summaryrefslogtreecommitdiffstats
path: root/server/glz_encode_tmpl.c
blob: 359a25b148078cc4cc47d0a1dc31adfa79a6c887 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/*
   Copyright (C) 2009 Red Hat, Inc.

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/

#define DJB2_START 5381;
#define DJB2_HASH(hash, c) (hash = ((hash << 5) + hash) ^ (c)) //|{hash = ((hash << 5) + hash) + c;}

/*
    For each pixel type the following macros are defined:
    PIXEL                         : input type
    FNAME(name)
    ENCODE_PIXEL(encoder, pixel) : writing a pixel to the compressed buffer (byte by byte)
    SAME_PIXEL(pix1, pix2)         : comparing two pixels
    HASH_FUNC(value, pix_ptr)    : hash func of 3 consecutive pixels
*/

#ifdef LZ_PLT
#define PIXEL one_byte_pixel_t
#define FNAME(name) glz_plt_##name
#define ENCODE_PIXEL(e, pix) encode(e, (pix).a)   // gets the pixel and write only the needed bytes
                                                  // from the pixel
#define SAME_PIXEL(pix1, pix2) ((pix1).a == (pix2).a)
#define MIN_REF_ENCODE_SIZE 4
#define MAX_REF_ENCODE_SIZE 7
#define HASH_FUNC(v, p) {  \
    v = DJB2_START;        \
    DJB2_HASH(v, p[0].a);  \
    DJB2_HASH(v, p[1].a);  \
    DJB2_HASH(v, p[2].a);  \
    v &= HASH_MASK;        \
    }
#endif

#ifdef LZ_RGB_ALPHA
//#undef LZ_RGB_ALPHA
#define PIXEL rgb32_pixel_t
#define FNAME(name) glz_rgb_alpha_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).pad);}
#define SAME_PIXEL(pix1, pix2) ((pix1).pad == (pix2).pad)
#define MIN_REF_ENCODE_SIZE 4
#define MAX_REF_ENCODE_SIZE 7
#define HASH_FUNC(v, p) {    \
    v = DJB2_START;          \
    DJB2_HASH(v, p[0].pad);  \
    DJB2_HASH(v, p[1].pad);  \
    DJB2_HASH(v, p[2].pad);  \
    v &= HASH_MASK;          \
    }
#endif


#ifdef LZ_RGB16
#define PIXEL rgb16_pixel_t
#define FNAME(name) glz_rgb16_##name
#define GET_r(pix) (((pix) >> 10) & 0x1f)
#define GET_g(pix) (((pix) >> 5) & 0x1f)
#define GET_b(pix) ((pix) & 0x1f)
#define ENCODE_PIXEL(e, pix) {encode(e, (pix) >> 8); encode(e, (pix) & 0xff);}
#define MIN_REF_ENCODE_SIZE 2
#define MAX_REF_ENCODE_SIZE 3
#define HASH_FUNC(v, p) {                  \
    v = DJB2_START;                        \
    DJB2_HASH(v, p[0] & (0x00ff));         \
    DJB2_HASH(v, (p[0] >> 8) & (0x007f));  \
    DJB2_HASH(v, p[1] & (0x00ff));         \
    DJB2_HASH(v, (p[1] >> 8) & (0x007f));  \
    DJB2_HASH(v, p[2] & (0x00ff));         \
    DJB2_HASH(v, (p[2] >> 8) & (0x007f));  \
    v &= HASH_MASK;                        \
}
#endif

#ifdef LZ_RGB24
#define PIXEL rgb24_pixel_t
#define FNAME(name) glz_rgb24_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).b); encode(e, (pix).g); encode(e, (pix).r);}
#define MIN_REF_ENCODE_SIZE 2
#define MAX_REF_ENCODE_SIZE 2
#endif

#ifdef LZ_RGB32
#define PIXEL rgb32_pixel_t
#define FNAME(name) glz_rgb32_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).b); encode(e, (pix).g); encode(e, (pix).r);}
#define MIN_REF_ENCODE_SIZE 2
#define MAX_REF_ENCODE_SIZE 2
#endif


#if  defined(LZ_RGB24) || defined(LZ_RGB32)
#define GET_r(pix) ((pix).r)
#define GET_g(pix) ((pix).g)
#define GET_b(pix) ((pix).b)
#define HASH_FUNC(v, p) {    \
    v = DJB2_START;          \
    DJB2_HASH(v, p[0].r);    \
    DJB2_HASH(v, p[0].g);    \
    DJB2_HASH(v, p[0].b);    \
    DJB2_HASH(v, p[1].r);    \
    DJB2_HASH(v, p[1].g);    \
    DJB2_HASH(v, p[1].b);    \
    DJB2_HASH(v, p[2].r);    \
    DJB2_HASH(v, p[2].g);    \
    DJB2_HASH(v, p[2].b);    \
    v &= HASH_MASK;          \
    }
#endif

#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
#define SAME_PIXEL(p1, p2) (GET_r(p1) == GET_r(p2) && GET_g(p1) == GET_g(p2) && \
                            GET_b(p1) == GET_b(p2))

#endif

#ifndef LZ_PLT
#define PIXEL_ID(pix_ptr, seg_ptr) \
    ((pix_ptr) - ((PIXEL *)(seg_ptr)->lines) + (seg_ptr)->pixels_so_far)
#define PIXEL_DIST(src_pix_ptr, src_seg_ptr, ref_pix_ptr, ref_seg_ptr) \
    (PIXEL_ID(src_pix_ptr,src_seg_ptr) - PIXEL_ID(ref_pix_ptr, ref_seg_ptr))
#else
#define PIXEL_ID(pix_ptr, seg_ptr, pix_per_byte) \
    (((pix_ptr) - ((PIXEL *)(seg_ptr)->lines)) * pix_per_byte + (seg_ptr)->pixels_so_far)
#define PIXEL_DIST(src_pix_ptr, src_seg_ptr, ref_pix_ptr, ref_seg_ptr, pix_per_byte) \
    ((PIXEL_ID(src_pix_ptr,src_seg_ptr, pix_per_byte) - \
    PIXEL_ID(ref_pix_ptr, ref_seg_ptr, pix_per_byte)) / pix_per_byte)
#endif

/* returns the length of the match. 0 if no match.
  if image_distance = 0, pixel_distance is the distance between the matching pixels.
  Otherwise, it is the offset from the beginning of the referred image */
static INLINE size_t FNAME(do_match)(SharedDictionary *dict, 
                                     WindowImageSegment *ref_seg, const PIXEL *ref, 
                                     const PIXEL *ref_limit,
                                     WindowImageSegment *ip_seg,  const PIXEL *ip, 
                                     const PIXEL *ip_limit,
#ifdef  LZ_PLT
                                     int pix_per_byte,
#endif
                                     size_t *o_image_dist, size_t *o_pix_distance)
{
    int encode_size;
    const PIXEL *tmp_ip = ip;
    const PIXEL *tmp_ref = ref;

    if (ref > (ref_limit - MIN_REF_ENCODE_SIZE)) {
        return 0; // in case the hash entry is not relevant
    }


    /* min match length == MIN_REF_ENCODE_SIZE (depends on pixel type) */

    if (!SAME_PIXEL(*tmp_ref, *tmp_ip)) {
        return 0;
    } else {
        tmp_ref++;
        tmp_ip++;
    }


    if (!SAME_PIXEL(*tmp_ref, *tmp_ip)) {
        return 0;
    } else {
        tmp_ref++;
        tmp_ip++;
    }

#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
    if (!SAME_PIXEL(*tmp_ref, *tmp_ip)) {
        return 0;
    } else {
        tmp_ref++;
        tmp_ip++;
    }


    if (!SAME_PIXEL(*tmp_ref, *tmp_ip)) {
        return 0;
    } else {
        tmp_ref++;
        tmp_ip++;
    }

#endif


    *o_image_dist = ip_seg->image->id - ref_seg->image->id;

    if (!(*o_image_dist)) { // the ref is inside the same image - encode distance
#ifndef LZ_PLT
        *o_pix_distance = PIXEL_DIST(ip, ip_seg, ref, ref_seg);
#else
        // in bytes
        *o_pix_distance = PIXEL_DIST(ip, ip_seg, ref, ref_seg, pix_per_byte);
#endif
    } else { // the ref is at different image - encode offset from the image start
#ifndef LZ_PLT
        *o_pix_distance = PIXEL_DIST(ref, ref_seg,
                                     (PIXEL *)(dict->window.segs[ref_seg->image->first_seg].lines),
                                     &dict->window.segs[ref_seg->image->first_seg]
                                     );
#else
        // in bytes
        *o_pix_distance = PIXEL_DIST(ref, ref_seg,
                                     (PIXEL *)(dict->window.segs[ref_seg->image->first_seg].lines),
                                     &dict->window.segs[ref_seg->image->first_seg],
                                     pix_per_byte);
#endif
    }

    if ((*o_pix_distance == 0) || (*o_pix_distance >= MAX_PIXEL_LONG_DISTANCE) ||
        (*o_image_dist > MAX_IMAGE_DIST)) {
        return 0;
    }


    /* continue the match*/
    while ((tmp_ip < ip_limit) && (tmp_ref < ref_limit)) {
        if (!SAME_PIXEL(*tmp_ref, *tmp_ip)) {
            break;
        } else {
            tmp_ref++;
            tmp_ip++;
        }
    }


    if ((tmp_ip - ip) > MAX_REF_ENCODE_SIZE) {
        return (tmp_ip - ip);
    }

    encode_size = get_encode_ref_size(*o_image_dist, *o_pix_distance);

    // min number of identical pixels for a match
#if defined(LZ_RGB16)
    encode_size /= 2;
#elif defined(LZ_RGB24) || defined(LZ_RGB32)
    encode_size /= 3;
#endif

    encode_size++; // the minimum match
    // match len is smaller than the encoding - not worth encoding
    if ((tmp_ip - ip) < encode_size) {
        return 0;
    }
    return (tmp_ip - ip);
}

/* compresses one segment starting from 'from'.
   In order to encode a match, we use pixels resolution when we encode RGB image,
   and bytes count when we encode PLT.
*/
static void FNAME(compress_seg)(Encoder *encoder, uint32_t seg_idx, PIXEL *from, int copied)
{
    WindowImageSegment *seg = &encoder->dict->window.segs[seg_idx];
    const PIXEL *ip = from;
    const PIXEL *ip_bound = (PIXEL *)(seg->lines_end) - BOUND_OFFSET;
    const PIXEL *ip_limit = (PIXEL *)(seg->lines_end) - LIMIT_OFFSET;
    int hval;
    int copy = copied;
#ifdef  LZ_PLT
    int pix_per_byte = PLT_PIXELS_PER_BYTE[encoder->cur_image.type];
#endif

#ifdef DEBUG_ENCODE
    int n_encoded = 0;
#endif

    if (copy == 0) {
        encode_copy_count(encoder, MAX_COPY - 1);
    }


    while (LZ_EXPECT_CONDITIONAL(ip < ip_limit)) {
        const PIXEL            *ref;
        const PIXEL            *ref_limit;
        WindowImageSegment     *ref_seg;
        uint32_t ref_seg_idx;
        size_t pix_dist;
        size_t image_dist;
        /* minimum match length */
        size_t len = 0;

        /* comparison starting-point */
        const PIXEL            *anchor = ip;
#ifdef CHAINED_HASH
        int hash_id = 0;
        size_t best_len = 0;
        size_t best_pix_dist = 0;
        size_t best_image_dist = 0;
#endif

        /* check for a run */

        if (LZ_EXPECT_CONDITIONAL(ip > (PIXEL *)(seg->lines))) {
            if (SAME_PIXEL(ip[-1], ip[0]) && SAME_PIXEL(ip[0], ip[1]) && SAME_PIXEL(ip[1], ip[2])) {
                PIXEL x;
                pix_dist = 1;
                image_dist = 0;

                ip += 3;
                ref = anchor + 2;
                ref_limit = (PIXEL *)(seg->lines_end);
                len = 3;

                x = *ref;

                while (ip < ip_bound) { // TODO: maybe separate a run from the same seg or from
                                       // different ones in order to spare ref < ref_limit
                    if (!SAME_PIXEL(*ip, x)) {
                        ip++;
                        break;
                    } else {
                        ip++;
                        len++;
                    }
                }

                goto match;
            } // END RLE MATCH
        }

        /* find potential match */
        HASH_FUNC(hval, ip);

#ifdef CHAINED_HASH
        for (hash_id = 0; hash_id < HASH_CHAIN_SIZE; hash_id++) {
            ref_seg_idx = encoder->dict->htab[hval][hash_id].image_seg_idx;
#else
        ref_seg_idx = encoder->dict->htab[hval].image_seg_idx;
#endif
            ref_seg = encoder->dict->window.segs + ref_seg_idx;
            if (REF_SEG_IS_VALID(encoder->dict, encoder->id,
                                 ref_seg, seg)) {
#ifdef CHAINED_HASH
                ref = ((PIXEL *)ref_seg->lines) + encoder->dict->htab[hval][hash_id].ref_pix_idx;
#else
                ref = ((PIXEL *)ref_seg->lines) + encoder->dict->htab[hval].ref_pix_idx;
#endif
                ref_limit = (PIXEL *)ref_seg->lines_end;

                len = FNAME(do_match)(encoder->dict, ref_seg, ref, ref_limit, seg, ip, ip_bound,
#ifdef  LZ_PLT
                                      pix_per_byte,
#endif
                                      &image_dist, &pix_dist);

#ifdef CHAINED_HASH
                // TODO. not compare len but rather len - encode_size
                if (len > best_len) {
                    best_len = len;
                    best_pix_dist = pix_dist;
                    best_image_dist = image_dist;
                }
#endif
            }

#ifdef CHAINED_HASH
        } // end chain loop
        len = best_len;
        pix_dist = best_pix_dist;
        image_dist = best_image_dist;
#endif

        /* update hash table */
        UPDATE_HASH(encoder->dict, hval, seg_idx, anchor - ((PIXEL *)seg->lines));

        if (!len) {
            goto literal;
        }

match:        // RLE or dictionary (both are encoded by distance from ref (-1) and length)
#ifdef DEBUG_ENCODE
        printf(", match(%d, %d, %d)", image_dist, pix_dist, len);
        n_encoded += len;
#endif

        /* distance is biased */
        if (!image_dist) {
            pix_dist--;
        }

        /* if we have copied something, adjust the copy count */
        if (copy) {
            /* copy is biased, '0' means 1 byte copy */
            update_copy_count(encoder, copy - 1);
        } else {
            /* back, to overwrite the copy count */
            compress_output_prev(encoder);
        }

        /* reset literal counter */
        copy = 0;

        /* length is biased, '1' means a match of 3 pixels for PLT and alpha*/
        /* for RGB 16 1 means 2 */
        /* for RGB24/32 1 means 1...*/
        ip = anchor + len - 2;

#if defined(LZ_RGB16)
        len--;
#elif defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
        len -= 2;
#endif
        GLZ_ASSERT(encoder->usr, len > 0);
        encode_match(encoder, image_dist, pix_dist, len);

        /* update the hash at match boundary */
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
        if (ip > anchor) {
#endif
            HASH_FUNC(hval, ip);
            UPDATE_HASH(encoder->dict, hval, seg_idx, ip - ((PIXEL *)seg->lines));
            ip++;
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
        } else {ip++;
        }
#endif
#if defined(LZ_RGB24) || defined(LZ_RGB32)
        if (ip > anchor) {
#endif
            HASH_FUNC(hval, ip);
            UPDATE_HASH(encoder->dict, hval, seg_idx, ip - ((PIXEL *)seg->lines));
            ip++;
#if defined(LZ_RGB24) || defined(LZ_RGB32)
        } else {
            ip++;
        }
#endif
        /* assuming literal copy */
        encode_copy_count(encoder, MAX_COPY - 1);
        continue;

literal:
#ifdef DEBUG_ENCODE
        printf(", copy");
        n_encoded++;
#endif
        ENCODE_PIXEL(encoder, *anchor);
        anchor++;
        ip = anchor;
        copy++;

        if (LZ_UNEXPECT_CONDITIONAL(copy == MAX_COPY)) {
            copy = 0;
            encode_copy_count(encoder, MAX_COPY - 1);
        }
    } // END LOOP (ip < ip_limit)


    /* left-over as literal copy */
    ip_bound++;
    while (ip <= ip_bound) {
#ifdef DEBUG_ENCODE
        printf(", copy");
        n_encoded++;
#endif
        ENCODE_PIXEL(encoder, *ip);
        ip++;
        copy++;
        if (copy == MAX_COPY) {
            copy = 0;
            encode_copy_count(encoder, MAX_COPY - 1);
        }
    }

    /* if we have copied something, adjust the copy length */
    if (copy) {
        update_copy_count(encoder, copy - 1);
    } else {
        compress_output_prev(encoder);
    }
#ifdef DEBUG_ENCODE
    printf("\ntotal encoded=%d\n", n_encoded);
#endif
}


/*  If the file is very small, copies it.
    copies the first two pixels of the first segment, and sends the segments
    one by one to compress_seg.
    the number of bytes compressed are stored inside encoder. */
static void FNAME(compress)(Encoder *encoder)
{
    uint32_t seg_id = encoder->cur_image.first_win_seg;
    PIXEL    *ip;
    SharedDictionary *dict = encoder->dict;
    int hval;

    // fetch the first image segment that is not too small
    while ((seg_id != NULL_IMAGE_SEG_ID) &&
           (dict->window.segs[seg_id].image->id == encoder->cur_image.id) &&
           ((((PIXEL *)dict->window.segs[seg_id].lines_end) -
             ((PIXEL *)dict->window.segs[seg_id].lines)) < 4)) {
        // coping the segment
        if (dict->window.segs[seg_id].lines != dict->window.segs[seg_id].lines_end) {
            ip = (PIXEL *)dict->window.segs[seg_id].lines;
            // Note: we assume MAX_COPY > 3
            encode_copy_count(encoder, (uint8_t)(
                                  (((PIXEL *)dict->window.segs[seg_id].lines_end) -
                                   ((PIXEL *)dict->window.segs[seg_id].lines)) - 1));
            while (ip < (PIXEL *)dict->window.segs[seg_id].lines_end) {
                ENCODE_PIXEL(encoder, *ip);
                ip++;
            }
        }
        seg_id = dict->window.segs[seg_id].next;
    }

    if ((seg_id == NULL_IMAGE_SEG_ID) ||
        (dict->window.segs[seg_id].image->id != encoder->cur_image.id)) {
        return;
    }

    ip = (PIXEL *)dict->window.segs[seg_id].lines;


    encode_copy_count(encoder, MAX_COPY - 1);

    HASH_FUNC(hval, ip);
    UPDATE_HASH(encoder->dict, hval, seg_id, 0);

    ENCODE_PIXEL(encoder, *ip);
    ip++;
    ENCODE_PIXEL(encoder, *ip);
    ip++;
#ifdef DEBUG_ENCODE
    printf("copy, copy");
#endif
    // compressing the first segment
    FNAME(compress_seg)(encoder, seg_id, ip, 2);

    // compressing the next segments
    for (seg_id = dict->window.segs[seg_id].next; 
        seg_id != NULL_IMAGE_SEG_ID && (
        dict->window.segs[seg_id].image->id == encoder->cur_image.id); 
        seg_id = dict->window.segs[seg_id].next) {
        FNAME(compress_seg)(encoder, seg_id, (PIXEL *)dict->window.segs[seg_id].lines, 0);
    }
}

#undef FNAME
#undef PIXEL_ID
#undef PIXEL_DIST
#undef PIXEL
#undef ENCODE_PIXEL
#undef SAME_PIXEL
#undef HASH_FUNC
#undef GET_r
#undef GET_g
#undef GET_b
#undef GET_CODE
#undef LZ_PLT
#undef LZ_RGB_ALPHA
#undef LZ_RGB16
#undef LZ_RGB24
#undef LZ_RGB32
#undef MIN_REF_ENCODE_SIZE
#undef MAX_REF_ENCODE_SIZE