/* * mdadm - Intel(R) Matrix Storage Manager Support * * Copyright (C) 2002-2007 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include "mdadm.h" #include "mdmon.h" #include #include #include /* MPB == Metadata Parameter Block */ #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. " #define MPB_SIG_LEN (strlen(MPB_SIGNATURE)) #define MPB_VERSION_RAID0 "1.0.00" #define MPB_VERSION_RAID1 "1.1.00" #define MPB_VERSION_RAID5 "1.2.02" #define MAX_SIGNATURE_LENGTH 32 #define MAX_RAID_SERIAL_LEN 16 /* Disk configuration info. */ #define IMSM_MAX_DEVICES 255 struct imsm_disk { __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */ __u32 total_blocks; /* 0xE8 - 0xEB total blocks */ __u32 scsi_id; /* 0xEC - 0xEF scsi ID */ __u32 status; /* 0xF0 - 0xF3 */ #define SPARE_DISK 0x01 /* Spare */ #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */ #define FAILED_DISK 0x04 /* Permanent failure */ #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */ #define IMSM_DISK_FILLERS 5 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */ }; /* RAID map configuration infos. */ struct imsm_map { __u32 pba_of_lba0; /* start address of partition */ __u32 blocks_per_member;/* blocks per member */ __u32 num_data_stripes; /* number of data stripes */ __u16 blocks_per_strip; __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */ #define IMSM_T_STATE_NORMAL 0 #define IMSM_T_STATE_UNINITIALIZED 1 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */ #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */ __u8 raid_level; #define IMSM_T_RAID0 0 #define IMSM_T_RAID1 1 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */ __u8 num_members; /* number of member disks */ __u8 reserved[3]; __u32 filler[7]; /* expansion area */ __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members], top byte special */ } __attribute__ ((packed)); struct imsm_vol { __u32 reserved[2]; __u8 migr_state; /* Normal or Migrating */ __u8 migr_type; /* Initializing, Rebuilding, ... */ __u8 dirty; __u8 fill[1]; __u32 filler[5]; struct imsm_map map[1]; /* here comes another one if migr_state */ } __attribute__ ((packed)); struct imsm_dev { __u8 volume[MAX_RAID_SERIAL_LEN]; __u32 size_low; __u32 size_high; __u32 status; /* Persistent RaidDev status */ __u32 reserved_blocks; /* Reserved blocks at beginning of volume */ #define IMSM_DEV_FILLERS 12 __u32 filler[IMSM_DEV_FILLERS]; struct imsm_vol vol; } __attribute__ ((packed)); struct imsm_super { __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */ __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */ __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */ __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */ __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */ __u32 reserved[2]; /* 0x30 - 0x37 */ __u8 num_disks; /* 0x38 Number of configured disks */ __u8 num_raid_devs; /* 0x39 Number of configured volumes */ __u8 fill[2]; /* 0x3A - 0x3B */ #define IMSM_FILLERS 39 __u32 filler[IMSM_FILLERS]; /* 0x3C - 0xD7 RAID_MPB_FILLERS */ struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */ /* here comes imsm_dev[num_raid_devs] */ } __attribute__ ((packed)); #ifndef MDASSEMBLE static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" }; #endif static unsigned long long mpb_sectors(struct imsm_super *mpb) { __u32 size = __le32_to_cpu(mpb->mpb_size); return ((size + (512-1)) & (~(512-1))) / 512; } /* internal representation of IMSM metadata */ struct intel_super { union { struct imsm_super *mpb; void *buf; }; int updates_pending; struct dl { struct dl *next; int index; __u8 serial[MAX_RAID_SERIAL_LEN]; int major, minor; char *devname; int fd; } *disks; }; static struct supertype *match_metadata_desc_imsm(char *arg) { struct supertype *st; if (strcmp(arg, "imsm") != 0 && strcmp(arg, "default") != 0 ) return NULL; st = malloc(sizeof(*st)); st->ss = &super_imsm; st->max_devs = IMSM_MAX_DEVICES; st->minor_version = 0; st->sb = NULL; return st; } static struct supertype *match_metadata_desc_imsm_raid(char *arg) { struct supertype *st; if (strcmp(arg, "imsm/raid") != 0 && strcmp(arg, "raid") != 0 && strcmp(arg, "default") != 0 ) return NULL; st = malloc(sizeof(*st)); st->ss = &super_imsm_raid; st->max_devs = IMSM_MAX_DEVICES; st->minor_version = 0; st->sb = NULL; return st; } static __u8 *get_imsm_version(struct imsm_super *mpb) { return &mpb->sig[MPB_SIG_LEN]; } static struct imsm_disk *get_imsm_disk(struct imsm_super *mpb, __u8 index) { if (index > mpb->num_disks - 1) return NULL; return &mpb->disk[index]; } static __u32 gen_imsm_checksum(struct imsm_super *mpb) { __u32 end = mpb->mpb_size / sizeof(end); __u32 *p = (__u32 *) mpb; __u32 sum = 0; while (end--) sum += __le32_to_cpu(*p++); return sum - __le32_to_cpu(mpb->check_sum); } static size_t sizeof_imsm_dev(struct imsm_dev *dev) { size_t size = sizeof(*dev); /* each map has disk_ord_tbl[num_members - 1] additional space */ size += sizeof(__u32) * (dev->vol.map[0].num_members - 1); /* migrating means an additional map */ if (dev->vol.migr_state) { size += sizeof(struct imsm_map); size += sizeof(__u32) * (dev->vol.map[1].num_members - 1); } return size; } static struct imsm_dev *get_imsm_dev(struct imsm_super *mpb, __u8 index) { int offset; int i; void *_mpb = mpb; if (index > mpb->num_raid_devs - 1) return NULL; /* devices start after all disks */ offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb; for (i = 0; i <= index; i++) if (i == index) return _mpb + offset; else offset += sizeof_imsm_dev(_mpb + offset); return NULL; } static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot) { __u32 *ord_tbl = &map->disk_ord_tbl[slot]; /* top byte is 'special' */ return __le32_to_cpu(*ord_tbl & ~(0xff << 24)); } static int get_imsm_raid_level(struct imsm_map *map) { if (map->raid_level == 1) { if (map->num_members == 2) return 1; else return 10; } return map->raid_level; } #ifndef MDASSEMBLE static void print_imsm_dev(struct imsm_dev *dev, int index) { __u64 sz; int slot; struct imsm_map *map = dev->vol.map; printf("\n"); printf("[%s]:\n", dev->volume); printf(" RAID Level : %d\n", get_imsm_raid_level(map)); printf(" Members : %d\n", map->num_members); for (slot = 0; slot < map->num_members; slot++) if (index == get_imsm_disk_idx(map, slot)) break; if (slot < map->num_members) printf(" This Slot : %d\n", slot); else printf(" This Slot : ?\n"); sz = __le32_to_cpu(dev->size_high); sz <<= 32; sz += __le32_to_cpu(dev->size_low); printf(" Array Size : %llu%s\n", (unsigned long long)sz, human_size(sz * 512)); sz = __le32_to_cpu(map->blocks_per_member); printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz, human_size(sz * 512)); printf(" Sector Offset : %u\n", __le32_to_cpu(map->pba_of_lba0)); printf(" Num Stripes : %u\n", __le32_to_cpu(map->num_data_stripes)); printf(" Chunk Size : %u KiB\n", __le16_to_cpu(map->blocks_per_strip) / 2); printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks)); printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle"); printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean"); printf(" Map State : %s\n", map_state_str[map->map_state]); } static void print_imsm_disk(struct imsm_super *mpb, int index) { struct imsm_disk *disk = get_imsm_disk(mpb, index); char str[MAX_RAID_SERIAL_LEN]; __u32 s; __u64 sz; printf("\n"); snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial); printf(" Disk%02d Serial : %s\n", index, str); s = __le32_to_cpu(disk->status); printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "", s&CONFIGURED_DISK ? " active" : "", s&FAILED_DISK ? " failed" : "", s&USABLE_DISK ? " usable" : ""); printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id)); sz = __le32_to_cpu(disk->total_blocks) - mpb_sectors(mpb); printf(" Usable Size : %llu%s\n", (unsigned long long)sz, human_size(sz * 512)); } static void examine_super_imsm(struct supertype *st, char *homehost) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->mpb; char str[MAX_SIGNATURE_LENGTH]; int i; __u32 sum; snprintf(str, MPB_SIG_LEN, "%s", mpb->sig); printf(" Magic : %s\n", str); snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb)); printf(" Version : %s\n", get_imsm_version(mpb)); printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num)); printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num)); sum = __le32_to_cpu(mpb->check_sum); printf(" Checksum : %08x %s\n", sum, gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect"); printf(" Disks : %d\n", mpb->num_disks); printf(" RAID Devices : %d\n", mpb->num_raid_devs); print_imsm_disk(mpb, super->disks->index); for (i = 0; i < mpb->num_raid_devs; i++) print_imsm_dev(get_imsm_dev(mpb, i), super->disks->index); for (i = 0; i < mpb->num_disks; i++) { if (i == super->disks->index) continue; print_imsm_disk(mpb, i); } } static void brief_examine_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->mpb; printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n", __le32_to_cpu(mpb->family_num)); } static void detail_super_imsm(struct supertype *st, char *homehost) { printf("%s\n", __FUNCTION__); } static void brief_detail_super_imsm(struct supertype *st) { printf("%s\n", __FUNCTION__); } #endif static int match_home_imsm(struct supertype *st, char *homehost) { printf("%s\n", __FUNCTION__); return 0; } static void uuid_from_super_imsm(struct supertype *st, int uuid[4]) { printf("%s\n", __FUNCTION__); } static void get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p) { __u8 *v = get_imsm_version(mpb); __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH; char major[] = { 0, 0, 0 }; char minor[] = { 0 ,0, 0 }; char patch[] = { 0, 0, 0 }; char *ver_parse[] = { major, minor, patch }; int i, j; i = j = 0; while (*v != '\0' && v < end) { if (*v != '.' && j < 2) ver_parse[i][j++] = *v; else { i++; j = 0; } v++; } *m = strtol(minor, NULL, 0); *p = strtol(patch, NULL, 0); } static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->mpb; struct imsm_disk *disk; __u32 s; int i, j; info->array.major_version = 2000; get_imsm_numerical_version(mpb, &info->array.minor_version, &info->array.patch_version); info->array.raid_disks = mpb->num_disks; info->array.level = LEVEL_CONTAINER; info->array.layout = 0; info->array.md_minor = -1; info->array.ctime = __le32_to_cpu(mpb->generation_num); //?? info->array.utime = 0; info->array.chunk_size = 0; info->disk.major = 0; info->disk.minor = 0; info->disk.number = super->disks->index; info->disk.raid_disk = -1; /* is this disk a member of a raid device? */ for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(mpb, i); struct imsm_map *map = dev->vol.map; for (j = 0; j < map->num_members; j++) { __u32 index = get_imsm_disk_idx(map, j); if (index == super->disks->index) { info->disk.raid_disk = super->disks->index; break; } } if (info->disk.raid_disk != -1) break; } disk = get_imsm_disk(mpb, super->disks->index); s = __le32_to_cpu(disk->status); info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0; info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0; info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0; info->reshape_active = 0; strcpy(info->text_version, "imsm"); } static void getinfo_super_imsm_raid(struct supertype *st, struct mdinfo *info) { printf("%s\n", __FUNCTION__); sprintf(info->text_version, "/%s/%d", devnum2devname(st->container_dev), info->container_member); // FIXME is this even set here? } static int update_super_imsm(struct supertype *st, struct mdinfo *info, char *update, char *devname, int verbose, int uuid_set, char *homehost) { /* FIXME */ /* For 'assemble' and 'force' we need to return non-zero if any * change was made. For others, the return value is ignored. * Update options are: * force-one : This device looks a bit old but needs to be included, * update age info appropriately. * assemble: clear any 'faulty' flag to allow this device to * be assembled. * force-array: Array is degraded but being forced, mark it clean * if that will be needed to assemble it. * * newdev: not used ???? * grow: Array has gained a new device - this is currently for * linear only * resync: mark as dirty so a resync will happen. * name: update the name - preserving the homehost * * Following are not relevant for this imsm: * sparc2.2 : update from old dodgey metadata * super-minor: change the preferred_minor number * summaries: update redundant counters. * uuid: Change the uuid of the array to match watch is given * homehost: update the recorded homehost * _reshape_progress: record new reshape_progress position. */ int rv = 0; //struct intel_super *super = st->sb; //struct imsm_super *mpb = super->mpb; if (strcmp(update, "grow") == 0) { } if (strcmp(update, "resync") == 0) { /* dev->vol.dirty = 1; */ } /* IMSM has no concept of UUID or homehost */ return rv; } static __u64 avail_size_imsm(struct supertype *st, __u64 size) { printf("%s\n", __FUNCTION__); return 0; } static int compare_super_imsm(struct supertype *st, struct supertype *tst) { /* * return: * 0 same, or first was empty, and second was copied * 1 second had wrong number * 2 wrong uuid * 3 wrong other info */ struct intel_super *first = st->sb; struct intel_super *sec = tst->sb; if (!first) { st->sb = tst->sb; tst->sb = NULL; return 0; } if (memcmp(first->mpb->sig, sec->mpb->sig, MAX_SIGNATURE_LENGTH) != 0) return 3; if (first->mpb->family_num != sec->mpb->family_num) return 3; if (first->mpb->mpb_size != sec->mpb->mpb_size) return 3; if (first->mpb->check_sum != sec->mpb->check_sum) return 3; return 0; } extern int scsi_get_serial(int fd, void *buf, size_t buf_len); static int imsm_read_serial(int fd, char *devname, __u8 serial[MAX_RAID_SERIAL_LEN]) { unsigned char scsi_serial[255]; struct stat stb; int sg_fd; int minor; char sg_path[20]; int rv; int rsp_len; int i, cnt; memset(scsi_serial, 0, sizeof(scsi_serial)); fstat(fd, &stb); minor = minor(stb.st_rdev); minor /= 16; sprintf(sg_path, "/dev/sg%d", minor); sg_fd = open(sg_path, O_RDONLY); if (sg_fd < 0) { if (devname) fprintf(stderr, Name ": Failed to open %s for %s: %s\n", sg_path, devname, strerror(errno)); return 1; } rv = scsi_get_serial(sg_fd, scsi_serial, sizeof(scsi_serial)); close(sg_fd); if (rv != 0) { if (devname) fprintf(stderr, Name ": Failed to retrieve serial for %s\n", devname); return rv; } rsp_len = scsi_serial[3]; for (i = 0, cnt = 0; i < rsp_len; i++) { if (!isspace(scsi_serial[4 + i])) serial[cnt++] = scsi_serial[4 + i]; if (cnt == MAX_RAID_SERIAL_LEN) break; } serial[MAX_RAID_SERIAL_LEN - 1] = '\0'; return 0; } static int load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd) { struct imsm_super *mpb = super->mpb; struct dl *dl; struct stat stb; struct imsm_disk *disk; int rv; int i; dl = malloc(sizeof(*dl)); if (!dl) { if (devname) fprintf(stderr, Name ": failed to allocate disk buffer for %s\n", devname); return 2; } memset(dl, 0, sizeof(*dl)); fstat(fd, &stb); dl->major = major(stb.st_rdev); dl->minor = minor(stb.st_rdev); dl->next = super->disks; dl->fd = keep_fd ? fd : -1; dl->devname = devname ? strdup(devname) : NULL; dl->index = -1; super->disks = dl; rv = imsm_read_serial(fd, devname, dl->serial); if (rv != 0) return 2; /* look up this disk's index */ for (i = 0; i < mpb->num_disks; i++) { disk = get_imsm_disk(mpb, i); if (memcmp(disk->serial, dl->serial, MAX_RAID_SERIAL_LEN) == 0) break; } if (i > mpb->num_disks) return 2; dl->index = i; return 0; } /* load_imsm_mpb - read matrix metadata * allocates super->mpb to be freed by free_super */ static int load_imsm_mpb(int fd, struct intel_super *super, char *devname) { unsigned long long dsize; size_t len, mpb_size; unsigned long long sectors; struct stat; struct imsm_super anchor; __u32 check_sum; memset(super, 0, sizeof(*super)); get_dev_size(fd, NULL, &dsize); if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) { if (devname) fprintf(stderr, Name ": Cannot seek to anchor block on %s: %s\n", devname, strerror(errno)); return 1; } len = sizeof(anchor); if (read(fd, &anchor, len) != len) { if (devname) fprintf(stderr, Name ": Cannot read anchor block on %s: %s\n", devname, strerror(errno)); return 1; } if (strncmp((char *) anchor.sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) { if (devname) fprintf(stderr, Name ": no IMSM anchor on %s\n", devname); return 2; } mpb_size = __le32_to_cpu(anchor.mpb_size); super->mpb = malloc(mpb_size < 512 ? 512 : mpb_size); if (!super->mpb) { if (devname) fprintf(stderr, Name ": unable to allocate %zu byte mpb buffer\n", mpb_size); return 2; } memcpy(super->buf, &anchor, sizeof(anchor)); /* read the rest of the first block */ len = 512 - sizeof(anchor); if (read(fd, super->buf + sizeof(anchor), len) != len) { if (devname) fprintf(stderr, Name ": Cannot read anchor remainder on %s: %s\n", devname, strerror(errno)); return 2; } sectors = mpb_sectors(&anchor) - 1; if (!sectors) return load_imsm_disk(fd, super, devname, 0); /* read the extended mpb */ if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) { if (devname) fprintf(stderr, Name ": Cannot seek to extended mpb on %s: %s\n", devname, strerror(errno)); return 1; } len = mpb_size - 512; if (read(fd, super->buf + 512, len) != len) { if (devname) fprintf(stderr, Name ": Cannot read extended mpb on %s: %s\n", devname, strerror(errno)); return 2; } check_sum = gen_imsm_checksum(super->mpb); if (check_sum != __le32_to_cpu(super->mpb->check_sum)) { if (devname) fprintf(stderr, Name ": IMSM checksum %x != %x on %s\n", check_sum, __le32_to_cpu(super->mpb->check_sum), devname); return 2; } return load_imsm_disk(fd, super, devname, 0); } struct superswitch super_imsm_container; static void free_imsm_disks(struct intel_super *super) { while (super->disks) { struct dl *d = super->disks; super->disks = d->next; if (d->fd >= 0) close(d->fd); if (d->devname) free(d->devname); free(d); } } static void free_imsm(struct intel_super *super) { if (super->mpb) free(super->mpb); free_imsm_disks(super); free(super); } static void free_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; if (!super) return; free_imsm(super); st->sb = NULL; } #ifndef MDASSEMBLE static int load_super_imsm_all(struct supertype *st, int fd, void **sbp, char *devname, int keep_fd) { struct mdinfo *sra; struct intel_super *super; struct mdinfo *sd, *best = NULL; __u32 bestgen = 0; __u32 gen; char nm[20]; int dfd; int rv; /* check if this disk is a member of an active array */ sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE); if (!sra) return 1; if (sra->array.major_version != -1 || sra->array.minor_version != -2 || strcmp(sra->text_version, "imsm") != 0) return 1; super = malloc(sizeof(*super)); if (!super) return 1; /* find the most up to date disk in this array */ for (sd = sra->devs; sd; sd = sd->next) { sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor); dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY); if (!dfd) { free_imsm(super); return 2; } rv = load_imsm_mpb(dfd, super, NULL); if (!keep_fd) close(dfd); if (rv == 0) { gen = __le32_to_cpu(super->mpb->generation_num); if (!best || gen > bestgen) { bestgen = gen; best = sd; } } else { free_imsm(super); return 2; } } if (!best) { free_imsm(super); return 1; } /* load the most up to date anchor */ sprintf(nm, "%d:%d", best->disk.major, best->disk.minor); dfd = dev_open(nm, O_RDONLY); if (!dfd) { free_imsm(super); return 1; } rv = load_imsm_mpb(dfd, super, NULL); close(dfd); if (rv != 0) { free_imsm(super); return 2; } /* reset the disk list */ free_imsm_disks(super); /* populate disk list */ for (sd = sra->devs ; sd ; sd = sd->next) { sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor); dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY); if (!dfd) { free_imsm(super); return 2; } load_imsm_disk(dfd, super, NULL, keep_fd); if (!keep_fd) close(dfd); } *sbp = super; if (st->ss == NULL) { st->ss = &super_imsm_container; st->minor_version = 0; st->max_devs = IMSM_MAX_DEVICES; } return 0; } #endif static int load_super_imsm(struct supertype *st, int fd, char *devname) { struct intel_super *super; int rv; #ifndef MDASSEMBLE if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0) return 0; #endif super = malloc(sizeof(*super)); if (!super) { fprintf(stderr, Name ": malloc of %zu failed.\n", sizeof(*super)); return 1; } rv = load_imsm_mpb(fd, super, devname); if (rv) { if (devname) fprintf(stderr, Name ": Failed to load all information " "sections on %s\n", devname); free_imsm(super); return rv; } st->sb = super; if (st->ss == NULL) { st->ss = &super_imsm; st->minor_version = 0; st->max_devs = IMSM_MAX_DEVICES; } return 0; } static int init_zero_imsm(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid) { printf("%s\n", __FUNCTION__); return 0; } static int init_super_imsm(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid) { printf("%s\n", __FUNCTION__); return 0; } static int init_super_imsm_raid(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid) { printf("%s\n", __FUNCTION__); return 0; } static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dinfo, int fd, char *devname) { printf("%s\n", __FUNCTION__); } static void add_to_super_imsm_raid(struct supertype *st, mdu_disk_info_t *dinfo, int fd, char *devname) { printf("%s\n", __FUNCTION__); } static int write_init_super_imsm(struct supertype *st) { printf("%s\n", __FUNCTION__); return 0; } static int store_zero_imsm(struct supertype *st, int fd) { printf("%s\n", __FUNCTION__); return 0; } static void getinfo_super_n_imsm_container(struct supertype *st, struct mdinfo *info) { /* just need offset and size... * of the metadata?? */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->mpb; struct imsm_disk *disk = get_imsm_disk(mpb, info->disk.number); int sect = mpb_sectors(mpb); info->data_offset = __le32_to_cpu(disk->total_blocks) - (2 + sect - 1); info->component_size = sect; } static void getinfo_super_n_raid(struct supertype *st, struct mdinfo *info) { printf("%s\n", __FUNCTION__); } static int validate_geometry_imsm(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *subdev, unsigned long long *freesize) { printf("%s\n", __FUNCTION__); return 0; } static int validate_geometry_imsm_container(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *subdev, unsigned long long *freesize) { printf("%s\n", __FUNCTION__); return 0; } static int validate_geometry_imsm_raid(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *subdev, unsigned long long *freesize) { printf("%s\n", __FUNCTION__); return 0; } static struct mdinfo *container_content_imsm(struct supertype *st) { /* Given a container loaded by load_super_imsm_all, * extract information about all the arrays into * an mdinfo tree. * * For each imsm_dev create an mdinfo, fill it in, * then look for matching devices in super->disks * and create appropriate device mdinfo. */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->mpb; struct mdinfo *rest = NULL; int i; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(mpb, i); struct imsm_vol *vol = &dev->vol; struct imsm_map *map = vol->map; struct mdinfo *this; __u64 sz; int slot; this = malloc(sizeof(*this)); memset(this, 0, sizeof(*this)); this->next = rest; rest = this; this->array.major_version = 2000; get_imsm_numerical_version(mpb, &this->array.minor_version, &this->array.patch_version); this->array.level = get_imsm_raid_level(map); this->array.raid_disks = map->num_members; switch(this->array.level) { case 0: case 1: this->array.layout = 0; break; case 5: case 6: this->array.layout = ALGORITHM_LEFT_SYMMETRIC; break; case 10: this->array.layout = 0x102; //FIXME is this correct? break; default: this->array.layout = -1; // FIXME } this->array.md_minor = -1; this->array.ctime = 0; this->array.utime = 0; this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9; this->array.state = !vol->dirty; this->container_member = i; if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) this->resync_start = 0; else this->resync_start = ~0ULL; strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN); this->name[MAX_RAID_SERIAL_LEN] = 0; sprintf(this->text_version, "/%s/%d", devnum2devname(st->container_dev), this->container_member); memset(this->uuid, 0, sizeof(this->uuid)); sz = __le32_to_cpu(dev->size_high); sz <<= 32; sz += __le32_to_cpu(dev->size_low); this->component_size = sz; this->array.size = this->component_size / 2; for (slot = 0 ; slot < map->num_members; slot++) { struct imsm_disk *disk; struct mdinfo *info_d; struct dl *d; int idx; __u32 s; idx = __le32_to_cpu(map->disk_ord_tbl[slot] & ~(0xff << 24)); for (d = super->disks; d ; d = d->next) if (d->index == idx) break; if (d == NULL) break; /* shouldn't this be continue ?? */ info_d = malloc(sizeof(*info_d)); if (!info_d) break; /* ditto ?? */ memset(info_d, 0, sizeof(*info_d)); info_d->next = this->devs; this->devs = info_d; disk = get_imsm_disk(mpb, idx); s = __le32_to_cpu(disk->status); info_d->disk.number = d->index; info_d->disk.major = d->major; info_d->disk.minor = d->minor; info_d->disk.raid_disk = slot; info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0; info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0; info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0; this->array.working_disks++; info_d->events = __le32_to_cpu(mpb->generation_num); info_d->data_offset = __le32_to_cpu(map->pba_of_lba0); info_d->component_size = __le32_to_cpu(map->blocks_per_member); if (d->devname) strcpy(info_d->name, d->devname); } } return rest; } static int imsm_open_new(struct supertype *c, struct active_array *a, char *inst) { fprintf(stderr, "imsm: open_new %s\n", inst); a->info.container_member = atoi(inst); return 0; } static void imsm_set_array_state(struct active_array *a, int consistent) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super->mpb, inst); int dirty = !consistent || (a->resync_start != ~0ULL); if (dev->vol.dirty != dirty) { fprintf(stderr, "imsm: mark '%s' (%llu)\n", dirty?"dirty":"clean", a->resync_start); dev->vol.dirty = dirty; super->updates_pending++; } } static __u8 imsm_check_degraded(struct imsm_super *mpb, int n, int failed) { struct imsm_dev *dev = get_imsm_dev(mpb, n); struct imsm_map *map = dev->vol.map; if (!failed) return map->map_state; switch (get_imsm_raid_level(map)) { case 0: return IMSM_T_STATE_FAILED; break; case 1: if (failed < map->num_members) return IMSM_T_STATE_DEGRADED; else return IMSM_T_STATE_FAILED; break; case 10: { /** * check to see if any mirrors have failed, * otherwise we are degraded */ int device_per_mirror = 2; /* FIXME is this always the case? * and are they always adjacent? */ int failed = 0; int i; for (i = 0; i < map->num_members; i++) { int idx = get_imsm_disk_idx(map, i); struct imsm_disk *disk = get_imsm_disk(mpb, idx); if (__le32_to_cpu(disk->status) & FAILED_DISK) failed++; if (failed >= device_per_mirror) return IMSM_T_STATE_FAILED; /* reset 'failed' for next mirror set */ if (!((i + 1) % device_per_mirror)) failed = 0; } return IMSM_T_STATE_DEGRADED; } case 5: if (failed < 2) return IMSM_T_STATE_DEGRADED; else return IMSM_T_STATE_FAILED; break; default: break; } return map->map_state; } static int imsm_count_failed(struct imsm_super *mpb, struct imsm_map *map) { int i; int failed = 0; struct imsm_disk *disk; for (i = 0; i < map->num_members; i++) { int idx = get_imsm_disk_idx(map, i); disk = get_imsm_disk(mpb, idx); if (__le32_to_cpu(disk->status) & FAILED_DISK) failed++; } return failed; } static void imsm_set_disk(struct active_array *a, int n, int state) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super->mpb, inst); struct imsm_map *map = dev->vol.map; struct imsm_disk *disk; __u32 status; int failed = 0; int new_failure = 0; if (n > map->num_members) fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n", n, map->num_members - 1); if (n < 0) return; fprintf(stderr, "imsm: set_disk %d:%x\n", n, state); disk = get_imsm_disk(super->mpb, get_imsm_disk_idx(map, n)); /* check if we have seen this failure before */ status = __le32_to_cpu(disk->status); if ((state & DS_FAULTY) && !(status & FAILED_DISK)) { status |= FAILED_DISK; disk->status = __cpu_to_le32(status); new_failure = 1; } /** * the number of failures have changed, count up 'failed' to determine * degraded / failed status */ if (new_failure && map->map_state != IMSM_T_STATE_FAILED) failed = imsm_count_failed(super->mpb, map); if (failed) map->map_state = imsm_check_degraded(super->mpb, inst, failed); if (new_failure) super->updates_pending++; } static int store_imsm_mpb(int fd, struct intel_super *super) { struct imsm_super *mpb = super->mpb; __u32 mpb_size = __le32_to_cpu(mpb->mpb_size); unsigned long long dsize; unsigned long long sectors; get_dev_size(fd, NULL, &dsize); /* first block is stored on second to last sector of the disk */ if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) return 1; if (write(fd, super->buf, 512) != 512) return 1; if (mpb_size <= 512) return 0; /* -1 because we already wrote a sector */ sectors = mpb_sectors(mpb) - 1; /* write the extended mpb to the sectors preceeding the anchor */ if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) return 1; if (write(fd, super->buf + 512, mpb_size - 512) != mpb_size - 512) return 1; fsync(fd); return 0; } static void imsm_sync_metadata(struct supertype *container) { struct intel_super *super = container->sb; struct imsm_super *mpb = super->mpb; struct dl *d; __u32 generation; __u32 sum; if (!super->updates_pending) return; fprintf(stderr, "imsm: sync_metadata\n"); /* 'generation' is incremented everytime the metadata is written */ generation = __le32_to_cpu(mpb->generation_num); generation++; mpb->generation_num = __cpu_to_le32(generation); /* recalculate checksum */ sum = gen_imsm_checksum(mpb); mpb->check_sum = __cpu_to_le32(sum); for (d = super->disks; d ; d = d->next) if (store_imsm_mpb(d->fd, super)) fprintf(stderr, "%s: failed for device %d:%d %s\n", __func__, d->major, d->minor, strerror(errno)); super->updates_pending = 0; } struct superswitch super_imsm = { #ifndef MDASSEMBLE .examine_super = examine_super_imsm, .brief_examine_super = brief_examine_super_imsm, .detail_super = detail_super_imsm, .brief_detail_super = brief_detail_super_imsm, #endif .match_home = match_home_imsm, .uuid_from_super= uuid_from_super_imsm, .getinfo_super = getinfo_super_imsm, .update_super = update_super_imsm, .avail_size = avail_size_imsm, .compare_super = compare_super_imsm, .load_super = load_super_imsm, .init_super = init_zero_imsm, .store_super = store_zero_imsm, .free_super = free_super_imsm, .match_metadata_desc = match_metadata_desc_imsm, .getinfo_super_n = getinfo_super_n_imsm_container, .validate_geometry = validate_geometry_imsm, .major = 2000, .swapuuid = 0, .external = 1, /* for mdmon */ .open_new = imsm_open_new, .load_super = load_super_imsm, .set_array_state= imsm_set_array_state, .set_disk = imsm_set_disk, .sync_metadata = imsm_sync_metadata, }; /* super_imsm_container is set by validate_geometry_imsm when given a * device that is not part of any array */ struct superswitch super_imsm_container = { .validate_geometry = validate_geometry_imsm_container, .init_super = init_super_imsm, .add_to_super = add_to_super_imsm, .write_init_super = write_init_super_imsm, .getinfo_super = getinfo_super_imsm, .getinfo_super_n = getinfo_super_n_imsm_container, .load_super = load_super_imsm, #ifndef MDASSEMBLE .examine_super = examine_super_imsm, .brief_examine_super = brief_examine_super_imsm, .detail_super = detail_super_imsm, .brief_detail_super = brief_detail_super_imsm, #endif .free_super = free_super_imsm, .container_content = container_content_imsm, .major = 2000, .swapuuid = 0, .external = 1, }; struct superswitch super_imsm_raid = { .update_super = update_super_imsm, .init_super = init_super_imsm_raid, .add_to_super = add_to_super_imsm_raid, .getinfo_super = getinfo_super_imsm_raid, .getinfo_super_n = getinfo_super_n_raid, .write_init_super = write_init_super_imsm, .load_super = load_super_imsm, .free_super = free_super_imsm, .match_metadata_desc = match_metadata_desc_imsm_raid, .validate_geometry = validate_geometry_imsm_raid, .major = 2001, .swapuuid = 0, .external = 2, };