#include "mdadm.h" #include "mdmon.h" #include #include static char *array_states[] = { "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", "write-pending", "active-idle", NULL }; static char *sync_actions[] = { "idle", "reshape", "resync", "recover", "check", "repair", NULL }; static int write_attr(char *attr, int fd) { return write(fd, attr, strlen(attr)); } static void add_fd(fd_set *fds, int *maxfd, int fd) { if (fd < 0) return; if (fd > *maxfd) *maxfd = fd; FD_SET(fd, fds); } static int read_attr(char *buf, int len, int fd) { int n; if (fd < 0) { buf[0] = 0; return 0; } lseek(fd, 0, 0); n = read(fd, buf, len - 1); if (n <= 0) { buf[0] = 0; return 0; } buf[n] = 0; if (buf[n-1] == '\n') buf[n-1] = 0; return n; } static int get_resync_start(struct active_array *a) { char buf[30]; int n; n = read_attr(buf, 30, a->resync_start_fd); if (n <= 0) return n; a->resync_start = strtoull(buf, NULL, 10); return 1; } static int attr_match(const char *attr, const char *str) { /* See if attr, read from a sysfs file, matches * str. They must either be the same, or attr can * have a trailing newline or comma */ while (*attr && *str && *attr == *str) { attr++; str++; } if (*str || (*attr && *attr != ',' && *attr != '\n')) return 0; return 1; } static int match_word(const char *word, char **list) { int n; for (n=0; list[n]; n++) if (attr_match(word, list[n])) break; return n; } static enum array_state read_state(int fd) { char buf[20]; int n = read_attr(buf, 20, fd); if (n <= 0) return bad_word; return (enum array_state) match_word(buf, array_states); } static enum sync_action read_action( int fd) { char buf[20]; int n = read_attr(buf, 20, fd); if (n <= 0) return bad_action; return (enum sync_action) match_word(buf, sync_actions); } int read_dev_state(int fd) { char buf[60]; int n = read_attr(buf, 60, fd); char *cp; int rv = 0; if (n <= 0) return 0; cp = buf; while (cp) { if (attr_match(cp, "faulty")) rv |= DS_FAULTY; if (attr_match(cp, "in_sync")) rv |= DS_INSYNC; if (attr_match(cp, "write_mostly")) rv |= DS_WRITE_MOSTLY; if (attr_match(cp, "spare")) rv |= DS_SPARE; if (attr_match(cp, "blocked")) rv |= DS_BLOCKED; cp = strchr(cp, ','); if (cp) cp++; } return rv; } static void signal_manager(void) { kill(getpid(), SIGUSR1); } /* Monitor a set of active md arrays - all of which share the * same metadata - and respond to events that require * metadata update. * * New arrays are detected by another thread which allocates * required memory and attaches the data structure to our list. * * Events: * Array stops. * This is detected by array_state going to 'clear' or 'inactive'. * while we thought it was active. * Response is to mark metadata as clean and 'clear' the array(??) * write-pending * array_state if 'write-pending' * We mark metadata as 'dirty' then set array to 'active'. * active_idle * Either ignore, or mark clean, then mark metadata as clean. * * device fails * detected by rd-N/state reporting "faulty" * mark device as 'failed' in metadata, let the kernel release the * device by writing '-blocked' to rd/state, and finally write 'remove' to * rd/state. Before a disk can be replaced it must be failed and removed * from all container members, this will be preemptive for the other * arrays... safe? * * sync completes * sync_action was 'resync' and becomes 'idle' and resync_start becomes * MaxSector * Notify metadata that sync is complete. * * recovery completes * sync_action changes from 'recover' to 'idle' * Check each device state and mark metadata if 'faulty' or 'in_sync'. * * deal with resync * This only happens on finding a new array... mdadm will have set * 'resync_start' to the correct value. If 'resync_start' indicates that an * resync needs to occur set the array to the 'active' state rather than the * initial read-auto state. * * * * We wait for a change (poll/select) on array_state, sync_action, and * each rd-X/state file. * When we get any change, we check everything. So read each state file, * then decide what to do. * * The core action is to write new metadata to all devices in the array. * This is done at most once on any wakeup. * After that we might: * - update the array_state * - set the role of some devices. * - request a sync_action * */ static int read_and_act(struct active_array *a) { int check_degraded = 0; int deactivate = 0; struct mdinfo *mdi; a->next_state = bad_word; a->next_action = bad_action; a->curr_state = read_state(a->info.state_fd); a->curr_action = read_action(a->action_fd); for (mdi = a->info.devs; mdi ; mdi = mdi->next) { mdi->next_state = 0; if (mdi->state_fd >= 0) mdi->curr_state = read_dev_state(mdi->state_fd); } if (a->curr_state <= inactive && a->prev_state > inactive) { /* array has been stopped */ a->container->ss->set_array_state(a, 1); a->next_state = clear; deactivate = 1; } if (a->curr_state == write_pending) { get_resync_start(a); a->container->ss->set_array_state(a, 0); a->next_state = active; } if (a->curr_state == active_idle) { /* Set array to 'clean' FIRST, then * a->ss->mark_clean(a, ~0ULL); * just ignore for now. */ } if (a->curr_state == readonly) { /* Well, I'm ready to handle things, so * read-auto is OK. FIXME what if we really want * readonly ??? */ get_resync_start(a); printf("Found a readonly array at %llu\n", a->resync_start); if (a->resync_start == ~0ULL) a->next_state = read_auto; /* array is clean */ else { a->container->ss->set_array_state(a, 0); a->next_state = active; } } if (a->curr_action == idle && a->prev_action == resync) { /* A resync has finished. The endpoint is recorded in * 'sync_start'. We don't update the metadata * until the array goes inactive or readonly though. * Just check if we need to fiddle spares. */ get_resync_start(a); a->container->ss->set_array_state(a, 0); check_degraded = 1; } if (a->curr_action == idle && a->prev_action == recover) { for (mdi = a->info.devs ; mdi ; mdi = mdi->next) { a->container->ss->set_disk(a, mdi->disk.raid_disk, mdi->curr_state); if (! (mdi->curr_state & DS_INSYNC)) check_degraded = 1; } } for (mdi = a->info.devs ; mdi ; mdi = mdi->next) { if (mdi->curr_state & DS_FAULTY) { a->container->ss->set_disk(a, mdi->disk.raid_disk, mdi->curr_state); check_degraded = 1; mdi->next_state = DS_REMOVE; } } a->container->ss->sync_metadata(a->container); /* Effect state changes in the array */ if (a->next_state != bad_word) write_attr(array_states[a->next_state], a->info.state_fd); if (a->next_action != bad_action) write_attr(sync_actions[a->next_action], a->action_fd); for (mdi = a->info.devs; mdi ; mdi = mdi->next) { if (mdi->next_state == DS_REMOVE && mdi->state_fd >= 0) { int remove_result; write_attr("-blocked", mdi->state_fd); /* the kernel may not be able to immediately remove the * disk, we can simply wait until the next event to try * again. */ remove_result = write_attr("remove", mdi->state_fd); if (remove_result > 0) { close(mdi->state_fd); mdi->state_fd = -1; } } if (mdi->next_state & DS_INSYNC) write_attr("+in_sync", mdi->state_fd); } /* move curr_ to prev_ */ a->prev_state = a->curr_state; a->prev_action = a->curr_action; for (mdi = a->info.devs; mdi ; mdi = mdi->next) { mdi->prev_state = mdi->curr_state; mdi->next_state = 0; } if (check_degraded) { /* manager will do the actual check */ a->check_degraded = 1; signal_manager(); } if (deactivate) a->container = NULL; return 1; } static struct mdinfo * find_device(struct active_array *a, int major, int minor) { struct mdinfo *mdi; for (mdi = a->info.devs ; mdi ; mdi = mdi->next) if (mdi->disk.major == major && mdi->disk.minor == minor) return mdi; return NULL; } static void reconcile_failed(struct active_array *aa, struct mdinfo *failed) { struct active_array *a; struct mdinfo *victim; for (a = aa; a; a = a->next) { if (!a->container) continue; victim = find_device(a, failed->disk.major, failed->disk.minor); if (!victim) continue; if (!(victim->curr_state & DS_FAULTY)) write_attr("faulty", victim->state_fd); } } static int handle_remove_device(struct md_remove_device_cmd *cmd, struct active_array *aa) { struct active_array *a; struct mdinfo *victim; int rv; /* scan all arrays for the given device, if ->state_fd is closed (-1) * in all cases then mark the disk as removed in the metadata. * Otherwise reply that it is busy. */ /* pass1 check that it is not in use anywhere */ /* note: we are safe from re-adds as long as the device exists in the * container */ for (a = aa; a; a = a->next) { if (!a->container) continue; victim = find_device(a, major(cmd->rdev), minor(cmd->rdev)); if (!victim) continue; if (victim->state_fd > 0) return -EBUSY; } /* pass2 schedule and process removal per array */ for (a = aa; a; a = a->next) { if (!a->container) continue; victim = find_device(a, major(cmd->rdev), minor(cmd->rdev)); if (!victim) continue; victim->curr_state |= DS_REMOVE; rv = read_and_act(a); if (rv < 0) return rv; } return 0; } static int handle_pipe(struct md_generic_cmd *cmd, struct active_array *aa) { switch (cmd->action) { case md_action_ping_monitor: return 0; case md_action_remove_device: return handle_remove_device((void *) cmd, aa); } return -1; } static int wait_and_act(struct supertype *container, int pfd, int monfd, int nowait) { fd_set rfds; int maxfd = 0; struct active_array **aap = &container->arrays; struct active_array *a, **ap; int rv; struct mdinfo *mdi; FD_ZERO(&rfds); add_fd(&rfds, &maxfd, pfd); for (ap = aap ; *ap ;) { a = *ap; /* once an array has been deactivated we want to * ask the manager to discard it. */ if (!a->container) { if (discard_this) { ap = &(*ap)->next; continue; } *ap = a->next; a->next = NULL; discard_this = a; signal_manager(); continue; } add_fd(&rfds, &maxfd, a->info.state_fd); add_fd(&rfds, &maxfd, a->action_fd); for (mdi = a->info.devs ; mdi ; mdi = mdi->next) add_fd(&rfds, &maxfd, mdi->state_fd); ap = &(*ap)->next; } if (manager_ready && *aap == NULL) { /* No interesting arrays. Lets see about exiting. * Note that blocking at this point is not a problem * as there are no active arrays, there is nothing that * we need to be ready to do. */ int fd = open(container->device_name, O_RDONLY|O_EXCL); if (fd >= 0 || errno != EBUSY) { /* OK, we are safe to leave */ exit_now = 1; signal_manager(); remove_pidfile(container->devname); exit(0); } } if (!nowait) { rv = select(maxfd+1, &rfds, NULL, NULL, NULL); if (rv <= 0) return rv; if (FD_ISSET(pfd, &rfds)) { int err = -1; if (read(pfd, &err, 1) > 0) err = handle_pipe(active_cmd, *aap); write(monfd, &err, 1); } } if (update_queue) { struct metadata_update *this; for (this = update_queue; this ; this = this->next) container->ss->process_update(container, this); update_queue_handled = update_queue; update_queue = NULL; signal_manager(); container->ss->sync_metadata(container); } for (a = *aap; a ; a = a->next) { if (a->replaces && !discard_this) { struct active_array **ap; for (ap = &a->next; *ap && *ap != a->replaces; ap = & (*ap)->next) ; if (*ap) *ap = (*ap)->next; discard_this = a->replaces; a->replaces = NULL; /* FIXME check if device->state_fd need to be cleared?*/ signal_manager(); } if (a->container) rv += read_and_act(a); } /* propagate failures across container members */ for (a = *aap; a ; a = a->next) { if (!a->container) continue; for (mdi = a->info.devs ; mdi ; mdi = mdi->next) if (mdi->curr_state & DS_FAULTY) reconcile_failed(*aap, mdi); } return rv; } void do_monitor(struct supertype *container) { int rv; int first = 1; do { rv = wait_and_act(container, container->mgr_pipe[0], container->mon_pipe[1], first); first = 0; } while (rv >= 0); }