summaryrefslogtreecommitdiffstats
path: root/pki/base/common/src/com/netscape/cms/authentication/Crypt.java
blob: 950120399b7cbd3195e555f4bca812c590e97152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// --- BEGIN COPYRIGHT BLOCK ---
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
//
// (C) 2007 Red Hat, Inc.
// All rights reserved.
// --- END COPYRIGHT BLOCK ---
package com.netscape.cms.authentication;


public class Crypt {
    // Static data:
    static byte[]
        IP =		// Initial permutation
        {
            58, 50, 42, 34, 26, 18, 10, 2,
            60, 52, 44, 36, 28, 20, 12, 4,
            62, 54, 46, 38, 30, 22, 14, 6,
            64, 56, 48, 40, 32, 24, 16, 8,
            57, 49, 41, 33, 25, 17, 9, 1,
            59, 51, 43, 35, 27, 19, 11, 3,
            61, 53, 45, 37, 29, 21, 13, 5,
            63, 55, 47, 39, 31, 23, 15, 7
        },
        FP =		// Final permutation, FP = IP^(-1)
        {
            40, 8, 48, 16, 56, 24, 64, 32,
            39, 7, 47, 15, 55, 23, 63, 31,
            38, 6, 46, 14, 54, 22, 62, 30,
            37, 5, 45, 13, 53, 21, 61, 29,
            36, 4, 44, 12, 52, 20, 60, 28,
            35, 3, 43, 11, 51, 19, 59, 27,
            34, 2, 42, 10, 50, 18, 58, 26,
            33, 1, 41, 9, 49, 17, 57, 25
        },
        // Permuted-choice 1 from the key bits to yield C and D.
        // Note that bits 8,16... are left out:
        // They are intended for a parity check.
        PC1_C =
        {
            57, 49, 41, 33, 25, 17, 9,
            1, 58, 50, 42, 34, 26, 18,
            10, 2, 59, 51, 43, 35, 27,
            19, 11, 3, 60, 52, 44, 36
        },
        PC1_D =
        {
            63, 55, 47, 39, 31, 23, 15,
            7, 62, 54, 46, 38, 30, 22,
            14, 6, 61, 53, 45, 37, 29,
            21, 13, 5, 28, 20, 12, 4
        },
        shifts =	// Sequence of shifts used for the key schedule.
        {
            1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
        },
        // Permuted-choice 2, to pick out the bits from
        // the CD array that generate the key schedule.
        PC2_C =
        {
            14, 17, 11, 24, 1, 5,
            3, 28, 15, 6, 21, 10,
            23, 19, 12, 4, 26, 8,
            16, 7, 27, 20, 13, 2
        },
        PC2_D =
        {
            41, 52, 31, 37, 47, 55,
            30, 40, 51, 45, 33, 48,
            44, 49, 39, 56, 34, 53,
            46, 42, 50, 36, 29, 32
        },
        e2 =		// The E-bit selection table. (see E below)
        {
            32, 1, 2, 3, 4, 5,
            4, 5, 6, 7, 8, 9,
            8, 9, 10, 11, 12, 13,
            12, 13, 14, 15, 16, 17,
            16, 17, 18, 19, 20, 21,
            20, 21, 22, 23, 24, 25,
            24, 25, 26, 27, 28, 29,
            28, 29, 30, 31, 32, 1
        },
        // P is a permutation on the selected combination of
        // the current L and key.
        P =
        {
            16, 7, 20, 21,
            29, 12, 28, 17,
            1, 15, 23, 26,
            5, 18, 31, 10,
            2, 8, 24, 14,
            32, 27, 3, 9,
            19, 13, 30, 6,
            22, 11, 4, 25
        };
    // The 8 selection functions.  For some reason, they gave a 0-origin
    // index, unlike everything else.
    static byte[][] S =
        {
            {
                14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
                0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
                4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
                15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
            }, {
                15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
                3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
                0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
                13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
            }, {
                10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
                13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
                13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
                1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
            }, {
                7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
                13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
                10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
                3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
            }, {
                2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
                14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
                4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
                11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
            }, {
                12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
                10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
                9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
                4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
            }, {
                4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
                13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
                1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
                6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
            }, {
                13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
                1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
                7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
                2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
            }
        };

    // Dynamic data:
    byte[] C = new byte[28],		// The C and D arrays used to
        D = new byte[28],		// calculate the key schedule.
        E = new byte[48],		// The E bit-selection table.
        L = new byte[32],		// The current block,
        R = new byte[32],		//  divided into two halves.
        tempL = new byte[32],
        f = new byte[32],
        preS = new byte[48];		// The combination of the key and
    // the input, before selection.
    // The key schedule.  Generated from the key.
    byte[][] KS = new byte[16][48];

    // Object fields:
    String Passwd, Salt, Encrypt;

    // Public methods:
    /**
     * Create Crypt object with no passwd or salt set.  Must use setPasswd()
     * and setSalt() before getEncryptedPasswd().
     */
    public Crypt() {
        Passwd = Salt = Encrypt = "";
    }

    /**
     * Create a Crypt object with specified salt.  Use setPasswd() before
     * getEncryptedPasswd().
     *
     * @param salt the salt string for encryption
     */
    public Crypt(String salt) {
        Passwd = "";
        Salt = salt;
        Encrypt = crypt();
    }

    /**
     * Create a Crypt object with specified passwd and salt (often the
     * already encypted passwd).  Get the encrypted result with
     * getEncryptedPasswd().
     *
     * @param passwd the passwd to encrypt
     * @param salt the salt string for encryption
     */
    public Crypt(String passwd, String salt) {
        Passwd = passwd;
        Salt = salt;
        Encrypt = crypt();
    }

    /**
     * Retrieve the passwd string currently being encrypted.
     *
     * @return the current passwd string
     */
    public String getPasswd() {
        return Passwd;
    }

    /**
     * Retrieve the salt string currently being used for encryption.
     *
     * @return the current salt string
     */
    public String getSalt() {
        return Salt;
    }

    /**
     * Retrieve the resulting encrypted string from the current passwd and
     * salt settings.
     *
     * @return the encrypted passwd
     */
    public String getEncryptedPasswd() {
        return Encrypt;
    }

    /**
     * Set a new passwd string for encryption.  Use getEncryptedPasswd() to
     * retrieve the new result.
     *
     * @param passwd the new passwd string
     */
    public void setPasswd(String passwd) {
        Passwd = passwd;
        Encrypt = crypt();
    }

    /**
     * Set a new salt string for encryption.  Use getEncryptedPasswd() to
     * retrieve the new result.
     *
     * @param salt the new salt string
     */
    public void setSalt(String salt) {
        Salt = salt;
        Encrypt = crypt();
    }

    // Internal crypt methods:
    String crypt() {
        if (Salt.length() == 0) return "";
        int i, j, pwi;
        byte c, temp;
        byte[] block = new byte[66],
            iobuf = new byte[16],
            salt = new byte[2],
            pw = Passwd.getBytes(),		//jdk1.1
            saltbytes = Salt.getBytes();			//jdk1.1

        //	  pw = new byte[Passwd.length()],	//jdk1.0.2
        // saltbytes = new byte[Salt.length()];		//jdk1.0.2
        //Passwd.getBytes(0,Passwd.length(),pw,0);	//jdk1.0.2
        //Salt.getBytes(0,Salt.length(),saltbytes,0);	//jdk1.0.2

        salt[0] = saltbytes[0];
        salt[1] = (saltbytes.length > 1) ? saltbytes[1] : 0;

        for (i = 0; i < 66; i++)
            block[i] = 0;

        for (i = 0, pwi = 0; (pwi < pw.length) && (i < 64); pwi++, i++) {
            for (j = 0; j < 7; j++, i++) {
                block[i] = (byte) ((pw[pwi] >> (6 - j)) & 1);
            }
        }

        setkey(block);

        for (i = 0; i < 66; i++)
            block[i] = 0;

        for (i = 0; i < 2; i++) {
            c = salt[i];
            iobuf[i] = c;
            if (c > 'Z') c -= 6;
            if (c > '9') c -= 7;
            c -= '.';
            for (j = 0; j < 6; j++) {
                if (((c >> j) & 1) != 0) {
                    temp = E[6 * i + j];
                    E[6 * i + j] = E[6 * i + j + 24];
                    E[6 * i + j + 24] = temp;
                }
            }
        }

        for (i = 0; i < 25; i++) {
            encrypt(block, 0);
        }

        for (i = 0; i < 11; i++) {
            c = 0;
            for (j = 0; j < 6; j++) {
                c <<= 1;
                c |= block[6 * i + j];
            }
            c += '.';
            if (c > '9') c += 7;
            if (c > 'Z') c += 6;
            iobuf[i + 2] = c;
        }

        iobuf[i + 2] = 0;
        if (iobuf[1] == 0)
            iobuf[1] = iobuf[0];

        return new String(iobuf);		//jdk1.1
        //return new String(iobuf,0);		//jdk1.0.2
    }

    void setkey(byte[] key)	// Set up the key schedule from the key.
    {
        int i, j, k;
        byte t;

        // First, generate C and D by permuting the key.  The low order bit
        // of each 8-bit char is not used, so C and D are only 28 bits apiece.
        for (i = 0; i < 28; i++) {
            C[i] = key[PC1_C[i] - 1];
            D[i] = key[PC1_D[i] - 1];
        }

        // To generate Ki, rotate C and D according to schedule
        // and pick up a permutation using PC2.
        for (i = 0; i < 16; i++) {
            // rotate.
            for (k = 0; k < shifts[i]; k++) {
                t = C[0];
                for (j = 0; j < 27; j++)
                    C[j] = C[j + 1];
                C[27] = t;
                t = D[0];
                for (j = 0; j < 27; j++)
                    D[j] = D[j + 1];
                D[27] = t;
            }

            // get Ki. Note C and D are concatenated.
            for (j = 0; j < 24; j++) {
                KS[i][j] = C[PC2_C[j] - 1];
                KS[i][j + 24] = D[PC2_D[j] - 29];
            }
        }

        for (i = 0; i < 48; i++) {
            E[i] = e2[i];
        }
    }

    // The payoff: encrypt a block.
    void encrypt(byte[] block, int edflag) {
        int i, j, ii, t;
        byte k;

        // First, permute the bits in the input
        //for (j = 0; j < 64; j++)
        //{
        //    L[j] = block[IP[j]-1];
        //}
        for (j = 0; j < 32; j++)
            L[j] = block[IP[j] - 1];
        for (j = 32; j < 64; j++)
            R[j - 32] = block[IP[j] - 1];

            // Perform an encryption operation 16 times.
        for (ii = 0; ii < 16; ii++) {
            i = ii;
            // Save the R array, which will be the new L.
            for (j = 0; j < 32; j++)
                tempL[j] = R[j];
                // Expand R to 48 bits using the E selector;
                //  exclusive-or with the current key bits.
            for (j = 0; j < 48; j++)
                preS[j] = (byte) (R[E[j] - 1] ^ KS[i][j]);

                // The pre-select bits are now considered in 8 groups of
                // 6 bits each.  The 8 selection functions map these 6-bit
                // quantities into 4-bit quantities and the results permuted
                // to make an f(R, K).  The indexing into the selection functions
                // is peculiar; it could be simplified by rewriting the tables.
            for (j = 0; j < 8; j++) {
                t = 6 * j;
                k = S[j][ (preS[t  ] << 5) +
                        (preS[t + 1] << 3) +
                        (preS[t + 2] << 2) +
                        (preS[t + 3] << 1) +
                        (preS[t + 4]) +
                        (preS[t + 5] << 4) ];
                t = 4 * j;
                f[t  ] = (byte) ((k >> 3) & 1);
                f[t + 1] = (byte) ((k >> 2) & 1);
                f[t + 2] = (byte) ((k >> 1) & 1);
                f[t + 3] = (byte) ((k) & 1);
            }

            // The new R is L ^ f(R, K).
            // The f here has to be permuted first, though.
            for (j = 0; j < 32; j++) {
                R[j] = (byte) (L[j] ^ f[P[j] - 1]);
            }

            // Finally, the new L (the original R) is copied back.
            for (j = 0; j < 32; j++) {
                L[j] = tempL[j];
            }
        }

        // The output L and R are reversed.
        for (j = 0; j < 32; j++) {
            k = L[j];
            L[j] = R[j];
            R[j] = k;
        }

        // The final output gets the inverse permutation of the very original.
        for (j = 0; j < 64; j++) {
            //block[j] = L[FP[j]-1];
            block[j] = (FP[j] > 32) ? R[FP[j] - 33] : L[FP[j] - 1];
        }
    }
}