/* * OpenVPN -- An application to securely tunnel IP networks * over a single TCP/UDP port, with support for SSL/TLS-based * session authentication and key exchange, * packet encryption, packet authentication, and * packet compression. * * Copyright (C) 2002-2005 OpenVPN Solutions LLC * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (see the file COPYING included with this * distribution); if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef WIN32 #include "config-win32.h" #else #include "config.h" #endif #include "syshead.h" #if P2MP_SERVER #include "multi.h" #include "forward-inline.h" #include "memdbg.h" /* * TCP States */ #define TA_UNDEF 0 #define TA_SOCKET_READ 1 #define TA_SOCKET_READ_RESIDUAL 2 #define TA_SOCKET_WRITE 3 #define TA_SOCKET_WRITE_READY 4 #define TA_SOCKET_WRITE_DEFERRED 5 #define TA_TUN_READ 6 #define TA_TUN_WRITE 7 #define TA_INITIAL 8 #define TA_TIMEOUT 9 #define TA_TUN_WRITE_TIMEOUT 10 /* * Special tags passed to event.[ch] functions */ #define MTCP_SOCKET ((void*)1) #define MTCP_TUN ((void*)2) #define MTCP_SIG ((void*)3) /* Only on Windows */ #ifdef ENABLE_MANAGEMENT # define MTCP_MANAGEMENT ((void*)4) #endif #define MTCP_N ((void*)16) /* upper bound on MTCP_x */ struct ta_iow_flags { unsigned int flags; unsigned int ret; unsigned int tun; unsigned int sock; }; static const char * pract (int action) { switch (action) { case TA_UNDEF: return "TA_UNDEF"; case TA_SOCKET_READ: return "TA_SOCKET_READ"; case TA_SOCKET_READ_RESIDUAL: return "TA_SOCKET_READ_RESIDUAL"; case TA_SOCKET_WRITE: return "TA_SOCKET_WRITE"; case TA_SOCKET_WRITE_READY: return "TA_SOCKET_WRITE_READY"; case TA_SOCKET_WRITE_DEFERRED: return "TA_SOCKET_WRITE_DEFERRED"; case TA_TUN_READ: return "TA_TUN_READ"; case TA_TUN_WRITE: return "TA_TUN_WRITE"; case TA_INITIAL: return "TA_INITIAL"; case TA_TIMEOUT: return "TA_TIMEOUT"; case TA_TUN_WRITE_TIMEOUT: return "TA_TUN_WRITE_TIMEOUT"; default: return "?"; } } static struct multi_instance * multi_create_instance_tcp (struct multi_context *m) { struct gc_arena gc = gc_new (); struct multi_instance *mi = NULL; struct hash *hash = m->hash; mi = multi_create_instance (m, NULL); if (mi) { struct hash_element *he; const uint32_t hv = hash_value (hash, &mi->real); struct hash_bucket *bucket = hash_bucket (hash, hv); hash_bucket_lock (bucket); he = hash_lookup_fast (hash, bucket, &mi->real, hv); if (he) { struct multi_instance *oldmi = (struct multi_instance *) he->value; msg (D_MULTI_LOW, "MULTI TCP: new incoming client address matches existing client address -- new client takes precedence"); oldmi->did_real_hash = false; multi_close_instance (m, oldmi, false); he->key = &mi->real; he->value = mi; } else hash_add_fast (hash, bucket, &mi->real, hv, mi); mi->did_real_hash = true; hash_bucket_unlock (bucket); } #ifdef ENABLE_DEBUG if (mi) dmsg (D_MULTI_DEBUG, "MULTI TCP: instance added: %s", mroute_addr_print (&mi->real, &gc)); else dmsg (D_MULTI_DEBUG, "MULTI TCP: new client instance failed"); #endif gc_free (&gc); ASSERT (!(mi && mi->halt)); return mi; } bool multi_tcp_instance_specific_init (struct multi_context *m, struct multi_instance *mi) { /* buffer for queued TCP socket output packets */ mi->tcp_link_out_deferred = mbuf_init (m->top.options.n_bcast_buf); ASSERT (mi->context.c2.link_socket); ASSERT (mi->context.c2.link_socket->info.lsa); ASSERT (mi->context.c2.link_socket->mode == LS_MODE_TCP_ACCEPT_FROM); if (!mroute_extract_openvpn_sockaddr (&mi->real, &mi->context.c2.link_socket->info.lsa->actual.dest, true)) { msg (D_MULTI_ERRORS, "MULTI TCP: TCP client address is undefined"); return false; } return true; } void multi_tcp_instance_specific_free (struct multi_instance *mi) { mbuf_free (mi->tcp_link_out_deferred); } struct multi_tcp * multi_tcp_init (int maxevents, int *maxclients) { struct multi_tcp *mtcp; const int extra_events = BASE_N_EVENTS; ASSERT (maxevents >= 1); ASSERT (maxclients); ALLOC_OBJ_CLEAR (mtcp, struct multi_tcp); mtcp->maxevents = maxevents + extra_events; mtcp->es = event_set_init (&mtcp->maxevents, 0); wait_signal (mtcp->es, MTCP_SIG); ALLOC_ARRAY (mtcp->esr, struct event_set_return, mtcp->maxevents); *maxclients = max_int (min_int (mtcp->maxevents - extra_events, *maxclients), 1); msg (D_MULTI_LOW, "MULTI: TCP INIT maxclients=%d maxevents=%d", *maxclients, mtcp->maxevents); return mtcp; } void multi_tcp_delete_event (struct multi_tcp *mtcp, event_t event) { if (mtcp && mtcp->es) event_del (mtcp->es, event); } void multi_tcp_free (struct multi_tcp *mtcp) { if (mtcp) { event_free (mtcp->es); if (mtcp->esr) free (mtcp->esr); free (mtcp); } } void multi_tcp_dereference_instance (struct multi_tcp *mtcp, struct multi_instance *mi) { struct link_socket *ls = mi->context.c2.link_socket; if (ls && mi->socket_set_called) event_del (mtcp->es, socket_event_handle (ls)); mtcp->n_esr = 0; } static inline void multi_tcp_set_global_rw_flags (struct multi_context *m, struct multi_instance *mi) { if (mi) { mi->socket_set_called = true; socket_set (mi->context.c2.link_socket, m->mtcp->es, mbuf_defined (mi->tcp_link_out_deferred) ? EVENT_WRITE : EVENT_READ, mi, &mi->tcp_rwflags); } } static inline int multi_tcp_wait (const struct context *c, struct multi_tcp *mtcp) { int status; socket_set_listen_persistent (c->c2.link_socket, mtcp->es, MTCP_SOCKET); tun_set (c->c1.tuntap, mtcp->es, EVENT_READ, MTCP_TUN, &mtcp->tun_rwflags); #ifdef ENABLE_MANAGEMENT if (management) management_socket_set (management, mtcp->es, MTCP_MANAGEMENT, &mtcp->management_persist_flags); #endif status = event_wait (mtcp->es, &c->c2.timeval, mtcp->esr, mtcp->maxevents); update_time (); mtcp->n_esr = 0; if (status > 0) mtcp->n_esr = status; return status; } static inline struct context * multi_tcp_context (struct multi_context *m, struct multi_instance *mi) { if (mi) return &mi->context; else return &m->top; } static bool multi_tcp_process_outgoing_link_ready (struct multi_context *m, struct multi_instance *mi, const unsigned int mpp_flags) { struct mbuf_item item; bool ret = true; ASSERT (mi); /* extract from queue */ if (mbuf_extract_item (mi->tcp_link_out_deferred, &item, true)) /* ciphertext IP packet */ { dmsg (D_MULTI_TCP, "MULTI TCP: transmitting previously deferred packet"); ASSERT (mi == item.instance); mi->context.c2.to_link = item.buffer->buf; ret = multi_process_outgoing_link_dowork (m, mi, mpp_flags); if (!ret) mi = NULL; mbuf_free_buf (item.buffer); } return ret; } static bool multi_tcp_process_outgoing_link (struct multi_context *m, bool defer, const unsigned int mpp_flags) { struct multi_instance *mi = multi_process_outgoing_link_pre (m); bool ret = true; if (mi) { if (defer || mbuf_defined (mi->tcp_link_out_deferred)) { /* save to queue */ struct buffer *buf = &mi->context.c2.to_link; if (BLEN (buf) > 0) { struct mbuf_buffer *mb = mbuf_alloc_buf (buf); struct mbuf_item item; set_prefix (mi); dmsg (D_MULTI_TCP, "MULTI TCP: queuing deferred packet"); item.buffer = mb; item.instance = mi; mbuf_add_item (mi->tcp_link_out_deferred, &item); mbuf_free_buf (mb); buf_reset (buf); ret = multi_process_post (m, mi, mpp_flags); if (!ret) mi = NULL; clear_prefix (); } } else { ret = multi_process_outgoing_link_dowork (m, mi, mpp_flags); if (!ret) mi = NULL; } } return ret; } static int multi_tcp_wait_lite (struct multi_context *m, struct multi_instance *mi, const int action, bool *tun_input_pending) { struct context *c = multi_tcp_context (m, mi); unsigned int looking_for = 0; dmsg (D_MULTI_DEBUG, "MULTI TCP: multi_tcp_wait_lite a=%s mi=" ptr_format, pract(action), (ptr_type)mi); tv_clear (&c->c2.timeval); /* ZERO-TIMEOUT */ switch (action) { case TA_TUN_READ: looking_for = TUN_READ; tun_input_pending = NULL; io_wait (c, IOW_READ_TUN); break; case TA_SOCKET_READ: looking_for = SOCKET_READ; tun_input_pending = NULL; io_wait (c, IOW_READ_LINK); break; case TA_TUN_WRITE: looking_for = TUN_WRITE; tun_input_pending = NULL; c->c2.timeval.tv_sec = 1; /* For some reason, the Linux 2.2 TUN/TAP driver hits this timeout */ perf_push (PERF_PROC_OUT_TUN_MTCP); io_wait (c, IOW_TO_TUN); perf_pop (); break; case TA_SOCKET_WRITE: looking_for = SOCKET_WRITE; io_wait (c, IOW_TO_LINK|IOW_READ_TUN_FORCE); break; default: msg (M_FATAL, "MULTI TCP: multi_tcp_wait_lite, unhandled action=%d", action); } if (tun_input_pending && (c->c2.event_set_status & TUN_READ)) *tun_input_pending = true; if (c->c2.event_set_status & looking_for) { return action; } else { switch (action) { /* TCP socket output buffer is full */ case TA_SOCKET_WRITE: return TA_SOCKET_WRITE_DEFERRED; /* TUN device timed out on accepting write */ case TA_TUN_WRITE: return TA_TUN_WRITE_TIMEOUT; } return TA_UNDEF; } } static struct multi_instance * multi_tcp_dispatch (struct multi_context *m, struct multi_instance *mi, const int action) { const unsigned int mpp_flags = MPP_PRE_SELECT|MPP_RECORD_TOUCH; struct multi_instance *touched = mi; m->mpp_touched = &touched; dmsg (D_MULTI_DEBUG, "MULTI TCP: multi_tcp_dispatch a=%s mi=" ptr_format, pract(action), (ptr_type)mi); switch (action) { case TA_TUN_READ: read_incoming_tun (&m->top); if (!IS_SIG (&m->top)) multi_process_incoming_tun (m, mpp_flags); break; case TA_SOCKET_READ: case TA_SOCKET_READ_RESIDUAL: ASSERT (mi); ASSERT (mi->context.c2.link_socket); set_prefix (mi); read_incoming_link (&mi->context); clear_prefix (); if (!IS_SIG (&mi->context)) { multi_process_incoming_link (m, mi, mpp_flags); if (!IS_SIG (&mi->context)) stream_buf_read_setup (mi->context.c2.link_socket); } break; case TA_TIMEOUT: multi_process_timeout (m, mpp_flags); break; case TA_TUN_WRITE: multi_process_outgoing_tun (m, mpp_flags); break; case TA_TUN_WRITE_TIMEOUT: multi_process_drop_outgoing_tun (m, mpp_flags); break; case TA_SOCKET_WRITE_READY: ASSERT (mi); multi_tcp_process_outgoing_link_ready (m, mi, mpp_flags); break; case TA_SOCKET_WRITE: multi_tcp_process_outgoing_link (m, false, mpp_flags); break; case TA_SOCKET_WRITE_DEFERRED: multi_tcp_process_outgoing_link (m, true, mpp_flags); break; case TA_INITIAL: ASSERT (mi); multi_tcp_set_global_rw_flags (m, mi); multi_process_post (m, mi, mpp_flags); break; default: msg (M_FATAL, "MULTI TCP: multi_tcp_dispatch, unhandled action=%d", action); } m->mpp_touched = NULL; return touched; } int multi_tcp_post (struct multi_context *m, struct multi_instance *mi, const int action) { struct context *c = multi_tcp_context (m, mi); int newaction = TA_UNDEF; # define MTP_NONE 0 # define MTP_TUN_OUT (1<<0) # define MTP_LINK_OUT (1<<1) unsigned int flags = MTP_NONE; if (TUN_OUT(c)) flags |= MTP_TUN_OUT; if (LINK_OUT(c)) flags |= MTP_LINK_OUT; switch (flags) { case MTP_TUN_OUT|MTP_LINK_OUT: case MTP_TUN_OUT: newaction = TA_TUN_WRITE; break; case MTP_LINK_OUT: newaction = TA_SOCKET_WRITE; break; case MTP_NONE: if (mi && socket_read_residual (c->c2.link_socket)) newaction = TA_SOCKET_READ_RESIDUAL; else multi_tcp_set_global_rw_flags (m, mi); break; default: { struct gc_arena gc = gc_new (); msg (M_FATAL, "MULTI TCP: multi_tcp_post bad state, mi=%s flags=%d", multi_instance_string (mi, false, &gc), flags); gc_free (&gc); break; } } dmsg (D_MULTI_DEBUG, "MULTI TCP: multi_tcp_post %s -> %s", pract(action), pract(newaction)); return newaction; } static void multi_tcp_action (struct multi_context *m, struct multi_instance *mi, int action, bool poll) { bool tun_input_pending = false; do { dmsg (D_MULTI_DEBUG, "MULTI TCP: multi_tcp_action a=%s p=%d", pract(action), poll); /* * If TA_SOCKET_READ_RESIDUAL, it means we still have pending * input packets which were read by a prior TCP recv. * * Otherwise do a "lite" wait, which means we wait with 0 timeout * on I/O events only related to the current instance, not * the big list of events. * * On our first pass, poll will be false because we already know * that input is available, and to call io_wait would be redundant. */ if (poll && action != TA_SOCKET_READ_RESIDUAL) { const int orig_action = action; action = multi_tcp_wait_lite (m, mi, action, &tun_input_pending); if (action == TA_UNDEF) msg (M_FATAL, "MULTI TCP: I/O wait required blocking in multi_tcp_action, action=%d", orig_action); } /* * Dispatch the action */ { struct multi_instance *touched = multi_tcp_dispatch (m, mi, action); /* * Signal received or TCP connection * reset by peer? */ if (touched && IS_SIG (&touched->context)) { if (mi == touched) mi = NULL; multi_close_instance_on_signal (m, touched); } } /* * If dispatch produced any pending output * for a particular instance, point to * that instance. */ if (m->pending) mi = m->pending; /* * Based on the effects of the action, * such as generating pending output, * possibly transition to a new action state. */ action = multi_tcp_post (m, mi, action); /* * If we are finished processing the original action, * check if we have any TUN input. If so, transition * our action state to processing this input. */ if (tun_input_pending && action == TA_UNDEF) { action = TA_TUN_READ; mi = NULL; tun_input_pending = false; poll = false; } else poll = true; } while (action != TA_UNDEF); } static void multi_tcp_process_io (struct multi_context *m) { struct multi_tcp *mtcp = m->mtcp; int i; for (i = 0; i < mtcp->n_esr; ++i) { struct event_set_return *e = &mtcp->esr[i]; /* incoming data for instance? */ if (e->arg >= MTCP_N) { struct multi_instance *mi = (struct multi_instance *) e->arg; if (mi) { if (e->rwflags & EVENT_WRITE) multi_tcp_action (m, mi, TA_SOCKET_WRITE_READY, false); else if (e->rwflags & EVENT_READ) multi_tcp_action (m, mi, TA_SOCKET_READ, false); } } else { #ifdef ENABLE_MANAGEMENT if (e->arg == MTCP_MANAGEMENT) { ASSERT (management); management_io (management); } else #endif /* incoming data on TUN? */ if (e->arg == MTCP_TUN) { if (e->rwflags & EVENT_WRITE) multi_tcp_action (m, NULL, TA_TUN_WRITE, false); else if (e->rwflags & EVENT_READ) multi_tcp_action (m, NULL, TA_TUN_READ, false); } /* new incoming TCP client attempting to connect? */ else if (e->arg == MTCP_SOCKET) { struct multi_instance *mi; ASSERT (m->top.c2.link_socket); socket_reset_listen_persistent (m->top.c2.link_socket); mi = multi_create_instance_tcp (m); if (mi) multi_tcp_action (m, mi, TA_INITIAL, false); } /* signal received? */ else if (e->arg == MTCP_SIG) { get_signal (&m->top.sig->signal_received); } } if (IS_SIG (&m->top)) break; } mtcp->n_esr = 0; /* * Process queued mbuf packets destined for TCP socket */ { struct multi_instance *mi; while (!IS_SIG (&m->top) && (mi = mbuf_peek (m->mbuf)) != NULL) { multi_tcp_action (m, mi, TA_SOCKET_WRITE, true); } } } /* * Top level event loop for single-threaded operation. * TCP mode. */ void tunnel_server_tcp (struct context *top) { struct multi_context multi; int status; top->mode = CM_TOP; context_clear_2 (top); /* initialize top-tunnel instance */ init_instance_handle_signals (top, top->es, CC_HARD_USR1_TO_HUP); if (IS_SIG (top)) return; /* initialize global multi_context object */ multi_init (&multi, top, true, MC_SINGLE_THREADED); /* initialize our cloned top object */ multi_top_init (&multi, top, true); /* initialize management interface */ init_management_callback_multi (&multi); /* finished with initialization */ initialization_sequence_completed (top, ISC_SERVER); /* --mode server --proto tcp-server */ /* per-packet event loop */ while (true) { perf_push (PERF_EVENT_LOOP); /* wait on tun/socket list */ multi_get_timeout (&multi, &multi.top.c2.timeval); status = multi_tcp_wait (&multi.top, multi.mtcp); MULTI_CHECK_SIG (&multi); /* check on status of coarse timers */ multi_process_per_second_timers (&multi); /* timeout? */ if (status > 0) { /* process the I/O which triggered select */ multi_tcp_process_io (&multi); MULTI_CHECK_SIG (&multi); } else if (status == 0) { multi_tcp_action (&multi, NULL, TA_TIMEOUT, false); } perf_pop (); } /* shut down management interface */ uninit_management_callback_multi (&multi); /* save ifconfig-pool */ multi_ifconfig_pool_persist (&multi, true); /* tear down tunnel instance (unless --persist-tun) */ multi_uninit (&multi); multi_top_free (&multi); close_instance (top); } #endif