#include "basic-intersection.h" #include "exception.h" #include "angle.h" #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880 #endif unsigned intersect_steps = 0; using std::vector; namespace Geom { class OldBezier { public: std::vector p; OldBezier() { } void split(double t, OldBezier &a, OldBezier &b) const; ~OldBezier() {} void bounds(double &minax, double &maxax, double &minay, double &maxay) { // Compute bounding box for a minax = p[0][X]; // These are the most likely to be extremal maxax = p.back()[X]; if( minax > maxax ) std::swap(minax, maxax); for(unsigned i = 1; i < p.size()-1; i++) { if( p[i][X] < minax ) minax = p[i][X]; else if( p[i][X] > maxax ) maxax = p[i][X]; } minay = p[0][Y]; // These are the most likely to be extremal maxay = p.back()[Y]; if( minay > maxay ) std::swap(minay, maxay); for(unsigned i = 1; i < p.size()-1; i++) { if( p[i][Y] < minay ) minay = p[i][Y]; else if( p[i][Y] > maxay ) maxay = p[i][Y]; } } }; static std::vector > find_intersections( OldBezier a, OldBezier b); static std::vector > find_self_intersections(OldBezier const &Sb, D2 const & A); std::vector > find_intersections( vector const & A, vector const & B) { OldBezier a, b; a.p = A; b.p = B; return find_intersections(a,b); } std::vector > find_self_intersections(OldBezier const &Sb) { throwNotImplemented(0); } std::vector > find_self_intersections(D2 const & A) { OldBezier Sb; Sb.p = sbasis_to_bezier(A); return find_self_intersections(Sb, A); } static std::vector > find_self_intersections(OldBezier const &Sb, D2 const & A) { vector dr = roots(derivative(A[X])); { vector dyr = roots(derivative(A[Y])); dr.insert(dr.begin(), dyr.begin(), dyr.end()); } dr.push_back(0); dr.push_back(1); // We want to be sure that we have no empty segments sort(dr.begin(), dr.end()); unique(dr.begin(), dr.end()); std::vector > all_si; vector pieces; { OldBezier in = Sb, l, r; for(unsigned i = 0; i < dr.size()-1; i++) { in.split((dr[i+1]-dr[i]) / (1 - dr[i]), l, r); pieces.push_back(l); in = r; } } for(unsigned i = 0; i < dr.size()-1; i++) { for(unsigned j = i+1; j < dr.size()-1; j++) { std::vector > section = find_intersections( pieces[i], pieces[j]); for(unsigned k = 0; k < section.size(); k++) { double l = section[k].first; double r = section[k].second; // XXX: This condition will prune out false positives, but it might create some false negatives. Todo: Confirm it is correct. if(j == i+1) if((l == 1) && (r == 0)) continue; all_si.push_back(std::make_pair((1-l)*dr[i] + l*dr[i+1], (1-r)*dr[j] + r*dr[j+1])); } } } // Because i is in order, all_si should be roughly already in order? //sort(all_si.begin(), all_si.end()); //unique(all_si.begin(), all_si.end()); return all_si; } /* The value of 1.0 / (1L<<14) is enough for most applications */ const double INV_EPS = (1L<<14); /* * split the curve at the midpoint, returning an array with the two parts * Temporary storage is minimized by using part of the storage for the result * to hold an intermediate value until it is no longer needed. */ void OldBezier::split(double t, OldBezier &left, OldBezier &right) const { const unsigned sz = p.size(); std::vector Vtemp(p); left.p.resize(sz); right.p.resize(sz); left.p[0] = Vtemp[0]; right.p[sz-1] = Vtemp[sz-1]; /* Triangle computation */ for (unsigned i = 1; i < sz; i++) { for (unsigned j = 0; j < sz - i; j++) { Vtemp[j] = lerp(t, Vtemp[j], Vtemp[j+1]); } left.p[i] = Vtemp[0]; right.p[sz-1-i] = Vtemp[sz-1-i]; } } /* * Test the bounding boxes of two OldBezier curves for interference. * Several observations: * First, it is cheaper to compute the bounding box of the second curve * and test its bounding box for interference than to use a more direct * approach of comparing all control points of the second curve with * the various edges of the bounding box of the first curve to test * for interference. * Second, after a few subdivisions it is highly probable that two corners * of the bounding box of a given Bezier curve are the first and last * control point. Once this happens once, it happens for all subsequent * subcurves. It might be worth putting in a test and then short-circuit * code for further subdivision levels. * Third, in the final comparison (the interference test) the comparisons * should both permit equality. We want to find intersections even if they * occur at the ends of segments. * Finally, there are tighter bounding boxes that can be derived. It isn't * clear whether the higher probability of rejection (and hence fewer * subdivisions and tests) is worth the extra work. */ bool intersect_BB( OldBezier a, OldBezier b ) { double minax, maxax, minay, maxay; a.bounds(minax, maxax, minay, maxay); double minbx, maxbx, minby, maxby; b.bounds(minbx, maxbx, minby, maxby); // Test bounding box of b against bounding box of a // Not >= : need boundary case return !( ( minax > maxbx ) || ( minay > maxby ) || ( minbx > maxax ) || ( minby > maxay ) ); } /* * Recursively intersect two curves keeping track of their real parameters * and depths of intersection. * The results are returned in a 2-D array of doubles indicating the parameters * for which intersections are found. The parameters are in the order the * intersections were found, which is probably not in sorted order. * When an intersection is found, the parameter value for each of the two * is stored in the index elements array, and the index is incremented. * * If either of the curves has subdivisions left before it is straight * (depth > 0) * that curve (possibly both) is (are) subdivided at its (their) midpoint(s). * the depth(s) is (are) decremented, and the parameter value(s) corresponding * to the midpoints(s) is (are) computed. * Then each of the subcurves of one curve is intersected with each of the * subcurves of the other curve, first by testing the bounding boxes for * interference. If there is any bounding box interference, the corresponding * subcurves are recursively intersected. * * If neither curve has subdivisions left, the line segments from the first * to last control point of each segment are intersected. (Actually the * only the parameter value corresponding to the intersection point is found). * * The apriori flatness test is probably more efficient than testing at each * level of recursion, although a test after three or four levels would * probably be worthwhile, since many curves become flat faster than their * asymptotic rate for the first few levels of recursion. * * The bounding box test fails much more frequently than it succeeds, providing * substantial pruning of the search space. * * Each (sub)curve is subdivided only once, hence it is not possible that for * one final line intersection test the subdivision was at one level, while * for another final line intersection test the subdivision (of the same curve) * was at another. Since the line segments share endpoints, the intersection * is robust: a near-tangential intersection will yield zero or two * intersections. */ void recursively_intersect( OldBezier a, double t0, double t1, int deptha, OldBezier b, double u0, double u1, int depthb, std::vector > ¶meters) { intersect_steps ++; if( deptha > 0 ) { OldBezier A[2]; a.split(0.5, A[0], A[1]); double tmid = (t0+t1)*0.5; deptha--; if( depthb > 0 ) { OldBezier B[2]; b.split(0.5, B[0], B[1]); double umid = (u0+u1)*0.5; depthb--; if( intersect_BB( A[0], B[0] ) ) recursively_intersect( A[0], t0, tmid, deptha, B[0], u0, umid, depthb, parameters ); if( intersect_BB( A[1], B[0] ) ) recursively_intersect( A[1], tmid, t1, deptha, B[0], u0, umid, depthb, parameters ); if( intersect_BB( A[0], B[1] ) ) recursively_intersect( A[0], t0, tmid, deptha, B[1], umid, u1, depthb, parameters ); if( intersect_BB( A[1], B[1] ) ) recursively_intersect( A[1], tmid, t1, deptha, B[1], umid, u1, depthb, parameters ); } else { if( intersect_BB( A[0], b ) ) recursively_intersect( A[0], t0, tmid, deptha, b, u0, u1, depthb, parameters ); if( intersect_BB( A[1], b ) ) recursively_intersect( A[1], tmid, t1, deptha, b, u0, u1, depthb, parameters ); } } else if( depthb > 0 ) { OldBezier B[2]; b.split(0.5, B[0], B[1]); double umid = (u0 + u1)*0.5; depthb--; if( intersect_BB( a, B[0] ) ) recursively_intersect( a, t0, t1, deptha, B[0], u0, umid, depthb, parameters ); if( intersect_BB( a, B[1] ) ) recursively_intersect( a, t0, t1, deptha, B[0], umid, u1, depthb, parameters ); } else // Both segments are fully subdivided; now do line segments { double xlk = a.p.back()[X] - a.p[0][X]; double ylk = a.p.back()[Y] - a.p[0][Y]; double xnm = b.p.back()[X] - b.p[0][X]; double ynm = b.p.back()[Y] - b.p[0][Y]; double xmk = b.p[0][X] - a.p[0][X]; double ymk = b.p[0][Y] - a.p[0][Y]; double det = xnm * ylk - ynm * xlk; if( 1.0 + det == 1.0 ) return; else { double detinv = 1.0 / det; double s = ( xnm * ymk - ynm *xmk ) * detinv; double t = ( xlk * ymk - ylk * xmk ) * detinv; if( ( s < 0.0 ) || ( s > 1.0 ) || ( t < 0.0 ) || ( t > 1.0 ) ) return; parameters.push_back(std::pair(t0 + s * ( t1 - t0 ), u0 + t * ( u1 - u0 ))); } } } inline double log4( double x ) { return log(x)/log(4.); } /* * Wang's theorem is used to estimate the level of subdivision required, * but only if the bounding boxes interfere at the top level. * Assuming there is a possible intersection, recursively_intersect is * used to find all the parameters corresponding to intersection points. * these are then sorted and returned in an array. */ double Lmax(Point p) { return std::max(fabs(p[X]), fabs(p[Y])); } unsigned wangs_theorem(OldBezier a) { return 12; // seems a good approximation! double la1 = Lmax( ( a.p[2] - a.p[1] ) - (a.p[1] - a.p[0]) ); double la2 = Lmax( ( a.p[3] - a.p[2] ) - (a.p[2] - a.p[1]) ); double l0 = std::max(la1, la2); unsigned ra; if( l0 * 0.75 * M_SQRT2 + 1.0 == 1.0 ) ra = 0; else ra = (unsigned)ceil( log4( M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0 ) ); std::cout << ra << std::endl; return ra; } std::vector > find_intersections( OldBezier a, OldBezier b) { std::vector > parameters; if( intersect_BB( a, b ) ) { recursively_intersect( a, 0., 1., wangs_theorem(a), b, 0., 1., wangs_theorem(b), parameters); } std::sort(parameters.begin(), parameters.end()); return parameters; } }; /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :