/* * mdadm - manage Linux "md" devices aka RAID arrays. * * Copyright (C) 2001-2009 Neil Brown * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Neil Brown * Email: */ #include "mdadm.h" /* * The version-1 superblock : * All numeric fields are little-endian. * * total size: 256 bytes plus 2 per device. * 1K allows 384 devices. */ struct mdp_superblock_1 { /* constant array information - 128 bytes */ __u32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */ __u32 major_version; /* 1 */ __u32 feature_map; /* 0 for now */ __u32 pad0; /* always set to 0 when writing */ __u8 set_uuid[16]; /* user-space generated. */ char set_name[32]; /* set and interpreted by user-space */ __u64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/ __u32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */ __u32 layout; /* only for raid5 currently */ __u64 size; /* used size of component devices, in 512byte sectors */ __u32 chunksize; /* in 512byte sectors */ __u32 raid_disks; __u32 bitmap_offset; /* sectors after start of superblock that bitmap starts * NOTE: signed, so bitmap can be before superblock * only meaningful of feature_map[0] is set. */ /* These are only valid with feature bit '4' */ __u32 new_level; /* new level we are reshaping to */ __u64 reshape_position; /* next address in array-space for reshape */ __u32 delta_disks; /* change in number of raid_disks */ __u32 new_layout; /* new layout */ __u32 new_chunk; /* new chunk size (bytes) */ __u8 pad1[128-124]; /* set to 0 when written */ /* constant this-device information - 64 bytes */ __u64 data_offset; /* sector start of data, often 0 */ __u64 data_size; /* sectors in this device that can be used for data */ __u64 super_offset; /* sector start of this superblock */ __u64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */ __u32 dev_number; /* permanent identifier of this device - not role in raid */ __u32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */ __u8 device_uuid[16]; /* user-space setable, ignored by kernel */ __u8 devflags; /* per-device flags. Only one defined...*/ #define WriteMostly1 1 /* mask for writemostly flag in above */ __u8 pad2[64-57]; /* set to 0 when writing */ /* array state information - 64 bytes */ __u64 utime; /* 40 bits second, 24 btes microseconds */ __u64 events; /* incremented when superblock updated */ __u64 resync_offset; /* data before this offset (from data_offset) known to be in sync */ __u32 sb_csum; /* checksum upto dev_roles[max_dev] */ __u32 max_dev; /* size of dev_roles[] array to consider */ __u8 pad3[64-32]; /* set to 0 when writing */ /* device state information. Indexed by dev_number. * 2 bytes per device * Note there are no per-device state flags. State information is rolled * into the 'roles' value. If a device is spare or faulty, then it doesn't * have a meaningful role. */ __u16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */ }; struct misc_dev_info { __u64 device_size; }; /* feature_map bits */ #define MD_FEATURE_BITMAP_OFFSET 1 #define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and * must be honoured */ #define MD_FEATURE_RESHAPE_ACTIVE 4 #define MD_FEATURE_ALL (1|2|4) #ifndef offsetof #define offsetof(t,f) ((size_t)&(((t*)0)->f)) #endif static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb) { unsigned int disk_csum, csum; unsigned long long newcsum; int size = sizeof(*sb) + __le32_to_cpu(sb->max_dev)*2; unsigned int *isuper = (unsigned int*)sb; int i; /* make sure I can count... */ if (offsetof(struct mdp_superblock_1,data_offset) != 128 || offsetof(struct mdp_superblock_1, utime) != 192 || sizeof(struct mdp_superblock_1) != 256) { fprintf(stderr, "WARNING - superblock isn't sized correctly\n"); } disk_csum = sb->sb_csum; sb->sb_csum = 0; newcsum = 0; for (i=0; size>=4; size -= 4 ) { newcsum += __le32_to_cpu(*isuper); isuper++; } if (size == 2) newcsum += __le16_to_cpu(*(unsigned short*) isuper); csum = (newcsum & 0xffffffff) + (newcsum >> 32); sb->sb_csum = disk_csum; return __cpu_to_le32(csum); } static char abuf[4096+4096]; static int aread(int fd, void *buf, int len) { /* aligned read. * On devices with a 4K sector size, we need to read * the full sector and copy relevant bits into * the buffer */ int bsize; char *b; int n; if (ioctl(fd, BLKSSZGET, &bsize) != 0 || bsize <= len) return read(fd, buf, len); if (bsize > 4096) return -1; b = (char*)(((long)(abuf+4096))&~4095UL); n = read(fd, b, bsize); if (n <= 0) return n; lseek(fd, len - n, 1); if (n > len) n = len; memcpy(buf, b, n); return n; } static int awrite(int fd, void *buf, int len) { /* aligned write. * On devices with a 4K sector size, we need to write * the full sector. We pre-read if the sector is larger * than the write. * The address must be sector-aligned. */ int bsize; char *b; int n; if (ioctl(fd, BLKSSZGET, &bsize) != 0 || bsize <= len) return write(fd, buf, len); if (bsize > 4096) return -1; b = (char*)(((long)(abuf+4096))&~4095UL); n = read(fd, b, bsize); if (n <= 0) return n; lseek(fd, -n, 1); memcpy(b, buf, len); n = write(fd, b, bsize); if (n <= 0) return n; lseek(fd, len - n, 1); return len; } #ifndef MDASSEMBLE static void examine_super1(struct supertype *st, char *homehost) { struct mdp_superblock_1 *sb = st->sb; time_t atime; int d; int role; int delta_extra = 0; int i; char *c; int l = homehost ? strlen(homehost) : 0; int layout; unsigned long long sb_offset; printf(" Magic : %08x\n", __le32_to_cpu(sb->magic)); printf(" Version : 1"); sb_offset = __le64_to_cpu(sb->super_offset); if (sb_offset <= 4) printf(".1\n"); else if (sb_offset <= 8) printf(".2\n"); else printf(".0\n"); printf(" Feature Map : 0x%x\n", __le32_to_cpu(sb->feature_map)); printf(" Array UUID : "); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n"); printf(" Name : %.32s", sb->set_name); if (l > 0 && l < 32 && sb->set_name[l] == ':' && strncmp(sb->set_name, homehost, l) == 0) printf(" (local to host %s)", homehost); printf("\n"); atime = __le64_to_cpu(sb->ctime) & 0xFFFFFFFFFFULL; printf(" Creation Time : %.24s\n", ctime(&atime)); c=map_num(pers, __le32_to_cpu(sb->level)); printf(" Raid Level : %s\n", c?c:"-unknown-"); printf(" Raid Devices : %d\n", __le32_to_cpu(sb->raid_disks)); printf("\n"); printf(" Avail Dev Size : %llu%s\n", (unsigned long long)__le64_to_cpu(sb->data_size), human_size(__le64_to_cpu(sb->data_size)<<9)); if (__le32_to_cpu(sb->level) >= 0) { int ddsks=0; switch(__le32_to_cpu(sb->level)) { case 1: ddsks=1;break; case 4: case 5: ddsks = __le32_to_cpu(sb->raid_disks)-1; break; case 6: ddsks = __le32_to_cpu(sb->raid_disks)-2; break; case 10: layout = __le32_to_cpu(sb->layout); ddsks = __le32_to_cpu(sb->raid_disks) / (layout&255) / ((layout>>8)&255); } if (ddsks) printf(" Array Size : %llu%s\n", ddsks*(unsigned long long)__le64_to_cpu(sb->size), human_size(ddsks*__le64_to_cpu(sb->size)<<9)); if (sb->size != sb->data_size) printf(" Used Dev Size : %llu%s\n", (unsigned long long)__le64_to_cpu(sb->size), human_size(__le64_to_cpu(sb->size)<<9)); } if (sb->data_offset) printf(" Data Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->data_offset)); printf(" Super Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->super_offset)); if (__le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET) printf("Recovery Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->recovery_offset)); printf(" State : %s\n", (__le64_to_cpu(sb->resync_offset)+1)? "active":"clean"); printf(" Device UUID : "); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->device_uuid[i]); } printf("\n"); printf("\n"); if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { printf("Internal Bitmap : %ld sectors from superblock\n", (long)(int32_t)__le32_to_cpu(sb->bitmap_offset)); } if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) { printf(" Reshape pos'n : %llu%s\n", (unsigned long long)__le64_to_cpu(sb->reshape_position)/2, human_size(__le64_to_cpu(sb->reshape_position)<<9)); if (__le32_to_cpu(sb->delta_disks)) { printf(" Delta Devices : %d", __le32_to_cpu(sb->delta_disks)); printf(" (%d->%d)\n", __le32_to_cpu(sb->raid_disks)-__le32_to_cpu(sb->delta_disks), __le32_to_cpu(sb->raid_disks)); if ((int)__le32_to_cpu(sb->delta_disks) < 0) delta_extra = -__le32_to_cpu(sb->delta_disks); } if (__le32_to_cpu(sb->new_level) != __le32_to_cpu(sb->level)) { c = map_num(pers, __le32_to_cpu(sb->new_level)); printf(" New Level : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->new_layout) != __le32_to_cpu(sb->layout)) { if (__le32_to_cpu(sb->level) == 5) { c = map_num(r5layout, __le32_to_cpu(sb->new_layout)); printf(" New Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 6) { c = map_num(r6layout, __le32_to_cpu(sb->new_layout)); printf(" New Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 10) { printf(" New Layout :"); print_r10_layout(__le32_to_cpu(sb->new_layout)); printf("\n"); } } if (__le32_to_cpu(sb->new_chunk) != __le32_to_cpu(sb->chunksize)) printf(" New Chunksize : %dK\n", __le32_to_cpu(sb->new_chunk)/2); printf("\n"); } if (sb->devflags) { printf(" Flags :"); if (sb->devflags & WriteMostly1) printf(" write-mostly"); printf("\n"); } atime = __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL; printf(" Update Time : %.24s\n", ctime(&atime)); if (calc_sb_1_csum(sb) == sb->sb_csum) printf(" Checksum : %x - correct\n", __le32_to_cpu(sb->sb_csum)); else printf(" Checksum : %x - expected %x\n", __le32_to_cpu(sb->sb_csum), __le32_to_cpu(calc_sb_1_csum(sb))); printf(" Events : %llu\n", (unsigned long long)__le64_to_cpu(sb->events)); printf("\n"); if (__le32_to_cpu(sb->level) == 5) { c = map_num(r5layout, __le32_to_cpu(sb->layout)); printf(" Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 6) { c = map_num(r6layout, __le32_to_cpu(sb->layout)); printf(" Layout : %s\n", c?c:"-unknown-"); } if (__le32_to_cpu(sb->level) == 10) { int lo = __le32_to_cpu(sb->layout); printf(" Layout :"); print_r10_layout(lo); printf("\n"); } switch(__le32_to_cpu(sb->level)) { case 0: case 4: case 5: case 6: case 10: printf(" Chunk Size : %dK\n", __le32_to_cpu(sb->chunksize)/2); break; case -1: printf(" Rounding : %dK\n", __le32_to_cpu(sb->chunksize)/2); break; default: break; } printf("\n"); #if 0 /* This turns out to just be confusing */ printf(" Array Slot : %d (", __le32_to_cpu(sb->dev_number)); for (i= __le32_to_cpu(sb->max_dev); i> 0 ; i--) if (__le16_to_cpu(sb->dev_roles[i-1]) != 0xffff) break; for (d=0; d < i; d++) { int role = __le16_to_cpu(sb->dev_roles[d]); if (d) printf(", "); if (role == 0xffff) printf("empty"); else if(role == 0xfffe) printf("failed"); else printf("%d", role); } printf(")\n"); #endif printf(" Device Role : "); d = __le32_to_cpu(sb->dev_number); if (d < __le32_to_cpu(sb->max_dev)) role = __le16_to_cpu(sb->dev_roles[d]); else role = 0xFFFF; if (role >= 0xFFFE) printf("spare\n"); else printf("Active device %d\n", role); printf(" Array State : "); for (d=0; d<__le32_to_cpu(sb->raid_disks) + delta_extra; d++) { int cnt = 0; int me = 0; int i; for (i=0; i< __le32_to_cpu(sb->max_dev); i++) { int role = __le16_to_cpu(sb->dev_roles[i]); if (role == d) { if (i == __le32_to_cpu(sb->dev_number)) me = 1; cnt++; } } if (cnt > 1) printf("?"); else if (cnt == 1) printf("A"); else printf ("."); } #if 0 /* This is confusing too */ faulty = 0; for (i=0; i< __le32_to_cpu(sb->max_dev); i++) { int role = __le16_to_cpu(sb->dev_roles[i]); if (role == 0xFFFE) faulty++; } if (faulty) printf(" %d failed", faulty); #endif printf(" ('A' == active, '.' == missing)"); printf("\n"); } static void brief_examine_super1(struct supertype *st, int verbose) { struct mdp_superblock_1 *sb = st->sb; int i; unsigned long long sb_offset; char *nm; char *c=map_num(pers, __le32_to_cpu(sb->level)); nm = strchr(sb->set_name, ':'); if (nm) nm++; else if (sb->set_name[0]) nm = sb->set_name; else nm = NULL; printf("ARRAY%s%s", nm ? " /dev/md/":"", nm); if (verbose && c) printf(" level=%s", c); sb_offset = __le64_to_cpu(sb->super_offset); if (sb_offset <= 4) printf(" metadata=1.1 "); else if (sb_offset <= 8) printf(" metadata=1.2 "); else printf(" metadata=1.0 "); if (verbose) printf("num-devices=%d ", __le32_to_cpu(sb->raid_disks)); printf("UUID="); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } if (sb->set_name[0]) printf(" name=%.32s", sb->set_name); printf("\n"); } static void export_examine_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; int i; int len = 32; printf("MD_LEVEL=%s\n", map_num(pers, __le32_to_cpu(sb->level))); printf("MD_DEVICES=%d\n", __le32_to_cpu(sb->raid_disks)); for (i=0; i<32; i++) if (sb->set_name[i] == '\n' || sb->set_name[i] == '\0') { len = i; break; } if (len) printf("MD_NAME=%.*s\n", len, sb->set_name); printf("MD_UUID="); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n"); printf("MD_UPDATE_TIME=%llu\n", __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL); printf("MD_DEV_UUID="); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->device_uuid[i]); } printf("\n"); printf("MD_EVENTS=%llu\n", (unsigned long long)__le64_to_cpu(sb->events)); } static void detail_super1(struct supertype *st, char *homehost) { struct mdp_superblock_1 *sb = st->sb; int i; int l = homehost ? strlen(homehost) : 0; printf(" Name : %.32s", sb->set_name); if (l > 0 && l < 32 && sb->set_name[l] == ':' && strncmp(sb->set_name, homehost, l) == 0) printf(" (local to host %s)", homehost); printf("\n UUID : "); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } printf("\n Events : %llu\n\n", (unsigned long long)__le64_to_cpu(sb->events)); } static void brief_detail_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; int i; if (sb->set_name[0]) printf(" name=%.32s", sb->set_name); printf(" UUID="); for (i=0; i<16; i++) { if ((i&3)==0 && i != 0) printf(":"); printf("%02x", sb->set_uuid[i]); } } static void export_detail_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; int i; int len = 32; for (i=0; i<32; i++) if (sb->set_name[i] == '\n' || sb->set_name[i] == '\0') { len = i; break; } if (len) printf("MD_NAME=%.*s\n", len, sb->set_name); } #endif static int match_home1(struct supertype *st, char *homehost) { struct mdp_superblock_1 *sb = st->sb; int l = homehost ? strlen(homehost) : 0; return (l > 0 && l < 32 && sb->set_name[l] == ':' && strncmp(sb->set_name, homehost, l) == 0); } static void uuid_from_super1(struct supertype *st, int uuid[4]) { struct mdp_superblock_1 *super = st->sb; char *cuuid = (char*)uuid; int i; for (i=0; i<16; i++) cuuid[i] = super->set_uuid[i]; } static void getinfo_super1(struct supertype *st, struct mdinfo *info) { struct mdp_superblock_1 *sb = st->sb; int working = 0; int i; int role; info->array.major_version = 1; info->array.minor_version = st->minor_version; info->array.patch_version = 0; info->array.raid_disks = __le32_to_cpu(sb->raid_disks); info->array.level = __le32_to_cpu(sb->level); info->array.layout = __le32_to_cpu(sb->layout); info->array.md_minor = -1; info->array.ctime = __le64_to_cpu(sb->ctime); info->array.utime = __le64_to_cpu(sb->utime); info->array.chunk_size = __le32_to_cpu(sb->chunksize)*512; info->array.state = (__le64_to_cpu(sb->resync_offset) >= __le64_to_cpu(sb->size)) ? 1 : 0; info->data_offset = __le64_to_cpu(sb->data_offset); info->component_size = __le64_to_cpu(sb->size); info->disk.major = 0; info->disk.minor = 0; info->disk.number = __le32_to_cpu(sb->dev_number); if (__le32_to_cpu(sb->dev_number) >= __le32_to_cpu(sb->max_dev) || __le32_to_cpu(sb->max_dev) > 512) role = 0xfffe; else role = __le16_to_cpu(sb->dev_roles[__le32_to_cpu(sb->dev_number)]); info->disk.raid_disk = -1; switch(role) { case 0xFFFF: info->disk.state = 0; /* spare: not active, not sync, not faulty */ break; case 0xFFFE: info->disk.state = 1; /* faulty */ break; default: info->disk.state = 6; /* active and in sync */ info->disk.raid_disk = role; } info->events = __le64_to_cpu(sb->events); sprintf(info->text_version, "1.%d", st->minor_version); info->safe_mode_delay = 200; memcpy(info->uuid, sb->set_uuid, 16); strncpy(info->name, sb->set_name, 32); info->name[32] = 0; if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RECOVERY_OFFSET)) info->recovery_start = __le32_to_cpu(sb->recovery_offset); else info->recovery_start = MaxSector; if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) { info->reshape_active = 1; info->reshape_progress = __le64_to_cpu(sb->reshape_position); info->new_level = __le32_to_cpu(sb->new_level); info->delta_disks = __le32_to_cpu(sb->delta_disks); info->new_layout = __le32_to_cpu(sb->new_layout); info->new_chunk = __le32_to_cpu(sb->new_chunk)<<9; if (info->delta_disks < 0) info->array.raid_disks -= info->delta_disks; } else info->reshape_active = 0; for (i=0; i< __le32_to_cpu(sb->max_dev); i++) { role = __le16_to_cpu(sb->dev_roles[i]); if (/*role == 0xFFFF || */role < info->array.raid_disks) working++; } info->array.working_disks = working; } static int update_super1(struct supertype *st, struct mdinfo *info, char *update, char *devname, int verbose, int uuid_set, char *homehost) { /* NOTE: for 'assemble' and 'force' we need to return non-zero if any change was made. * For others, the return value is ignored. */ int rv = 0; struct mdp_superblock_1 *sb = st->sb; if (strcmp(update, "force-one")==0) { /* Not enough devices for a working array, * so bring this one up-to-date */ if (sb->events != __cpu_to_le64(info->events)) rv = 1; sb->events = __cpu_to_le64(info->events); } if (strcmp(update, "force-array")==0) { /* Degraded array and 'force' requests to * maybe need to mark it 'clean'. */ switch(__le32_to_cpu(sb->level)) { case 5: case 4: case 6: /* need to force clean */ if (sb->resync_offset != MaxSector) rv = 1; sb->resync_offset = MaxSector; } } if (strcmp(update, "assemble")==0) { int d = info->disk.number; int want; if (info->disk.state == 6) want = __cpu_to_le32(info->disk.raid_disk); else want = 0xFFFF; if (sb->dev_roles[d] != want) { sb->dev_roles[d] = want; rv = 1; } } if (strcmp(update, "linear-grow-new") == 0) { int i; int rfd, fd; int max = __le32_to_cpu(sb->max_dev); for (i=0 ; i < max ; i++) if (__le16_to_cpu(sb->dev_roles[i]) >= 0xfffe) break; sb->dev_number = __cpu_to_le32(i); info->disk.number = i; if (max >= __le32_to_cpu(sb->max_dev)) sb->max_dev = __cpu_to_le32(max+1); if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 || read(rfd, sb->device_uuid, 16) != 16) { __u32 r[4] = {random(), random(), random(), random()}; memcpy(sb->device_uuid, r, 16); } if (rfd >= 0) close(rfd); sb->dev_roles[i] = __cpu_to_le16(info->disk.raid_disk); fd = open(devname, O_RDONLY); if (fd >= 0) { unsigned long long ds; get_dev_size(fd, devname, &ds); close(fd); ds >>= 9; if (__le64_to_cpu(sb->super_offset) < __le64_to_cpu(sb->data_offset)) { sb->data_size = __cpu_to_le64( ds - __le64_to_cpu(sb->data_offset)); } else { ds -= 8*2; ds &= ~(unsigned long long)(4*2-1); sb->super_offset = __cpu_to_le64(ds); sb->data_size = __cpu_to_le64( ds - __le64_to_cpu(sb->data_offset)); } } } if (strcmp(update, "linear-grow-update") == 0) { sb->raid_disks = __cpu_to_le32(info->array.raid_disks); sb->dev_roles[info->disk.number] = __cpu_to_le16(info->disk.raid_disk); } if (strcmp(update, "resync") == 0) { /* make sure resync happens */ sb->resync_offset = 0ULL; } if (strcmp(update, "uuid") == 0) { copy_uuid(sb->set_uuid, info->uuid, super1.swapuuid); if (__le32_to_cpu(sb->feature_map)&MD_FEATURE_BITMAP_OFFSET) { struct bitmap_super_s *bm; bm = (struct bitmap_super_s*)(st->sb+1024); memcpy(bm->uuid, sb->set_uuid, 16); } } if (strcmp(update, "homehost") == 0 && homehost) { char *c; update = "name"; c = strchr(sb->set_name, ':'); if (c) strncpy(info->name, c+1, 31 - (c-sb->set_name)); else strncpy(info->name, sb->set_name, 32); info->name[32] = 0; } if (strcmp(update, "name") == 0) { if (info->name[0] == 0) sprintf(info->name, "%d", info->array.md_minor); memset(sb->set_name, 0, sizeof(sb->set_name)); if (homehost && strchr(info->name, ':') == NULL && strlen(homehost)+1+strlen(info->name) < 32) { strcpy(sb->set_name, homehost); strcat(sb->set_name, ":"); strcat(sb->set_name, info->name); } else strcpy(sb->set_name, info->name); } if (strcmp(update, "devicesize") == 0 && __le64_to_cpu(sb->super_offset) < __le64_to_cpu(sb->data_offset)) { /* set data_size to device size less data_offset */ struct misc_dev_info *misc = (struct misc_dev_info*) (st->sb + 1024 + 512); printf("Size was %llu\n", (unsigned long long) __le64_to_cpu(sb->data_size)); sb->data_size = __cpu_to_le64( misc->device_size - __le64_to_cpu(sb->data_offset)); printf("Size is %llu\n", (unsigned long long) __le64_to_cpu(sb->data_size)); } if (strcmp(update, "_reshape_progress")==0) sb->reshape_position = __cpu_to_le64(info->reshape_progress); sb->sb_csum = calc_sb_1_csum(sb); return rv; } static int init_super1(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid) { struct mdp_superblock_1 *sb; int spares; int rfd; char defname[10]; if (posix_memalign((void**)&sb, 512, (1024 + 512 + sizeof(struct misc_dev_info))) != 0) { fprintf(stderr, Name ": %s could not allocate superblock\n", __func__); return 0; } memset(sb, 0, 1024); st->sb = sb; if (info == NULL) { /* zeroing superblock */ return 0; } spares = info->working_disks - info->active_disks; if (info->raid_disks + spares > 384) { fprintf(stderr, Name ": too many devices requested: %d+%d > %d\n", info->raid_disks , spares, 384); return 0; } sb->magic = __cpu_to_le32(MD_SB_MAGIC); sb->major_version = __cpu_to_le32(1); sb->feature_map = 0; sb->pad0 = 0; if (uuid) copy_uuid(sb->set_uuid, uuid, super1.swapuuid); else { if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 || read(rfd, sb->set_uuid, 16) != 16) { __u32 r[4] = {random(), random(), random(), random()}; memcpy(sb->set_uuid, r, 16); } if (rfd >= 0) close(rfd); } if (name == NULL || *name == 0) { sprintf(defname, "%d", info->md_minor); name = defname; } memset(sb->set_name, 0, 32); if (homehost && strchr(name, ':')== NULL && strlen(homehost)+1+strlen(name) < 32) { strcpy(sb->set_name, homehost); strcat(sb->set_name, ":"); strcat(sb->set_name, name); } else strcpy(sb->set_name, name); sb->ctime = __cpu_to_le64((unsigned long long)time(0)); sb->level = __cpu_to_le32(info->level); sb->layout = __cpu_to_le32(info->layout); sb->size = __cpu_to_le64(size*2ULL); sb->chunksize = __cpu_to_le32(info->chunk_size>>9); sb->raid_disks = __cpu_to_le32(info->raid_disks); sb->data_offset = __cpu_to_le64(0); sb->data_size = __cpu_to_le64(0); sb->super_offset = __cpu_to_le64(0); sb->recovery_offset = __cpu_to_le64(0); sb->utime = sb->ctime; sb->events = __cpu_to_le64(1); if (info->state & (1<resync_offset = MaxSector; else sb->resync_offset = 0; sb->max_dev = __cpu_to_le32((1024- sizeof(struct mdp_superblock_1))/ sizeof(sb->dev_roles[0])); memset(sb->pad3, 0, sizeof(sb->pad3)); memset(sb->dev_roles, 0xff, 1024 - sizeof(struct mdp_superblock_1)); return 1; } struct devinfo { int fd; char *devname; mdu_disk_info_t disk; struct devinfo *next; }; #ifndef MDASSEMBLE /* Add a device to the superblock being created */ static int add_to_super1(struct supertype *st, mdu_disk_info_t *dk, int fd, char *devname) { struct mdp_superblock_1 *sb = st->sb; __u16 *rp = sb->dev_roles + dk->number; struct devinfo *di, **dip; if ((dk->state & 6) == 6) /* active, sync */ *rp = __cpu_to_le16(dk->raid_disk); else if ((dk->state & ~2) == 0) /* active or idle -> spare */ *rp = 0xffff; else *rp = 0xfffe; if (dk->number >= __le32_to_cpu(sb->max_dev) && __le32_to_cpu(sb->max_dev) < 384) sb->max_dev = __cpu_to_le32(dk->number+1); sb->dev_number = __cpu_to_le32(dk->number); sb->sb_csum = calc_sb_1_csum(sb); dip = (struct devinfo **)&st->info; while (*dip) dip = &(*dip)->next; di = malloc(sizeof(struct devinfo)); di->fd = fd; di->devname = devname; di->disk = *dk; di->next = NULL; *dip = di; return 0; } #endif static void locate_bitmap1(struct supertype *st, int fd); static int store_super1(struct supertype *st, int fd) { struct mdp_superblock_1 *sb = st->sb; unsigned long long sb_offset; int sbsize; unsigned long long dsize; if (!get_dev_size(fd, NULL, &dsize)) return 1; dsize >>= 9; if (dsize < 24) return 2; /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depending on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(st->minor_version) { case 0: sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); break; case 1: sb_offset = 0; break; case 2: sb_offset = 4*2; break; default: return -EINVAL; } if (sb_offset != __le64_to_cpu(sb->super_offset) && 0 != __le64_to_cpu(sb->super_offset) ) { fprintf(stderr, Name ": internal error - sb_offset is wrong\n"); abort(); } if (lseek64(fd, sb_offset << 9, 0)< 0LL) return 3; sbsize = sizeof(*sb) + 2 * __le32_to_cpu(sb->max_dev); sbsize = (sbsize+511)&(~511UL); if (awrite(fd, sb, sbsize) != sbsize) return 4; if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) { struct bitmap_super_s *bm = (struct bitmap_super_s*) (((char*)sb)+1024); if (__le32_to_cpu(bm->magic) == BITMAP_MAGIC) { locate_bitmap1(st, fd); if (awrite(fd, bm, sizeof(*bm)) != sizeof(*bm)) return 5; } } fsync(fd); return 0; } static int load_super1(struct supertype *st, int fd, char *devname); static unsigned long choose_bm_space(unsigned long devsize) { /* if the device is bigger than 8Gig, save 64k for bitmap usage, * if bigger than 200Gig, save 128k * NOTE: result must be multiple of 4K else bad things happen * on 4K-sector devices. */ if (devsize < 64*2) return 0; if (devsize - 64*2 >= 200*1024*1024*2) return 128*2; if (devsize - 4*2 > 8*1024*1024*2) return 64*2; return 4*2; } #ifndef MDASSEMBLE static int write_init_super1(struct supertype *st) { struct mdp_superblock_1 *sb = st->sb; struct supertype refst; int rfd; int rv = 0; int bm_space; unsigned long long reserved; struct devinfo *di; unsigned long long dsize, array_size; long long sb_offset; for (di = st->info; di && ! rv ; di = di->next) { if (di->disk.state == 1) continue; if (di->fd < 0) continue; while (Kill(di->devname, NULL, 0, 1, 1) == 0) ; sb->dev_number = __cpu_to_le32(di->disk.number); if (di->disk.state & (1<devflags |= __cpu_to_le32(WriteMostly1); if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 || read(rfd, sb->device_uuid, 16) != 16) { __u32 r[4] = {random(), random(), random(), random()}; memcpy(sb->device_uuid, r, 16); } if (rfd >= 0) close(rfd); sb->events = 0; refst =*st; refst.sb = NULL; if (load_super1(&refst, di->fd, NULL)==0) { struct mdp_superblock_1 *refsb = refst.sb; memcpy(sb->device_uuid, refsb->device_uuid, 16); if (memcmp(sb->set_uuid, refsb->set_uuid, 16)==0) { /* same array, so preserve events and * dev_number */ sb->events = refsb->events; /* bugs in 2.6.17 and earlier mean the * dev_number chosen in Manage must be preserved */ if (get_linux_version() >= 2006018) sb->dev_number = refsb->dev_number; } free(refsb); } if (!get_dev_size(di->fd, NULL, &dsize)) return 1; dsize >>= 9; if (dsize < 24) { close(di->fd); return 2; } /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depending on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. * Depending on the array size, we might leave extra space * for a bitmap. */ array_size = __le64_to_cpu(sb->size); /* work out how much space we left for a bitmap */ bm_space = choose_bm_space(array_size); switch(st->minor_version) { case 0: sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); sb->super_offset = __cpu_to_le64(sb_offset); sb->data_offset = __cpu_to_le64(0); if (sb_offset - bm_space < array_size) bm_space = sb_offset - array_size; sb->data_size = __cpu_to_le64(sb_offset - bm_space); break; case 1: sb->super_offset = __cpu_to_le64(0); reserved = bm_space + 4*2; /* Try for multiple of 1Meg so it is nicely aligned */ #define ONE_MEG (2*1024) reserved = ((reserved + ONE_MEG-1)/ONE_MEG) * ONE_MEG; if (reserved + __le64_to_cpu(sb->size) > dsize) reserved = dsize - __le64_to_cpu(sb->size); /* force 4K alignment */ reserved &= ~7ULL; sb->data_offset = __cpu_to_le64(reserved); sb->data_size = __cpu_to_le64(dsize - reserved); break; case 2: sb_offset = 4*2; sb->super_offset = __cpu_to_le64(4*2); if (4*2 + 4*2 + bm_space + __le64_to_cpu(sb->size) > dsize) bm_space = dsize - __le64_to_cpu(sb->size) - 4*2 - 4*2; reserved = bm_space + 4*2 + 4*2; /* Try for multiple of 1Meg so it is nicely aligned */ #define ONE_MEG (2*1024) reserved = ((reserved + ONE_MEG-1)/ONE_MEG) * ONE_MEG; if (reserved + __le64_to_cpu(sb->size) > dsize) reserved = dsize - __le64_to_cpu(sb->size); /* force 4K alignment */ reserved &= ~7ULL; sb->data_offset = __cpu_to_le64(reserved); sb->data_size = __cpu_to_le64(dsize - reserved); break; default: return -EINVAL; } sb->sb_csum = calc_sb_1_csum(sb); rv = store_super1(st, di->fd); if (rv) fprintf(stderr, Name ": failed to write superblock to %s\n", di->devname); if (rv == 0 && (__le32_to_cpu(sb->feature_map) & 1)) rv = st->ss->write_bitmap(st, di->fd); close(di->fd); di->fd = -1; } return rv; } #endif static int compare_super1(struct supertype *st, struct supertype *tst) { /* * return: * 0 same, or first was empty, and second was copied * 1 second had wrong number * 2 wrong uuid * 3 wrong other info */ struct mdp_superblock_1 *first = st->sb; struct mdp_superblock_1 *second = tst->sb; if (second->magic != __cpu_to_le32(MD_SB_MAGIC)) return 1; if (second->major_version != __cpu_to_le32(1)) return 1; if (!first) { if (posix_memalign((void**)&first, 512, 1024 + 512 + sizeof(struct misc_dev_info)) != 0) { fprintf(stderr, Name ": %s could not allocate superblock\n", __func__); return 1; } memcpy(first, second, 1024 + 512 + sizeof(struct misc_dev_info)); st->sb = first; return 0; } if (memcmp(first->set_uuid, second->set_uuid, 16)!= 0) return 2; if (first->ctime != second->ctime || first->level != second->level || first->layout != second->layout || first->size != second->size || first->chunksize != second->chunksize || first->raid_disks != second->raid_disks) return 3; return 0; } static void free_super1(struct supertype *st); static int load_super1(struct supertype *st, int fd, char *devname) { unsigned long long dsize; unsigned long long sb_offset; struct mdp_superblock_1 *super; int uuid[4]; struct bitmap_super_s *bsb; struct misc_dev_info *misc; free_super1(st); if (st->subarray[0]) return 1; if (st->ss == NULL || st->minor_version == -1) { int bestvers = -1; struct supertype tst; __u64 bestctime = 0; /* guess... choose latest ctime */ memset(&tst, 0, sizeof(tst)); tst.ss = &super1; for (tst.minor_version = 0; tst.minor_version <= 2 ; tst.minor_version++) { switch(load_super1(&tst, fd, devname)) { case 0: super = tst.sb; if (bestvers == -1 || bestctime < __le64_to_cpu(super->ctime)) { bestvers = tst.minor_version; bestctime = __le64_to_cpu(super->ctime); } free(super); tst.sb = NULL; break; case 1: return 1; /*bad device */ case 2: break; /* bad, try next */ } } if (bestvers != -1) { int rv; tst.minor_version = bestvers; tst.ss = &super1; tst.max_devs = 384; rv = load_super1(&tst, fd, devname); if (rv == 0) *st = tst; return rv; } return 2; } if (!get_dev_size(fd, devname, &dsize)) return 1; dsize >>= 9; if (dsize < 24) { if (devname) fprintf(stderr, Name ": %s is too small for md: size is %llu sectors.\n", devname, dsize); return 1; } /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depending on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(st->minor_version) { case 0: sb_offset = dsize; sb_offset -= 8*2; sb_offset &= ~(4*2-1); break; case 1: sb_offset = 0; break; case 2: sb_offset = 4*2; break; default: return -EINVAL; } ioctl(fd, BLKFLSBUF, 0); /* make sure we read current data */ if (lseek64(fd, sb_offset << 9, 0)< 0LL) { if (devname) fprintf(stderr, Name ": Cannot seek to superblock on %s: %s\n", devname, strerror(errno)); return 1; } if (posix_memalign((void**)&super, 512, 1024 + 512 + sizeof(struct misc_dev_info)) != 0) { fprintf(stderr, Name ": %s could not allocate superblock\n", __func__); return 1; } if (aread(fd, super, 1024) != 1024) { if (devname) fprintf(stderr, Name ": Cannot read superblock on %s\n", devname); free(super); return 1; } if (__le32_to_cpu(super->magic) != MD_SB_MAGIC) { if (devname) fprintf(stderr, Name ": No super block found on %s (Expected magic %08x, got %08x)\n", devname, MD_SB_MAGIC, __le32_to_cpu(super->magic)); free(super); return 2; } if (__le32_to_cpu(super->major_version) != 1) { if (devname) fprintf(stderr, Name ": Cannot interpret superblock on %s - version is %d\n", devname, __le32_to_cpu(super->major_version)); free(super); return 2; } if (__le64_to_cpu(super->super_offset) != sb_offset) { if (devname) fprintf(stderr, Name ": No superblock found on %s (super_offset is wrong)\n", devname); free(super); return 2; } st->sb = super; bsb = (struct bitmap_super_s *)(((char*)super)+1024); misc = (struct misc_dev_info*) (((char*)super)+1024+512); misc->device_size = dsize; /* Now check on the bitmap superblock */ if ((__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) == 0) return 0; /* Read the bitmap superblock and make sure it looks * valid. If it doesn't clear the bit. An --assemble --force * should get that written out. */ locate_bitmap1(st, fd); if (aread(fd, ((char*)super)+1024, 512) != 512) goto no_bitmap; uuid_from_super1(st, uuid); if (__le32_to_cpu(bsb->magic) != BITMAP_MAGIC || memcmp(bsb->uuid, uuid, 16) != 0) goto no_bitmap; return 0; no_bitmap: super->feature_map = __cpu_to_le32(__le32_to_cpu(super->feature_map) & ~1); return 0; } static struct supertype *match_metadata_desc1(char *arg) { struct supertype *st = malloc(sizeof(*st)); if (!st) return st; memset(st, 0, sizeof(*st)); st->ss = &super1; st->max_devs = 384; st->sb = NULL; /* leading zeros can be safely ignored. --detail generates them. */ while (*arg == '0') arg++; if (strcmp(arg, "1.0") == 0 || strcmp(arg, "1.00") == 0) { st->minor_version = 0; return st; } if (strcmp(arg, "1.1") == 0 || strcmp(arg, "1.01") == 0 || strcmp(arg, "") == 0 /* no metadata */ ) { st->minor_version = 1; return st; } if (strcmp(arg, "1.2") == 0 || strcmp(arg, "default") == 0 || strcmp(arg, "1.02") == 0) { st->minor_version = 2; return st; } if (strcmp(arg, "1") == 0 || strcmp(arg, "default") == 0) { st->minor_version = -1; return st; } free(st); return NULL; } /* find available size on device with this devsize, using * superblock type st, and reserving 'reserve' sectors for * a possible bitmap */ static __u64 avail_size1(struct supertype *st, __u64 devsize) { struct mdp_superblock_1 *super = st->sb; if (devsize < 24) return 0; if (super == NULL) /* creating: allow suitable space for bitmap */ devsize -= choose_bm_space(devsize); #ifndef MDASSEMBLE else if (__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) { /* hot-add. allow for actual size of bitmap */ struct bitmap_super_s *bsb; bsb = (struct bitmap_super_s *)(((char*)super)+1024); devsize -= bitmap_sectors(bsb); } #endif if (st->minor_version < 0) /* not specified, so time to set default */ st->minor_version = 2; if (super == NULL && st->minor_version > 0) { /* haven't committed to a size yet, so allow some * slack for alignment of data_offset. * We haven't access to device details so allow * 1 Meg if bigger than 1Gig */ if (devsize > 1024*1024*2) devsize -= 1024*2; } switch(st->minor_version) { case 0: /* at end */ return ((devsize - 8*2 ) & ~(4*2-1)); case 1: /* at start, 4K for superblock and possible bitmap */ return devsize - 4*2; case 2: /* 4k from start, 4K for superblock and possible bitmap */ return devsize - (4+4)*2; } return 0; } static int add_internal_bitmap1(struct supertype *st, int *chunkp, int delay, int write_behind, unsigned long long size, int may_change, int major) { /* * If not may_change, then this is a 'Grow', and the bitmap * must fit after the superblock. * If may_change, then this is create, and we can put the bitmap * before the superblock if we like, or may move the start. * If !may_change, the bitmap MUST live at offset of 1K, until * we get a sysfs interface. * * size is in sectors, chunk is in bytes !!! */ unsigned long long bits; unsigned long long max_bits; unsigned long long min_chunk; long offset; int chunk = *chunkp; int room = 0; struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb) + 1024); switch(st->minor_version) { case 0: /* either 3K after the superblock (when hot-add), * or some amount of space before. */ if (may_change) { /* We are creating array, so we *know* how much room has * been left. */ offset = 0; room = choose_bm_space(__le64_to_cpu(sb->size)); } else { room = __le64_to_cpu(sb->super_offset) - __le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->data_size); /* remove '1 ||' when we can set offset via sysfs */ if (1 || (room < 3*2 && __le32_to_cpu(sb->max_dev) <= 384)) { room = 3*2; offset = 1*2; } else { offset = 0; /* means movable offset */ } } break; case 1: case 2: /* between superblock and data */ if (may_change) { offset = 4*2; room = choose_bm_space(__le64_to_cpu(sb->size)); } else { room = __le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->super_offset); if (1 || __le32_to_cpu(sb->max_dev) <= 384) { room -= 2; offset = 2; } else { room -= 4*2; offset = 4*2; } } break; default: return 0; } if (chunk == UnSet && room > 128*2) /* Limit to 128K of bitmap when chunk size not requested */ room = 128*2; max_bits = (room * 512 - sizeof(bitmap_super_t)) * 8; min_chunk = 4096; /* sub-page chunks don't work yet.. */ bits = (size*512)/min_chunk +1; while (bits > max_bits) { min_chunk *= 2; bits = (bits+1)/2; } if (chunk == UnSet) { /* For practical purpose, 64Meg is a good * default chunk size for internal bitmaps. */ chunk = min_chunk; if (chunk < 64*1024*1024) chunk = 64*1024*1024; } else if (chunk < min_chunk) return 0; /* chunk size too small */ if (chunk == 0) /* rounding problem */ return 0; if (offset == 0) { /* start bitmap on a 4K boundary with enough space for * the bitmap */ bits = (size*512) / chunk + 1; room = ((bits+7)/8 + sizeof(bitmap_super_t) +4095)/4096; room *= 8; /* convert 4K blocks to sectors */ offset = -room; } sb->bitmap_offset = __cpu_to_le32(offset); sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map) | 1); memset(bms, 0, sizeof(*bms)); bms->magic = __cpu_to_le32(BITMAP_MAGIC); bms->version = __cpu_to_le32(major); uuid_from_super1(st, (int*)bms->uuid); bms->chunksize = __cpu_to_le32(chunk); bms->daemon_sleep = __cpu_to_le32(delay); bms->sync_size = __cpu_to_le64(size); bms->write_behind = __cpu_to_le32(write_behind); *chunkp = chunk; return 1; } static void locate_bitmap1(struct supertype *st, int fd) { unsigned long long offset; struct mdp_superblock_1 *sb; int mustfree = 0; if (!st->sb) { if (st->ss->load_super(st, fd, NULL)) return; /* no error I hope... */ mustfree = 1; } sb = st->sb; offset = __le64_to_cpu(sb->super_offset); offset += (int32_t) __le32_to_cpu(sb->bitmap_offset); if (mustfree) free(sb); lseek64(fd, offset<<9, 0); } static int write_bitmap1(struct supertype *st, int fd) { struct mdp_superblock_1 *sb = st->sb; bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb)+1024); int rv = 0; int towrite, n; char *buf = (char*)(((long)(abuf+4096))&~4095UL); locate_bitmap1(st, fd); memset(buf, 0xff, 4096); memcpy(buf, ((char*)sb)+1024, sizeof(bitmap_super_t)); towrite = __le64_to_cpu(bms->sync_size) / (__le32_to_cpu(bms->chunksize)>>9); towrite = (towrite+7) >> 3; /* bits to bytes */ towrite += sizeof(bitmap_super_t); towrite = ROUND_UP(towrite, 512); while (towrite > 0) { n = towrite; if (n > 4096) n = 4096; n = write(fd, buf, n); if (n > 0) towrite -= n; else break; memset(buf, 0xff, 4096); } fsync(fd); if (towrite) rv = -2; return rv; } static void free_super1(struct supertype *st) { if (st->sb) free(st->sb); st->sb = NULL; } #ifndef MDASSEMBLE static int validate_geometry1(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *subdev, unsigned long long *freesize, int verbose) { unsigned long long ldsize; int fd; if (level == LEVEL_CONTAINER) { if (verbose) fprintf(stderr, Name ": 1.x metadata does not support containers\n"); return 0; } if (!subdev) return 1; fd = open(subdev, O_RDONLY|O_EXCL, 0); if (fd < 0) { if (verbose) fprintf(stderr, Name ": super1.x cannot open %s: %s\n", subdev, strerror(errno)); return 0; } if (!get_dev_size(fd, subdev, &ldsize)) { close(fd); return 0; } close(fd); *freesize = avail_size1(st, ldsize >> 9); return 1; } #endif /* MDASSEMBLE */ struct superswitch super1 = { #ifndef MDASSEMBLE .examine_super = examine_super1, .brief_examine_super = brief_examine_super1, .export_examine_super = export_examine_super1, .detail_super = detail_super1, .brief_detail_super = brief_detail_super1, .export_detail_super = export_detail_super1, .write_init_super = write_init_super1, .validate_geometry = validate_geometry1, .add_to_super = add_to_super1, #endif .match_home = match_home1, .uuid_from_super = uuid_from_super1, .getinfo_super = getinfo_super1, .update_super = update_super1, .init_super = init_super1, .store_super = store_super1, .compare_super = compare_super1, .load_super = load_super1, .match_metadata_desc = match_metadata_desc1, .avail_size = avail_size1, .add_internal_bitmap = add_internal_bitmap1, .locate_bitmap = locate_bitmap1, .write_bitmap = write_bitmap1, .free_super = free_super1, #if __BYTE_ORDER == BIG_ENDIAN .swapuuid = 0, #else .swapuuid = 1, #endif .name = "1.x", };