/* * The management thread for monitoring active md arrays. * This thread does things which might block such as memory * allocation. * In particular: * * - Find out about new arrays in this container. * Allocate the data structures and open the files. * * For this we watch /proc/mdstat and find new arrays with * metadata type that confirms sharing. e.g. "md4" * When we find a new array we slip it into the list of * arrays and signal 'monitor' by writing to a pipe. * * - Respond to reshape requests by allocating new data structures * and opening new files. * * These come as a change to raid_disks. We allocate a new * version of the data structures and slip it into the list. * 'monitor' will notice and release the old version. * Changes to level, chunksize, layout.. do not need re-allocation. * Reductions in raid_disks don't really either, but we handle * them the same way for consistency. * * - When a device is added to the container, we add it to the metadata * as a spare. * * - Deal with degraded array * We only do this when first noticing the array is degraded. * This can be when we first see the array, when sync completes or * when recovery completes. * * Check if number of failed devices suggests recovery is needed, and * skip if not. * Ask metadata to allocate a spare device * Add device as not in_sync and give a role * Update metadata. * Open sysfs files and pass to monitor. * Make sure that monitor Starts recovery.... * * - Pass on metadata updates from external programs such as * mdadm creating a new array. * * This is most-messy. * It might involve adding a new array or changing the status of * a spare, or any reconfig that the kernel doesn't get involved in. * * The required updates are received via a named pipe. There will * be one named pipe for each container. Each message contains a * sync marker: 0x5a5aa5a5, A byte count, and the message. This is * passed to the metadata handler which will interpret and process it. * For 'DDF' messages are internal data blocks with the leading * 'magic number' signifying what sort of data it is. * */ /* * We select on /proc/mdstat and the named pipe. * We create new arrays or updated version of arrays and slip * them into the head of the list, then signal 'monitor' via a pipe write. * 'monitor' will notice and place the old array on a return list. * Metadata updates are placed on a queue just like they arrive * from the named pipe. * * When new arrays are found based on correct metadata string, we * need to identify them with an entry in the metadata. Maybe we require * the metadata to be mdX/NN when NN is the index into an appropriate table. * */ /* * List of tasks: * - Watch for spares to be added to the container, and write updated * metadata to them. * - Watch for new arrays using this container, confirm they match metadata * and if so, start monitoring them * - Watch for spares being added to monitored arrays. This shouldn't * happen, as we should do all the adding. Just remove them. * - Watch for change in raid-disks, chunk-size, etc. Update metadata and * start a reshape. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include "mdadm.h" #include "mdmon.h" #include #include #include static void close_aa(struct active_array *aa) { struct mdinfo *d; for (d = aa->info.devs; d; d = d->next) close(d->state_fd); close(aa->action_fd); close(aa->info.state_fd); close(aa->resync_start_fd); } static void free_aa(struct active_array *aa) { /* Note that this doesn't close fds if they are being used * by a clone. ->container will be set for a clone */ dprintf("%s: devnum: %d\n", __func__, aa->devnum); if (!aa->container) close_aa(aa); while (aa->info.devs) { struct mdinfo *d = aa->info.devs; aa->info.devs = d->next; free(d); } free(aa); } static struct active_array *duplicate_aa(struct active_array *aa) { struct active_array *newa = malloc(sizeof(*newa)); struct mdinfo **dp1, **dp2; *newa = *aa; newa->next = NULL; newa->replaces = NULL; newa->info.next = NULL; dp2 = &newa->info.devs; for (dp1 = &aa->info.devs; *dp1; dp1 = &(*dp1)->next) { struct mdinfo *d; if ((*dp1)->state_fd < 0) continue; d = malloc(sizeof(*d)); *d = **dp1; *dp2 = d; dp2 = & d->next; } *dp2 = NULL; return newa; } static void wakeup_monitor(void) { /* tgkill(getpid(), mon_tid, SIGUSR1); */ int pid = getpid(); syscall(SYS_tgkill, pid, mon_tid, SIGUSR1); } static void remove_old(void) { if (discard_this) { discard_this->next = NULL; free_aa(discard_this); if (pending_discard == discard_this) pending_discard = NULL; discard_this = NULL; wakeup_monitor(); } } static void replace_array(struct supertype *container, struct active_array *old, struct active_array *new) { /* To replace an array, we add it to the top of the list * marked with ->replaces to point to the original. * 'monitor' will take the original out of the list * and put it on 'discard_this'. We take it from there * and discard it. */ remove_old(); while (pending_discard) { while (discard_this == NULL) sleep(1); remove_old(); } pending_discard = old; new->replaces = old; new->next = container->arrays; container->arrays = new; wakeup_monitor(); } struct metadata_update *update_queue = NULL; struct metadata_update *update_queue_handled = NULL; struct metadata_update *update_queue_pending = NULL; void check_update_queue(struct supertype *container) { while (update_queue_handled) { struct metadata_update *this = update_queue_handled; update_queue_handled = this->next; free(this->buf); if (this->space) free(this->space); free(this); } if (update_queue == NULL && update_queue_pending) { update_queue = update_queue_pending; update_queue_pending = NULL; wakeup_monitor(); } } static void queue_metadata_update(struct metadata_update *mu) { struct metadata_update **qp; qp = &update_queue_pending; while (*qp) qp = & ((*qp)->next); *qp = mu; } static void add_disk_to_container(struct supertype *st, struct mdinfo *sd) { int dfd; char nm[20]; struct metadata_update *update = NULL; mdu_disk_info_t dk = { .number = -1, .major = sd->disk.major, .minor = sd->disk.minor, .raid_disk = -1, .state = 0, }; dprintf("%s: add %d:%d to container\n", __func__, sd->disk.major, sd->disk.minor); sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor); dfd = dev_open(nm, O_RDWR); if (dfd < 0) return; st->update_tail = &update; st->ss->add_to_super(st, &dk, dfd, NULL); st->ss->write_init_super(st); queue_metadata_update(update); st->update_tail = NULL; } static void manage_container(struct mdstat_ent *mdstat, struct supertype *container) { /* The only thing of interest here is if a new device * has been added to the container. We add it to the * array ignoring any metadata on it. * FIXME should we look for compatible metadata and take hints * about spare assignment.... probably not. */ if (mdstat->devcnt != container->devcnt) { struct mdinfo **cdp, *cd, *di, *mdi; int found; /* read /sys/block/NAME/md/dev-??/block/dev to find out * what is there, and compare with container->info.devs * To see what is removed and what is added. * These need to be remove from, or added to, the array */ mdi = sysfs_read(-1, mdstat->devnum, GET_DEVS); if (!mdi) { /* invalidate the current count so we can try again */ container->devcnt = -1; return; } /* check for removals */ for (cdp = &container->devs; *cdp; ) { found = 0; for (di = mdi->devs; di; di = di->next) if (di->disk.major == (*cdp)->disk.major && di->disk.minor == (*cdp)->disk.minor) { found = 1; break; } if (!found) { cd = *cdp; *cdp = (*cdp)->next; free(cd); } else cdp = &(*cdp)->next; } /* check for additions */ for (di = mdi->devs; di; di = di->next) { for (cd = container->devs; cd; cd = cd->next) if (di->disk.major == cd->disk.major && di->disk.minor == cd->disk.minor) break; if (!cd) add_disk_to_container(container, di); } sysfs_free(mdi); container->devcnt = mdstat->devcnt; } } static void manage_member(struct mdstat_ent *mdstat, struct active_array *a) { /* Compare mdstat info with known state of member array. * We do not need to look for device state changes here, that * is dealt with by the monitor. * * We just look for changes which suggest that a reshape is * being requested. * Unfortunately decreases in raid_disks don't show up in * mdstat until the reshape completes FIXME. * * Actually, we also want to handle degraded arrays here by * trying to find and assign a spare. * We do that whenever the monitor tells us too. */ // FIXME a->info.array.raid_disks = mdstat->raid_disks; a->info.array.chunk_size = mdstat->chunk_size; // MORE if (a->check_degraded) { struct metadata_update *updates = NULL; struct mdinfo *newdev; struct active_array *newa; a->check_degraded = 0; /* The array may not be degraded, this is just a good time * to check. */ newdev = a->container->ss->activate_spare(a, &updates); if (newdev) { struct mdinfo *d; /* Cool, we can add a device or several. */ newa = duplicate_aa(a); /* suspend recovery - maybe not needed */ /* Add device to array and set offset/size/slot. * and open files for each newdev */ for (d = newdev; d ; d = d->next) { struct mdinfo *newd; if (sysfs_add_disk(&newa->info, d) < 0) continue; newd = malloc(sizeof(*newd)); *newd = *d; newd->next = newa->info.devs; newa->info.devs = newd; newd->state_fd = sysfs_open(a->devnum, newd->sys_name, "state"); newd->prev_state = read_dev_state(newd->state_fd); newd->curr_state = newd->prev_state; } queue_metadata_update(updates); replace_array(a->container, a, newa); sysfs_set_str(&a->info, NULL, "sync_action", "recover"); } } } static int aa_ready(struct active_array *aa) { struct mdinfo *d; int level = aa->info.array.level; for (d = aa->info.devs; d; d = d->next) if (d->state_fd < 0) return 0; if (aa->info.state_fd < 0) return 0; if (level > 0 && (aa->action_fd < 0 || aa->resync_start_fd < 0)) return 0; if (!aa->container) return 0; return 1; } static void manage_new(struct mdstat_ent *mdstat, struct supertype *container, struct active_array *victim) { /* A new array has appeared in this container. * Hopefully it is already recorded in the metadata. * Check, then create the new array to report it to * the monitor. */ struct active_array *new; struct mdinfo *mdi, *di; char *inst; int i; int failed = 0; /* check if array is ready to be monitored */ if (!mdstat->active) return; mdi = sysfs_read(-1, mdstat->devnum, GET_LEVEL|GET_CHUNK|GET_DISKS|GET_COMPONENT| GET_DEGRADED|GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE); new = malloc(sizeof(*new)); if (!new || !mdi) { if (mdi) sysfs_free(mdi); if (new) free(new); return; } memset(new, 0, sizeof(*new)); new->devnum = mdstat->devnum; strcpy(new->info.sys_name, devnum2devname(new->devnum)); new->prev_state = new->curr_state = new->next_state = inactive; new->prev_action= new->curr_action= new->next_action= idle; new->container = container; inst = &mdstat->metadata_version[10+strlen(container->devname)+1]; new->info.array = mdi->array; new->info.component_size = mdi->component_size; for (i = 0; i < new->info.array.raid_disks; i++) { struct mdinfo *newd = malloc(sizeof(*newd)); for (di = mdi->devs; di; di = di->next) if (i == di->disk.raid_disk) break; if (di) { memcpy(newd, di, sizeof(*newd)); newd->state_fd = sysfs_open(new->devnum, newd->sys_name, "state"); newd->prev_state = read_dev_state(newd->state_fd); newd->curr_state = newd->prev_state; } else if (failed + 1 > new->info.array.failed_disks) { /* we cannot properly monitor without all working disks */ new->container = NULL; break; } else { failed++; free(newd); continue; } sprintf(newd->sys_name, "rd%d", i); newd->next = new->info.devs; new->info.devs = newd; } new->action_fd = sysfs_open(new->devnum, NULL, "sync_action"); new->info.state_fd = sysfs_open(new->devnum, NULL, "array_state"); new->resync_start_fd = sysfs_open(new->devnum, NULL, "resync_start"); new->metadata_fd = sysfs_open(new->devnum, NULL, "metadata_version"); get_resync_start(new); dprintf("%s: inst: %d action: %d state: %d\n", __func__, atoi(inst), new->action_fd, new->info.state_fd); sysfs_free(mdi); /* if everything checks out tell the metadata handler we want to * manage this instance */ if (!aa_ready(new) || container->ss->open_new(container, new, inst) < 0) { fprintf(stderr, "mdmon: failed to monitor %s\n", mdstat->metadata_version); new->container = NULL; free_aa(new); } else { replace_array(container, victim, new); if (failed) { new->check_degraded = 1; manage_member(mdstat, new); } } } void manage(struct mdstat_ent *mdstat, struct supertype *container) { /* We have just read mdstat and need to compare it with * the known active arrays. * Arrays with the wrong metadata are ignored. */ for ( ; mdstat ; mdstat = mdstat->next) { struct active_array *a; if (mdstat->devnum == container->devnum) { manage_container(mdstat, container); continue; } if (!is_container_member(mdstat, container->devname)) /* Not for this array */ continue; /* Looks like a member of this container */ for (a = container->arrays; a; a = a->next) { if (mdstat->devnum == a->devnum) { if (a->container) manage_member(mdstat, a); break; } } if (a == NULL || !a->container) manage_new(mdstat, container, a); } } static void handle_message(struct supertype *container, struct metadata_update *msg) { /* queue this metadata update through to the monitor */ struct metadata_update *mu; if (msg->len <= 0) while (update_queue_pending || update_queue) { check_update_queue(container); usleep(15*1000); } if (msg->len == 0) { /* ping_monitor */ int cnt; cnt = monitor_loop_cnt; if (cnt & 1) cnt += 2; /* wait until next pselect */ else cnt += 3; /* wait for 2 pselects */ wakeup_monitor(); while (monitor_loop_cnt - cnt < 0) usleep(10 * 1000); } else if (msg->len == -1) { /* ping_manager */ struct mdstat_ent *mdstat = mdstat_read(1, 0); manage(mdstat, container); free_mdstat(mdstat); } else if (!sigterm) { mu = malloc(sizeof(*mu)); mu->len = msg->len; mu->buf = msg->buf; msg->buf = NULL; mu->space = NULL; mu->next = NULL; if (container->ss->prepare_update) container->ss->prepare_update(container, mu); queue_metadata_update(mu); } } void read_sock(struct supertype *container) { int fd; struct metadata_update msg; int terminate = 0; long fl; int tmo = 3; /* 3 second timeout before hanging up the socket */ fd = accept(container->sock, NULL, NULL); if (fd < 0) return; fl = fcntl(fd, F_GETFL, 0); fl |= O_NONBLOCK; fcntl(fd, F_SETFL, fl); do { msg.buf = NULL; /* read and validate the message */ if (receive_message(fd, &msg, tmo) == 0) { handle_message(container, &msg); if (ack(fd, tmo) < 0) terminate = 1; } else terminate = 1; } while (!terminate); close(fd); } int exit_now = 0; int manager_ready = 0; void do_manager(struct supertype *container) { struct mdstat_ent *mdstat; sigset_t set; int proc_fd; sigprocmask(SIG_UNBLOCK, NULL, &set); sigdelset(&set, SIGUSR1); sigdelset(&set, SIGHUP); sigdelset(&set, SIGALRM); sigdelset(&set, SIGTERM); proc_fd = open("/proc/mounts", O_RDONLY); do { if (exit_now) exit(0); /* Can only 'manage' things if 'monitor' is not making * structural changes to metadata, so need to check * update_queue */ if (update_queue == NULL) { mdstat = mdstat_read(1, 0); manage(mdstat, container); read_sock(container); if (container->sock < 0 || socket_hup_requested) { close(container->sock); container->sock = make_control_sock(container->devname); make_pidfile(container->devname, 0); socket_hup_requested = 0; } if (container->sock < 0) alarm(30); free_mdstat(mdstat); } remove_old(); check_update_queue(container); manager_ready = 1; if (sigterm) wakeup_monitor(); if (update_queue == NULL) { if (container->sock < 0) mdstat_wait_fd(proc_fd, &set); else mdstat_wait_fd(container->sock, &set); } else /* If an update is happening, just wait for signal */ pselect(0, NULL, NULL, NULL, NULL, &set); } while(1); }