summaryrefslogtreecommitdiffstats
path: root/src/providers/ldap/ldap_id_netgroup.c
blob: 2432f9c4fad24f3e780b2a0524d7d696499534b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
    SSSD

    LDAP Identity Backend Module - Netgroup support

    Authors:
        Sumit Bose <sbose@redhat.com>

    Copyright (C) 2010 Red Hat

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <errno.h>

#include "util/util.h"
#include "db/sysdb.h"
#include "providers/ldap/ldap_common.h"
#include "providers/ldap/sdap_async.h"


struct ldap_netgroup_get_state {
    struct tevent_context *ev;
    struct sdap_id_ctx *ctx;
    struct sdap_id_op *op;
    struct sysdb_ctx *sysdb;
    struct sss_domain_info *domain;

    const char *name;
    int timeout;

    char *filter;
    const char **attrs;

    size_t count;
    struct sysdb_attrs **netgroups;

    int dp_error;
};

static int ldap_netgroup_get_retry(struct tevent_req *req);
static void ldap_netgroup_get_connect_done(struct tevent_req *subreq);
static void ldap_netgroup_get_done(struct tevent_req *subreq);

struct tevent_req *ldap_netgroup_get_send(TALLOC_CTX *memctx,
                                     struct tevent_context *ev,
                                     struct sdap_id_ctx *ctx,
                                     const char *name)
{
    struct tevent_req *req;
    struct ldap_netgroup_get_state *state;
    char *clean_name;
    int ret;

    req = tevent_req_create(memctx, &state, struct ldap_netgroup_get_state);
    if (!req) return NULL;

    state->ev = ev;
    state->ctx = ctx;
    state->dp_error = DP_ERR_FATAL;

    state->op = sdap_id_op_create(state, state->ctx->conn_cache);
    if (!state->op) {
        DEBUG(2, ("sdap_id_op_create failed\n"));
        ret = ENOMEM;
        goto fail;
    }

    state->sysdb = ctx->be->sysdb;
    state->domain = state->ctx->be->domain;
    state->name = name;
    state->timeout = dp_opt_get_int(ctx->opts->basic, SDAP_SEARCH_TIMEOUT);

    ret = sss_filter_sanitize(state, name, &clean_name);
    if (ret != EOK) {
        goto fail;
    }

    state->filter = talloc_asprintf(state, "(&(%s=%s)(objectclass=%s))",
                            ctx->opts->netgroup_map[SDAP_AT_NETGROUP_NAME].name,
                            clean_name,
                            ctx->opts->netgroup_map[SDAP_OC_NETGROUP].name);
    if (!state->filter) {
        DEBUG(2, ("Failed to build filter\n"));
        ret = ENOMEM;
        goto fail;
    }
    talloc_zfree(clean_name);

    ret = build_attrs_from_map(state, ctx->opts->netgroup_map,
                               SDAP_OPTS_NETGROUP, &state->attrs);
    if (ret != EOK) goto fail;

    ret = ldap_netgroup_get_retry(req);
    if (ret != EOK) {
        goto fail;
    }

    return req;

fail:
    tevent_req_error(req, ret);
    tevent_req_post(req, ev);
    return req;
}

static int ldap_netgroup_get_retry(struct tevent_req *req)
{
    struct ldap_netgroup_get_state *state = tevent_req_data(req,
                                                    struct ldap_netgroup_get_state);
    struct tevent_req *subreq;
    int ret = EOK;

    subreq = sdap_id_op_connect_send(state->op, state, &ret);
    if (!subreq) {
        return ret;
    }

    tevent_req_set_callback(subreq, ldap_netgroup_get_connect_done, req);
    return EOK;
}

static void ldap_netgroup_get_connect_done(struct tevent_req *subreq)
{
    struct tevent_req *req = tevent_req_callback_data(subreq,
                                                      struct tevent_req);
    struct ldap_netgroup_get_state *state = tevent_req_data(req,
                                                    struct ldap_netgroup_get_state);
    int dp_error = DP_ERR_FATAL;
    int ret;

    ret = sdap_id_op_connect_recv(subreq, &dp_error);
    talloc_zfree(subreq);

    if (ret != EOK) {
        state->dp_error = dp_error;
        tevent_req_error(req, ret);
        return;
    }

    subreq = sdap_get_netgroups_send(state, state->ev,
                                     state->domain, state->sysdb,
                                     state->ctx->opts,
                                     state->ctx->opts->netgroup_search_bases,
                                     sdap_id_op_handle(state->op),
                                     state->attrs, state->filter,
                                     state->timeout);
    if (!subreq) {
        tevent_req_error(req, ENOMEM);
        return;
    }
    tevent_req_set_callback(subreq, ldap_netgroup_get_done, req);

    return;
}

static void ldap_netgroup_get_done(struct tevent_req *subreq)
{
    struct tevent_req *req = tevent_req_callback_data(subreq,
                                                      struct tevent_req);
    struct ldap_netgroup_get_state *state = tevent_req_data(req,
                                                    struct ldap_netgroup_get_state);
    int dp_error = DP_ERR_FATAL;
    int ret;

    ret = sdap_get_netgroups_recv(subreq, state, NULL, &state->count,
                                  &state->netgroups);
    talloc_zfree(subreq);
    ret = sdap_id_op_done(state->op, ret, &dp_error);

    if (dp_error == DP_ERR_OK && ret != EOK) {
        /* retry */
        ret = ldap_netgroup_get_retry(req);
        if (ret != EOK) {
            tevent_req_error(req, ret);
            return;
        }

        return;
    }

    if (ret && ret != ENOENT) {
        state->dp_error = dp_error;
        tevent_req_error(req, ret);
        return;
    }

    if (ret == EOK && state->count > 1) {
        DEBUG(1, ("Found more than one netgroup with the name [%s].\n",
                  state->name));
        tevent_req_error(req, EINVAL);
        return;
    }

    if (ret == ENOENT) {
        ret = sysdb_delete_netgroup(state->sysdb, state->name);
        if (ret != EOK && ret != ENOENT) {
            tevent_req_error(req, ret);
            return;
        }
    }

    state->dp_error = DP_ERR_OK;
    tevent_req_done(req);
    return;
}

int ldap_netgroup_get_recv(struct tevent_req *req, int *dp_error_out)
{
    struct ldap_netgroup_get_state *state = tevent_req_data(req,
                                                    struct ldap_netgroup_get_state);

    if (dp_error_out) {
        *dp_error_out = state->dp_error;
    }

    TEVENT_REQ_RETURN_ON_ERROR(req);

    return EOK;
}
/span>(void) { void *ptr; if (after_bootmem) ptr = (void *) get_zeroed_page(GFP_ATOMIC); else ptr = alloc_bootmem_pages(PAGE_SIZE); if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":""); Dprintk("spp_getpage %p\n", ptr); return ptr; } static __init void set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte, new_pte; Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys); pgd = pgd_offset_k(vaddr); if (pgd_none(*pgd)) { printk("PGD FIXMAP MISSING, it should be setup in head.S!\n"); return; } pud = pud_offset(pgd, vaddr); if (pud_none(*pud)) { pmd = (pmd_t *) spp_getpage(); set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER)); if (pmd != pmd_offset(pud, 0)) { printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0)); return; } } pmd = pmd_offset(pud, vaddr); if (pmd_none(*pmd)) { pte = (pte_t *) spp_getpage(); set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER)); if (pte != pte_offset_kernel(pmd, 0)) { printk("PAGETABLE BUG #02!\n"); return; } } new_pte = pfn_pte(phys >> PAGE_SHIFT, prot); pte = pte_offset_kernel(pmd, vaddr); if (!pte_none(*pte) && pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask)) pte_ERROR(*pte); set_pte(pte, new_pte); /* * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ __flush_tlb_one(vaddr); } /* NOTE: this is meant to be run only at boot */ void __init __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot) { unsigned long address = __fix_to_virt(idx); if (idx >= __end_of_fixed_addresses) { printk("Invalid __set_fixmap\n"); return; } set_pte_phys(address, phys, prot); } unsigned long __initdata table_start, table_end; extern pmd_t temp_boot_pmds[]; static struct temp_map { pmd_t *pmd; void *address; int allocated; } temp_mappings[] __initdata = { { &temp_boot_pmds[0], (void *)(40UL * 1024 * 1024) }, { &temp_boot_pmds[1], (void *)(42UL * 1024 * 1024) }, {} }; static __meminit void *alloc_low_page(int *index, unsigned long *phys) { struct temp_map *ti; int i; unsigned long pfn = table_end++, paddr; void *adr; if (after_bootmem) { adr = (void *)get_zeroed_page(GFP_ATOMIC); *phys = __pa(adr); return adr; } if (pfn >= end_pfn) panic("alloc_low_page: ran out of memory"); for (i = 0; temp_mappings[i].allocated; i++) { if (!temp_mappings[i].pmd) panic("alloc_low_page: ran out of temp mappings"); } ti = &temp_mappings[i]; paddr = (pfn << PAGE_SHIFT) & PMD_MASK; set_pmd(ti->pmd, __pmd(paddr | _KERNPG_TABLE | _PAGE_PSE)); ti->allocated = 1; __flush_tlb(); adr = ti->address + ((pfn << PAGE_SHIFT) & ~PMD_MASK); memset(adr, 0, PAGE_SIZE); *index = i; *phys = pfn * PAGE_SIZE; return adr; } static __meminit void unmap_low_page(int i) { struct temp_map *ti; if (after_bootmem) return; ti = &temp_mappings[i]; set_pmd(ti->pmd, __pmd(0)); ti->allocated = 0; } /* Must run before zap_low_mappings */ __init void *early_ioremap(unsigned long addr, unsigned long size) { unsigned long map = round_down(addr, LARGE_PAGE_SIZE); /* actually usually some more */ if (size >= LARGE_PAGE_SIZE) { return NULL; } set_pmd(temp_mappings[0].pmd, __pmd(map | _KERNPG_TABLE | _PAGE_PSE)); map += LARGE_PAGE_SIZE; set_pmd(temp_mappings[1].pmd, __pmd(map | _KERNPG_TABLE | _PAGE_PSE)); __flush_tlb(); return temp_mappings[0].address + (addr & (LARGE_PAGE_SIZE-1)); } /* To avoid virtual aliases later */ __init void early_iounmap(void *addr, unsigned long size) { if ((void *)round_down((unsigned long)addr, LARGE_PAGE_SIZE) != temp_mappings[0].address) printk("early_iounmap: bad address %p\n", addr); set_pmd(temp_mappings[0].pmd, __pmd(0)); set_pmd(temp_mappings[1].pmd, __pmd(0)); __flush_tlb(); } static void __meminit phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end) { int i = pmd_index(address); for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { unsigned long entry; pmd_t *pmd = pmd_page + pmd_index(address); if (address >= end) { if (!after_bootmem) for (; i < PTRS_PER_PMD; i++, pmd++) set_pmd(pmd, __pmd(0)); break; } if (pmd_val(*pmd)) continue; entry = _PAGE_NX|_PAGE_PSE|_KERNPG_TABLE|_PAGE_GLOBAL|address; entry &= __supported_pte_mask; set_pmd(pmd, __pmd(entry)); } } static void __meminit phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end) { pmd_t *pmd = pmd_offset(pud,0); spin_lock(&init_mm.page_table_lock); phys_pmd_init(pmd, address, end); spin_unlock(&init_mm.page_table_lock); __flush_tlb_all(); } static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end) { int i = pud_index(addr); for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) { int map; unsigned long pmd_phys; pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; if (addr >= end) break; if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) { set_pud(pud, __pud(0)); continue; } if (pud_val(*pud)) { phys_pmd_update(pud, addr, end); continue; } pmd = alloc_low_page(&map, &pmd_phys); spin_lock(&init_mm.page_table_lock); set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE)); phys_pmd_init(pmd, addr, end); spin_unlock(&init_mm.page_table_lock); unmap_low_page(map); } __flush_tlb(); } static void __init find_early_table_space(unsigned long end) { unsigned long puds, pmds, tables, start; puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) + round_up(pmds * sizeof(pmd_t), PAGE_SIZE); /* RED-PEN putting page tables only on node 0 could cause a hotspot and fill up ZONE_DMA. The page tables need roughly 0.5KB per GB. */ start = 0x8000; table_start = find_e820_area(start, end, tables); if (table_start == -1UL) panic("Cannot find space for the kernel page tables"); table_start >>= PAGE_SHIFT; table_end = table_start; early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n", end, table_start << PAGE_SHIFT, (table_start << PAGE_SHIFT) + tables); } /* Setup the direct mapping of the physical memory at PAGE_OFFSET. This runs before bootmem is initialized and gets pages directly from the physical memory. To access them they are temporarily mapped. */ void __meminit init_memory_mapping(unsigned long start, unsigned long end) { unsigned long next; Dprintk("init_memory_mapping\n"); /* * Find space for the kernel direct mapping tables. * Later we should allocate these tables in the local node of the memory * mapped. Unfortunately this is done currently before the nodes are * discovered. */ if (!after_bootmem) find_early_table_space(end); start = (unsigned long)__va(start); end = (unsigned long)__va(end); for (; start < end; start = next) { int map; unsigned long pud_phys; pgd_t *pgd = pgd_offset_k(start); pud_t *pud; if (after_bootmem) pud = pud_offset(pgd, start & PGDIR_MASK); else pud = alloc_low_page(&map, &pud_phys); next = start + PGDIR_SIZE; if (next > end) next = end; phys_pud_init(pud, __pa(start), __pa(next)); if (!after_bootmem) set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys)); unmap_low_page(map); } if (!after_bootmem) asm volatile("movq %%cr4,%0" : "=r" (mmu_cr4_features)); __flush_tlb_all(); } void __cpuinit zap_low_mappings(int cpu) { if (cpu == 0) { pgd_t *pgd = pgd_offset_k(0UL); pgd_clear(pgd); } else { /* * For AP's, zap the low identity mappings by changing the cr3 * to init_level4_pgt and doing local flush tlb all */ asm volatile("movq %0,%%cr3" :: "r" (__pa_symbol(&init_level4_pgt))); } __flush_tlb_all(); } #ifndef CONFIG_NUMA void __init paging_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; max_zone_pfns[ZONE_NORMAL] = end_pfn; memory_present(0, 0, end_pfn); sparse_init(); free_area_init_nodes(max_zone_pfns); } #endif /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches from the CPU leading to inconsistent cache lines. address and size must be aligned to 2MB boundaries. Does nothing when the mapping doesn't exist. */ void __init clear_kernel_mapping(unsigned long address, unsigned long size) { unsigned long end = address + size; BUG_ON(address & ~LARGE_PAGE_MASK); BUG_ON(size & ~LARGE_PAGE_MASK); for (; address < end; address += LARGE_PAGE_SIZE) { pgd_t *pgd = pgd_offset_k(address); pud_t *pud; pmd_t *pmd; if (pgd_none(*pgd)) continue; pud = pud_offset(pgd, address); if (pud_none(*pud)) continue; pmd = pmd_offset(pud, address); if (!pmd || pmd_none(*pmd)) continue; if (0 == (pmd_val(*pmd) & _PAGE_PSE)) { /* Could handle this, but it should not happen currently. */ printk(KERN_ERR "clear_kernel_mapping: mapping has been split. will leak memory\n"); pmd_ERROR(*pmd); } set_pmd(pmd, __pmd(0)); } __flush_tlb_all(); } /* * Memory hotplug specific functions */ void online_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); totalram_pages++; num_physpages++; } #ifdef CONFIG_MEMORY_HOTPLUG /* * Memory is added always to NORMAL zone. This means you will never get * additional DMA/DMA32 memory. */ int arch_add_memory(int nid, u64 start, u64 size) { struct pglist_data *pgdat = NODE_DATA(nid); struct zone *zone = pgdat->node_zones + ZONE_NORMAL; unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; int ret; init_memory_mapping(start, (start + size -1)); ret = __add_pages(zone, start_pfn, nr_pages); if (ret) goto error; return ret; error: printk("%s: Problem encountered in __add_pages!\n", __func__); return ret; } EXPORT_SYMBOL_GPL(arch_add_memory); int remove_memory(u64 start, u64 size) { return -EINVAL; } EXPORT_SYMBOL_GPL(remove_memory); #ifndef CONFIG_ACPI_NUMA int memory_add_physaddr_to_nid(u64 start) { return 0; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif #ifndef CONFIG_ACPI_NUMA int memory_add_physaddr_to_nid(u64 start) { return 0; } #endif #endif /* CONFIG_MEMORY_HOTPLUG */ #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE /* * Memory Hotadd without sparsemem. The mem_maps have been allocated in advance, * just online the pages. */ int __add_pages(struct zone *z, unsigned long start_pfn, unsigned long nr_pages) { int err = -EIO; unsigned long pfn; unsigned long total = 0, mem = 0; for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn++) { if (pfn_valid(pfn)) { online_page(pfn_to_page(pfn)); err = 0; mem++; } total++; } if (!err) { z->spanned_pages += total; z->present_pages += mem; z->zone_pgdat->node_spanned_pages += total; z->zone_pgdat->node_present_pages += mem; } return err; } #endif static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules, kcore_vsyscall; void __init mem_init(void) { long codesize, reservedpages, datasize, initsize; pci_iommu_alloc(); /* clear the zero-page */ memset(empty_zero_page, 0, PAGE_SIZE); reservedpages = 0; /* this will put all low memory onto the freelists */ #ifdef CONFIG_NUMA totalram_pages = numa_free_all_bootmem(); #else totalram_pages = free_all_bootmem(); #endif reservedpages = end_pfn - totalram_pages - absent_pages_in_range(0, end_pfn); after_bootmem = 1; codesize = (unsigned long) &_etext - (unsigned long) &_text; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; /* Register memory areas for /proc/kcore */ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); kclist_add(&kcore_kernel, &_stext, _end - _stext); kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, VSYSCALL_END - VSYSCALL_START); printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), end_pfn << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10); #ifdef CONFIG_SMP /* * Sync boot_level4_pgt mappings with the init_level4_pgt * except for the low identity mappings which are already zapped * in init_level4_pgt. This sync-up is essential for AP's bringup */ memcpy(boot_level4_pgt+1, init_level4_pgt+1, (PTRS_PER_PGD-1)*sizeof(pgd_t)); #endif } void free_init_pages(char *what, unsigned long begin, unsigned long end) { unsigned long addr; if (begin >= end) return; printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); for (addr = begin; addr < end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); memset((void *)(addr & ~(PAGE_SIZE-1)), POISON_FREE_INITMEM, PAGE_SIZE); free_page(addr); totalram_pages++; } } void free_initmem(void) { memset(__initdata_begin, POISON_FREE_INITDATA, __initdata_end - __initdata_begin); free_init_pages("unused kernel memory", (unsigned long)(&__init_begin), (unsigned long)(&__init_end)); } #ifdef CONFIG_DEBUG_RODATA void mark_rodata_ro(void) { unsigned long addr = (unsigned long)__start_rodata; for (; addr < (unsigned long)__end_rodata; addr += PAGE_SIZE) change_page_attr_addr(addr, 1, PAGE_KERNEL_RO); printk ("Write protecting the kernel read-only data: %luk\n", (__end_rodata - __start_rodata) >> 10); /* * change_page_attr_addr() requires a global_flush_tlb() call after it. * We do this after the printk so that if something went wrong in the * change, the printk gets out at least to give a better debug hint * of who is the culprit. */ global_flush_tlb(); } #endif #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { free_init_pages("initrd memory", start, end); } #endif void __init reserve_bootmem_generic(unsigned long phys, unsigned len) { /* Should check here against the e820 map to avoid double free */ #ifdef CONFIG_NUMA int nid = phys_to_nid(phys); reserve_bootmem_node(NODE_DATA(nid), phys, len); #else reserve_bootmem(phys, len); #endif if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { dma_reserve += len / PAGE_SIZE; set_dma_reserve(dma_reserve); } } int kern_addr_valid(unsigned long addr) { unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if (above != 0 && above != -1UL) return 0; pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) return 0; pud = pud_offset(pgd, addr); if (pud_none(*pud)) return 0; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return 0; if (pmd_large(*pmd)) return pfn_valid(pmd_pfn(*pmd)); pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) return 0; return pfn_valid(pte_pfn(*pte)); } #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> extern int exception_trace, page_fault_trace; static ctl_table debug_table2[] = { { 99, "exception-trace", &exception_trace, sizeof(int), 0644, NULL, proc_dointvec }, { 0, } }; static ctl_table debug_root_table2[] = { { .ctl_name = CTL_DEBUG, .procname = "debug", .mode = 0555, .child = debug_table2 }, { 0 }, }; static __init int x8664_sysctl_init(void) { register_sysctl_table(debug_root_table2, 1); return 0; } __initcall(x8664_sysctl_init); #endif /* A pseudo VMAs to allow ptrace access for the vsyscall page. This only covers the 64bit vsyscall page now. 32bit has a real VMA now and does not need special handling anymore. */ static struct vm_area_struct gate_vma = { .vm_start = VSYSCALL_START, .vm_end = VSYSCALL_END, .vm_page_prot = PAGE_READONLY }; struct vm_area_struct *get_gate_vma(struct task_struct *tsk) { #ifdef CONFIG_IA32_EMULATION if (test_tsk_thread_flag(tsk, TIF_IA32)) return NULL; #endif return &gate_vma; } int in_gate_area(struct task_struct *task, unsigned long addr) { struct vm_area_struct *vma = get_gate_vma(task); if (!vma) return 0; return (addr >= vma->vm_start) && (addr < vma->vm_end); } /* Use this when you have no reliable task/vma, typically from interrupt * context. It is less reliable than using the task's vma and may give * false positives. */ int in_gate_area_no_task(unsigned long addr) { return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); }