN_GEOM_PATH_H #define SEEN_GEOM_PATH_H #include "point.h" #include #include #include "exception.h" #include "d2.h" #include "matrix.h" #include "bezier.h" #include "crossing.h" #include "utils.h" namespace Geom { class Curve; struct CurveHelpers { protected: static int root_winding(Curve const &c, Point p); }; class Curve : private CurveHelpers { public: virtual ~Curve() {} virtual Point initialPoint() const = 0; virtual Point finalPoint() const = 0; virtual bool isDegenerate() const = 0; virtual Curve *duplicate() const = 0; virtual Rect boundsFast() const = 0; virtual Rect boundsExact() const = 0; virtual Rect boundsLocal(Interval i, unsigned deg) const = 0; Rect boundsLocal(Interval i) const { return boundsLocal(i, 0); } virtual std::vector roots(double v, Dim2 d) const = 0; virtual int winding(Point p) const { return root_winding(*this, p); } //mental: review these virtual Curve *portion(double f, double t) const = 0; virtual Curve *reverse() const { return portion(1, 0); } virtual Curve *derivative() const = 0; virtual void setInitial(Point v) = 0; virtual void setFinal(Point v) = 0; virtual Curve *transformed(Matrix const &m) const = 0; virtual Point pointAt(Coord t) const { return pointAndDerivatives(t, 1).front(); } virtual Coord valueAt(Coord t, Dim2 d) const { return pointAt(t)[d]; } virtual std::vector pointAndDerivatives(Coord t, unsigned n) const = 0; virtual D2 toSBasis() const = 0; }; class SBasisCurve : public Curve { private: SBasisCurve(); D2 inner; public: explicit SBasisCurve(D2 const &sb) : inner(sb) {} explicit SBasisCurve(Curve const &other) : inner(other.toSBasis()) {} Curve *duplicate() const { return new SBasisCurve(*this); } Point initialPoint() const { return inner.at0(); } Point finalPoint() const { return inner.at1(); } bool isDegenerate() const { return inner.isConstant(); } Point pointAt(Coord t) const { return inner.valueAt(t); } std::vector pointAndDerivatives(Coord t, unsigned n) const { return inner.valueAndDerivatives(t, n); } double valueAt(Coord t, Dim2 d) const { return inner[d].valueAt(t); } void setInitial(Point v) { for(unsigned d = 0; d < 2; d++) { inner[d][0][0] = v[d]; } } void setFinal(Point v) { for(unsigned d = 0; d < 2; d++) { inner[d][0][1] = v[d]; } } Rect boundsFast() const { return bounds_fast(inner); } Rect boundsExact() const { return bounds_exact(inner); } Rect boundsLocal(Interval i, unsigned deg) const { return bounds_local(inner, i, deg); } std::vector roots(double v, Dim2 d) const { return Geom::roots(inner[d] - v); } Curve *portion(double f, double t) const { return new SBasisCurve(Geom::portion(inner, f, t)); } Curve *transformed(Matrix const &m) const { return new SBasisCurve(inner * m); } Curve *derivative() const { return new SBasisCurve(Geom::derivative(inner)); } D2 toSBasis() const { return inner; } }; template class BezierCurve : public Curve { private: D2 inner; public: template static void assert_degree(BezierCurve const *) {} BezierCurve() : inner(Bezier::Order(order), Bezier::Order(order)) { } explicit BezierCurve(D2 const &x) : inner(x) {} BezierCurve(Bezier x, Bezier y) : inner(x, y) {} // default copy // default assign BezierCurve(Point c0, Point c1) { assert_degree<1>(this); for(unsigned d = 0; d < 2; d++) inner[d] = Bezier(c0[d], c1[d]); } BezierCurve(Point c0, Point c1, Point c2) { assert_degree<2>(this); for(unsigned d = 0; d < 2; d++) inner[d] = Bezier(c0[d], c1[d], c2[d]); } BezierCurve(Point c0, Point c1, Point c2, Point c3) { assert_degree<3>(this); for(unsigned d = 0; d < 2; d++) inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]); } unsigned degree() const { return order; } Curve *duplicate() const { return new BezierCurve(*this); } Point initialPoint() const { return inner.at0(); } Point finalPoint() const { return inner.at1(); } bool isDegenerate() const { return inner.isConstant(); } void setInitial(Point v) { setPoint(0, v); } void setFinal(Point v) { setPoint(1, v); } void setPoint(unsigned ix, Point v) { inner[X].setPoint(ix, v[X]); inner[Y].setPoint(ix, v[Y]); } Point const operator[](unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); } Rect boundsFast() const { return bounds_fast(inner); } Rect boundsExact() const { return bounds_exact(inner); } Rect boundsLocal(Interval i, unsigned deg) const { if(i.min() == 0 && i.max() == 1) return boundsFast(); if(deg == 0) return bounds_local(inner, i); // TODO: UUUUUUGGGLLY if(deg == 1 && order > 1) return Rect(bounds_local(Geom::derivative(inner[X]), i), bounds_local(Geom::derivative(inner[Y]), i)); return Rect(Interval(0,0), Interval(0,0)); } //TODO: local //TODO: implement next 3 natively int winding(Point p) const { return SBasisCurve(toSBasis()).winding(p); } std::vector roots(double v, Dim2 d) const { return (inner[d] - v).roots(); } void setPoints(std::vector ps) { for(unsigned i = 0; i <= order; i++) { setPoint(i, ps[i]); } } std::vector points() const { return bezier_points(inner); } std::pair, BezierCurve > subdivide(Coord t) const { std::pair sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t); return std::pair, BezierCurve >( BezierCurve(sx.first, sy.first), BezierCurve(sx.second, sy.second)); } Curve *portion(double f, double t) const { return new BezierCurve(Geom::portion(inner, f, t)); } Curve *reverse() const { return new BezierCurve(Geom::reverse(inner)); } Curve *transformed(Matrix const &m) const { BezierCurve *ret = new BezierCurve(); std::vector ps = points(); for(unsigned i = 0; i <= order; i++) ps[i] = ps[i] * m; ret->setPoints(ps); return ret; } Curve *derivative() const { if(order > 1) return new BezierCurve(Geom::derivative(inner[X]), Geom::derivative(inner[Y])); else if (order == 1) { double dx = inner[X][1] - inner[X][0], dy = inner[Y][1] - inner[Y][0]; if(dx == 0) return new BezierCurve<1>(Point(0,0), Point(0,0)); double slope = dy / dx; Geom::Point pnt; if(slope == 0) pnt = Geom::Point(0, 0); else pnt = Geom::Point(slope, 1./slope); return new BezierCurve<1>(pnt, pnt); } } Point pointAt(double t) const { return inner.valueAt(t); } std::vector pointAndDerivatives(Coord t, unsigned n) const { return inner.valueAndDerivatives(t, n); } double valueAt(double t, Dim2 d) const { return inner[d].valueAt(t); } D2 toSBasis() const {return inner.toSBasis(); } protected: BezierCurve(Point c[]) { Coord x[order+1], y[order+1]; for(unsigned i = 0; i <= order; i++) { x[i] = c[i][X]; y[i] = c[i][Y]; } inner = Bezier(x, y); } }; // BezierCurve<0> is meaningless; specialize it out template<> class BezierCurve<0> : public BezierCurve<1> { public: BezierCurve(); BezierCurve(Bezier x, Bezier y) {}; }; typedef BezierCurve<1> LineSegment; typedef BezierCurve<2> QuadraticBezier; typedef BezierCurve<3> CubicBezier; class SVGEllipticalArc : public Curve { public: SVGEllipticalArc() {} SVGEllipticalArc(Point initial, double rx, double ry, double x_axis_rotation, bool large_arc, bool sweep, Point final) : initial_(initial), rx_(rx), ry_(ry), x_axis_rotation_(x_axis_rotation), large_arc_(large_arc), sweep_(sweep), final_(final) {} Curve *duplicate() const { return new SVGEllipticalArc(*this); } Point initialPoint() const { return initial_; } Point finalPoint() const { return final_; } void setInitial(Point v) { initial_ = v; } void setFinal(Point v) { final_ = v; } //TODO: implement funcs bool isDegenerate() const { return toSBasis().isConstant(); } Rect boundsFast() const; Rect boundsExact() const; Rect boundsLocal(Interval i, unsigned deg) const; int winding(Point p) const { return SBasisCurve(toSBasis()).winding(p); } std::vector roots(double v, Dim2 d) const; inline std::pair subdivide(Coord t) { SVGEllipticalArc a(*this), b(*this); a.final_ = b.initial_ = pointAt(t); return std::pair(a, b); } // TODO: how are the flags affected by reducing an arc from more than 180deg to less than 180deg? Curve *portion(double f, double t) const { SVGEllipticalArc *ret = new SVGEllipticalArc (*this); ret->initial_ = pointAt(f); ret->final_ = pointAt(t); return ret; } // TODO: incomplete/buggy Curve *reverse(double /*f*/, double /*t*/) const { SVGEllipticalArc *ret = new SVGEllipticalArc (*this); ret->initial_ = final_; ret->final_ = initial_; return ret; } //TODO: this next def isn't right Curve *transformed(Matrix const & m) const { SVGEllipticalArc *ret = new SVGEllipticalArc (*this); ret->initial_ = initial_ * m; ret->final_ = final_ * m; return ret; } Curve *derivative() const { throwNotImplemented(0); } std::vector pointAndDerivatives(Coord t, unsigned n) const; D2 toSBasis() const; private: Point initial_; double rx_; double ry_; double x_axis_rotation_; bool large_arc_; bool sweep_; Point final_; }; template class BaseIterator : public std::iterator { public: BaseIterator() {} // default construct // default copy bool operator==(BaseIterator const &other) { return other.impl_ == impl_; } bool operator!=(BaseIterator const &other) { return other.impl_ != impl_; } Curve const &operator*() const { return **impl_; } Curve const *operator->() const { return *impl_; } BaseIterator &operator++() { ++impl_; return *this; } BaseIterator operator++(int) { BaseIterator old=*this; ++(*this); return old; } private: BaseIterator(IteratorImpl const &pos) : impl_(pos) {} IteratorImpl impl_; friend class Path; }; template class DuplicatingIterator : public std::iterator { public: DuplicatingIterator() {} DuplicatingIterator(Iterator const &iter) : impl_(iter) {} bool operator==(DuplicatingIterator const &other) { return other.impl_ == impl_; } bool operator!=(DuplicatingIterator const &other) { return other.impl_ != impl_; } Curve *operator*() const { return (*impl_)->duplicate(); } DuplicatingIterator &operator++() { ++impl_; return *this; } DuplicatingIterator operator++(int) { DuplicatingIterator old=*this; ++(*this); return old; } private: Iterator impl_; }; class Path { private: typedef std::vector Sequence; public: typedef BaseIterator iterator; typedef BaseIterator const_iterator; typedef Sequence::size_type size_type; typedef Sequence::difference_type difference_type; Path() : final_(new LineSegment()), closed_(false) { curves_.push_back(final_); } Path(Path const &other) : final_(new LineSegment()), closed_(other.closed_) { curves_.push_back(final_); insert(begin(), other.begin(), other.end()); } explicit Path(Point p) : final_(new LineSegment(p, p)), closed_(false) { curves_.push_back(final_); } template Path(BaseIterator first, BaseIterator last, bool closed=false) : closed_(closed), final_(new LineSegment()) { curves_.push_back(final_); insert(begin(), first, last); } virtual ~Path() { delete_range(curves_.begin(), curves_.end()-1); delete final_; } Path &operator=(Path const &other) { clear(); insert(begin(), other.begin(), other.end()); close(other.closed_); return *this; } void swap(Path &other); Curve const &operator[](unsigned i) const { return *curves_[i]; } iterator begin() { return curves_.begin(); } iterator end() { return curves_.end()-1; } Curve const &front() const { return *curves_[0]; } Curve const &back() const { return *curves_[curves_.size()-2]; } const_iterator begin() const { return curves_.begin(); } const_iterator end() const { return curves_.end()-1; } const_iterator end_open() const { return curves_.end()-1; } const_iterator end_closed() const { return curves_.end(); } const_iterator end_default() const { return ( closed_ ? end_closed() : end_open() ); } size_type size() const { return curves_.size()-1; } size_type max_size() const { return curves_.max_size()-1; } bool empty() const { return curves_.size() == 1; } bool closed() const { return closed_; } void close(bool closed=true) { closed_ = closed; } Rect boundsFast() const; Rect boundsExact() const; Piecewise > toPwSb() const { Piecewise > ret; ret.push_cut(0); unsigned i = 1; // ignore that path is closed or open. pw> is always open. for(const_iterator it = begin(); it != end(); ++it) { if (!it->isDegenerate()) { ret.push(it->toSBasis(), i++); } } return ret; } Path operator*(Matrix const &m) const { Path ret; for(const_iterator it = begin(); it != end(); ++it) { Curve *temp = it->transformed(m); //Possible point of discontinuity? ret.append(*temp); delete temp; } return ret; } Point pointAt(double t) const { if(empty()) return Point(0,0); double i, f = modf(t, &i); if(i == size() && f == 0) { i--; } assert(i >= 0 && i <= size()); return (*this)[unsigned(i)].pointAt(f); } double valueAt(double t, Dim2 d) const { if(empty()) return 0; double i, f = modf(t, &i); if(i == size() && f == 0) { i--; } assert(i >= 0 && i <= size()); return (*this)[unsigned(i)].valueAt(f, d); } std::vector roots(double v, Dim2 d) const { std::vector res; for(unsigned i = 0; i <= size(); i++) { std::vector temp = (*this)[i].roots(v, d); for(unsigned j = 0; j < temp.size(); j++) res.push_back(temp[j] + i); } return res; } void appendPortionTo(Path &p, double f, double t) const; Path portion(double f, double t) const { Path ret; ret.close(false); appendPortionTo(ret, f, t); return ret; } Path portion(Interval i) const { return portion(i.min(), i.max()); } Path reverse() const { Path ret; ret.close(closed_); for(int i = size() - (closed_ ? 0 : 1); i >= 0; i--) { //TODO: do we really delete? Curve *temp = (*this)[i].reverse(); ret.append(*temp); delete temp; } return ret; } void insert(iterator pos, Curve const &curve) { Sequence source(1, curve.duplicate()); try { do_update(pos.impl_, pos.impl_, source.begin(), source.end()); } catch (...) { delete_range(source.begin(), source.end()); throw; } } template void insert(iterator pos, BaseIterator first, BaseIterator last) { Sequence source(DuplicatingIterator(first.impl_), DuplicatingIterator(last.impl_)); try { do_update(pos.impl_, pos.impl_, source.begin(), source.end()); } catch (...) { delete_range(source.begin(), source.end()); throw; } } void clear() { do_update(curves_.begin(), curves_.end()-1, curves_.begin(), curves_.begin()); } void erase(iterator pos) { do_update(pos.impl_, pos.impl_+1, curves_.begin(), curves_.begin()); } void erase(iterator first, iterator last) { do_update(first.impl_, last.impl_, curves_.begin(), curves_.begin()); } void replace(iterator replaced, Curve const &curve) { Sequence source(1, curve.duplicate()); try { do_update(replaced.impl_, replaced.impl_+1, source.begin(), source.end()); } catch (...) { delete_range(source.begin(), source.end()); throw; } } void replace(iterator first_replaced, iterator last_replaced, Curve const &curve) { Sequence source(1, curve.duplicate()); try { do_update(first_replaced.impl_, last_replaced.impl_, source.begin(), source.end()); } catch (...) { delete_range(source.begin(), source.end()); throw; } } template void replace(iterator replaced, BaseIterator first, BaseIterator last) { Sequence source(DuplicatingIterator(first.impl_), DuplicatingIterator(last.impl_)); try { do_update(replaced.impl_, replaced.impl_+1, source.begin(), source.end()); } catch (...) { delete_range(source.begin(), source.end()); throw; } } template void replace(iterator first_replaced, iterator last_replaced, BaseIterator first, BaseIterator last) { Sequence source(first.impl_, last.impl_); try { do_update(first_replaced.impl_, last_replaced.impl_, source.begin(), source.end()); } catch (...) { delete_range(source.begin(), source.end()); throw; } } void start(Point p) { clear(); final_->setPoint(0, p); final_->setPoint(1, p); } Point initialPoint() const { return (*final_)[1]; } Point finalPoint() const { return (*final_)[0]; } void append(Curve const &curve); void append(D2 const &curve); template void appendNew(A a) { do_append(new CurveType((*final_)[0], a)); } template void appendNew(A a, B b) { do_append(new CurveType((*final_)[0], a, b)); } template void appendNew(A a, B b, C c) { do_append(new CurveType((*final_)[0], a, b, c)); } template void appendNew(A a, B b, C c, D d) { do_append(new CurveType((*final_)[0], a, b, c, d)); } template void appendNew(A a, B b, C c, D d, E e) { do_append(new CurveType((*final_)[0], a, b, c, d, e)); } template void appendNew(A a, B b, C c, D d, E e, F f) { do_append(new CurveType((*final_)[0], a, b, c, d, e, f)); } template void appendNew(A a, B b, C c, D d, E e, F f, G g) { do_append(new CurveType((*final_)[0], a, b, c, d, e, f, g)); } template void appendNew(A a, B b, C c, D d, E e, F f, G g, H h) { do_append(new CurveType((*final_)[0], a, b, c, d, e, f, g, h)); } template void appendNew(A a, B b, C c, D d, E e, F f, G g, H h, I i) { do_append(new CurveType((*final_)[0], a, b, c, d, e, f, g, h, i)); } private: void do_update(Sequence::iterator first_replaced, Sequence::iterator last_replaced, Sequence::iterator first, Sequence::iterator last); void do_append(Curve *curve); void delete_range(Sequence::iterator first, Sequence::iterator last); void check_continuity(Sequence::iterator first_replaced, Sequence::iterator last_replaced, Sequence::iterator first, Sequence::iterator last); Sequence curves_; LineSegment *final_; bool closed_; }; inline static Piecewise > paths_to_pw(std::vector paths) { Piecewise > ret = paths[0].toPwSb(); for(unsigned i = 1; i < paths.size(); i++) { ret.concat(paths[i].toPwSb()); } return ret; } /* class PathPortion : public Curve { Path *source; double f, t; boost::optional result; public: double from() const { return f; } double to() const { return t; } explicit PathPortion(Path *s, double fp, double tp) : source(s), f(fp), t(tp) {} Curve *duplicate() const { return new PathPortion(*this); } Point initialPoint() const { return source->pointAt(f); } Point finalPoint() const { return source->pointAt(t); } Path actualPath() { if(!result) *result = source->portion(f, t); return *result; } Rect boundsFast() const { return actualPath().boundsFast; } Rect boundsExact() const { return actualPath().boundsFast; } Rect boundsLocal(Interval i) const { throwNotImplemented(); } std::vector roots(double v, Dim2 d) const = 0; virtual int winding(Point p) const { return root_winding(*this, p); } virtual Curve *portion(double f, double t) const = 0; virtual Curve *reverse() const { return portion(1, 0); } virtual Crossings crossingsWith(Curve const & other) const; virtual void setInitial(Point v) = 0; virtual void setFinal(Point v) = 0; virtual Curve *transformed(Matrix const &m) const = 0; virtual Point pointAt(Coord t) const { return pointAndDerivatives(t, 1).front(); } virtual Coord valueAt(Coord t, Dim2 d) const { return pointAt(t)[d]; } virtual std::vector pointAndDerivatives(Coord t, unsigned n) const = 0; virtual D2 toSBasis() const = 0; }; */ } namespace std { template <> inline void swap(Geom::Path &a, Geom::Path &b) { a.swap(b); } } #endif // SEEN_GEOM_PATH_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(substatement-open . 0)) indent-tabs-mode:nil c-brace-offset:0 fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=2:tabstop=8:softtabstop=2 :