// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include #include #include #include #include #define SROM_DLEVEL 0 #undef UPDATE_SROM /* PCI Registers. */ #define PCI_CFDA_PSM 0x43 #define CFRV_RN 0x000000f0 /* Revision Number */ #define WAKEUP 0x00 /* Power Saving Wakeup */ #define SLEEP 0x80 /* Power Saving Sleep Mode */ #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */ /* Ethernet chip registers. */ #define DE4X5_BMR 0x000 /* Bus Mode Register */ #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */ #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */ #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */ #define DE4X5_STS 0x028 /* Status Register */ #define DE4X5_OMR 0x030 /* Operation Mode Register */ #define DE4X5_SICR 0x068 /* SIA Connectivity Register */ #define DE4X5_APROM 0x048 /* Ethernet Address PROM */ /* Register bits. */ #define BMR_SWR 0x00000001 /* Software Reset */ #define STS_TS 0x00700000 /* Transmit Process State */ #define STS_RS 0x000e0000 /* Receive Process State */ #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */ #define OMR_SR 0x00000002 /* Start/Stop Receive */ #define OMR_PS 0x00040000 /* Port Select */ #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */ #define OMR_PM 0x00000080 /* Pass All Multicast */ /* Descriptor bits. */ #define R_OWN 0x80000000 /* Own Bit */ #define RD_RER 0x02000000 /* Receive End Of Ring */ #define RD_LS 0x00000100 /* Last Descriptor */ #define RD_ES 0x00008000 /* Error Summary */ #define TD_TER 0x02000000 /* Transmit End Of Ring */ #define T_OWN 0x80000000 /* Own Bit */ #define TD_LS 0x40000000 /* Last Segment */ #define TD_FS 0x20000000 /* First Segment */ #define TD_ES 0x00008000 /* Error Summary */ #define TD_SET 0x08000000 /* Setup Packet */ /* The EEPROM commands include the alway-set leading bit. */ #define SROM_WRITE_CMD 5 #define SROM_READ_CMD 6 #define SROM_ERASE_CMD 7 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */ #define SROM_RD 0x00004000 /* Read from Boot ROM */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_WRITE_0 0x4801 #define EE_WRITE_1 0x4805 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define SROM_SR 0x00000800 /* Select Serial ROM when set */ #define DT_IN 0x00000004 /* Serial Data In */ #define DT_CLK 0x00000002 /* Serial ROM Clock */ #define DT_CS 0x00000001 /* Serial ROM Chip Select */ #define POLL_DEMAND 1 #if defined(CONFIG_E500) #define phys_to_bus(a) (a) #else #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) #endif #define NUM_RX_DESC PKTBUFSRX #define NUM_TX_DESC 1 /* Number of TX descriptors */ #define RX_BUFF_SZ PKTSIZE_ALIGN #define TOUT_LOOP 1000000 #define SETUP_FRAME_LEN 192 struct de4x5_desc { volatile s32 status; u32 des1; u32 buf; u32 next; }; /* RX and TX descriptor ring */ static struct de4x5_desc rx_ring[NUM_RX_DESC] __aligned(32); static struct de4x5_desc tx_ring[NUM_TX_DESC] __aligned(32); static int rx_new; /* RX descriptor ring pointer */ static int tx_new; /* TX descriptor ring pointer */ static char rx_ring_size; static char tx_ring_size; static u32 dc2114x_inl(struct eth_device *dev, u32 addr) { return le32_to_cpu(*(volatile u32 *)(addr + dev->iobase)); } static void dc2114x_outl(struct eth_device *dev, u32 command, u32 addr) { *(volatile u32 *)(addr + dev->iobase) = cpu_to_le32(command); } static void reset_de4x5(struct eth_device *dev) { u32 i; i = dc2114x_inl(dev, DE4X5_BMR); mdelay(1); dc2114x_outl(dev, i | BMR_SWR, DE4X5_BMR); mdelay(1); dc2114x_outl(dev, i, DE4X5_BMR); mdelay(1); for (i = 0; i < 5; i++) { dc2114x_inl(dev, DE4X5_BMR); mdelay(10); } mdelay(1); } static void start_de4x5(struct eth_device *dev) { u32 omr; omr = dc2114x_inl(dev, DE4X5_OMR); omr |= OMR_ST | OMR_SR; dc2114x_outl(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */ } static void stop_de4x5(struct eth_device *dev) { u32 omr; omr = dc2114x_inl(dev, DE4X5_OMR); omr &= ~(OMR_ST | OMR_SR); dc2114x_outl(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ } /* SROM Read and write routines. */ static void sendto_srom(struct eth_device *dev, u_int command, u_long addr) { dc2114x_outl(dev, command, addr); udelay(1); } static int getfrom_srom(struct eth_device *dev, u_long addr) { u32 tmp = dc2114x_inl(dev, addr); udelay(1); return tmp; } /* Note: this routine returns extra data bits for size detection. */ static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len) { int read_cmd = location | (SROM_READ_CMD << addr_len); unsigned int retval = 0; int i; sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); debug_cond(SROM_DLEVEL >= 1, " EEPROM read at %d ", location); /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr); udelay(10); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr); udelay(10); debug_cond(SROM_DLEVEL >= 2, "%X", getfrom_srom(dev, ioaddr) & 15); retval = (retval << 1) | !!(getfrom_srom(dev, ioaddr) & EE_DATA_READ); } sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); debug_cond(SROM_DLEVEL >= 2, " :%X:", getfrom_srom(dev, ioaddr) & 15); for (i = 16; i > 0; i--) { sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); udelay(10); debug_cond(SROM_DLEVEL >= 2, "%X", getfrom_srom(dev, ioaddr) & 15); retval = (retval << 1) | !!(getfrom_srom(dev, ioaddr) & EE_DATA_READ); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); udelay(10); } /* Terminate the EEPROM access. */ sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); debug_cond(SROM_DLEVEL >= 2, " EEPROM value at %d is %5.5x.\n", location, retval); return retval; } /* * This executes a generic EEPROM command, typically a write or write * enable. It returns the data output from the EEPROM, and thus may * also be used for reads. */ static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len) { unsigned int retval = 0; debug_cond(SROM_DLEVEL >= 1, " EEPROM op 0x%x: ", cmd); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); /* Shift the command bits out. */ do { short dataval = (cmd & BIT(cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; sendto_srom(dev, dataval, ioaddr); udelay(10); debug_cond(SROM_DLEVEL >= 2, "%X", getfrom_srom(dev, ioaddr) & 15); sendto_srom(dev, dataval | DT_CLK, ioaddr); udelay(10); retval = (retval << 1) | !!(getfrom_srom(dev, ioaddr) & EE_DATA_READ); } while (--cmd_len >= 0); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); /* Terminate the EEPROM access. */ sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); debug_cond(SROM_DLEVEL >= 1, " EEPROM result is 0x%5.5x.\n", retval); return retval; } static int read_srom(struct eth_device *dev, u_long ioaddr, int index) { int ee_addr_size; ee_addr_size = (do_read_eeprom(dev, ioaddr, 0xff, 8) & BIT(18)) ? 8 : 6; return do_eeprom_cmd(dev, ioaddr, 0xffff | (((SROM_READ_CMD << ee_addr_size) | index) << 16), 3 + ee_addr_size + 16); } #ifdef UPDATE_SROM static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value) { unsigned short newval; int ee_addr_size; int i; ee_addr_size = (do_read_eeprom(dev, ioaddr, 0xff, 8) & BIT(18)) ? 8 : 6; udelay(10 * 1000); /* test-only */ debug_cond(SROM_DLEVEL >= 1, "ee_addr_size=%d.\n", ee_addr_size); debug_cond(SROM_DLEVEL >= 1, "Writing new entry 0x%4.4x to offset %d.\n", new_value, index); /* Enable programming modes. */ do_eeprom_cmd(dev, ioaddr, 0x4f << (ee_addr_size - 4), 3 + ee_addr_size); /* Do the actual write. */ do_eeprom_cmd(dev, ioaddr, new_value | (((SROM_WRITE_CMD << ee_addr_size) | index) << 16), 3 + ee_addr_size + 16); /* Poll for write finished. */ sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); for (i = 0; i < 10000; i++) { /* Typical 2000 ticks */ if (getfrom_srom(dev, ioaddr) & EE_DATA_READ) break; } debug_cond(SROM_DLEVEL >= 1, " Write finished after %d ticks.\n", i); /* Disable programming. */ do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size - 4)), 3 + ee_addr_size); /* And read the result. */ newval = do_eeprom_cmd(dev, ioaddr, (((SROM_READ_CMD << ee_addr_size) | index) << 16) | 0xffff, 3 + ee_addr_size + 16); debug_cond(SROM_DLEVEL >= 1, " New value at offset %d is %4.4x.\n", index, newval); return 1; } static void update_srom(struct eth_device *dev, bd_t *bis) { static unsigned short eeprom[0x40] = { 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */ 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */ 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */ 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */ 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */ 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */ 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */ 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */ }; uchar enetaddr[6]; int i; /* Ethernet Addr... */ if (!eth_env_get_enetaddr("ethaddr", enetaddr)) return; eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0]; eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2]; eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4]; for (i = 0; i < 0x40; i++) write_srom(dev, DE4X5_APROM, i, eeprom[i]); } #endif /* UPDATE_SROM */ static void send_setup_frame(struct eth_device *dev, bd_t *bis) { char setup_frame[SETUP_FRAME_LEN]; char *pa = &setup_frame[0]; int i; memset(pa, 0xff, SETUP_FRAME_LEN); for (i = 0; i < ETH_ALEN; i++) { *(pa + (i & 1)) = dev->enetaddr[i]; if (i & 0x01) pa += 4; } for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i < TOUT_LOOP) continue; printf("%s: tx error buffer not ready\n", dev->name); return; } tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32)&setup_frame[0])); tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET | SETUP_FRAME_LEN); tx_ring[tx_new].status = cpu_to_le32(T_OWN); dc2114x_outl(dev, POLL_DEMAND, DE4X5_TPD); for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i < TOUT_LOOP) continue; printf("%s: tx buffer not ready\n", dev->name); return; } if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) { printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status)); } tx_new = (tx_new + 1) % NUM_TX_DESC; } static int dc21x4x_send(struct eth_device *dev, void *packet, int length) { int status = -1; int i; if (length <= 0) { printf("%s: bad packet size: %d\n", dev->name, length); goto done; } for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i < TOUT_LOOP) continue; printf("%s: tx error buffer not ready\n", dev->name); goto done; } tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32)packet)); tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length); tx_ring[tx_new].status = cpu_to_le32(T_OWN); dc2114x_outl(dev, POLL_DEMAND, DE4X5_TPD); for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i < TOUT_LOOP) continue; printf(".%s: tx buffer not ready\n", dev->name); goto done; } if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) { tx_ring[tx_new].status = 0x0; goto done; } status = length; done: tx_new = (tx_new + 1) % NUM_TX_DESC; return status; } static int dc21x4x_recv(struct eth_device *dev) { int length = 0; u32 status; while (true) { status = le32_to_cpu(rx_ring[rx_new].status); if (status & R_OWN) break; if (status & RD_LS) { /* Valid frame status. */ if (status & RD_ES) { /* There was an error. */ printf("RX error status = 0x%08X\n", status); } else { /* A valid frame received. */ length = (le32_to_cpu(rx_ring[rx_new].status) >> 16); /* Pass the packet up to the protocol layers */ net_process_received_packet (net_rx_packets[rx_new], length - 4); } /* * Change buffer ownership for this frame, * back to the adapter. */ rx_ring[rx_new].status = cpu_to_le32(R_OWN); } /* Update entry information. */ rx_new = (rx_new + 1) % rx_ring_size; } return length; } static int dc21x4x_init(struct eth_device *dev, bd_t *bis) { int i; int devbusfn = (int)dev->priv; /* Ensure we're not sleeping. */ pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); reset_de4x5(dev); if (dc2114x_inl(dev, DE4X5_STS) & (STS_TS | STS_RS)) { printf("Error: Cannot reset ethernet controller.\n"); return -1; } dc2114x_outl(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR); for (i = 0; i < NUM_RX_DESC; i++) { rx_ring[i].status = cpu_to_le32(R_OWN); rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ); rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32)net_rx_packets[i])); rx_ring[i].next = 0; } for (i = 0; i < NUM_TX_DESC; i++) { tx_ring[i].status = 0; tx_ring[i].des1 = 0; tx_ring[i].buf = 0; tx_ring[i].next = 0; } rx_ring_size = NUM_RX_DESC; tx_ring_size = NUM_TX_DESC; /* Write the end of list marker to the descriptor lists. */ rx_ring[rx_ring_size - 1].des1 |= cpu_to_le32(RD_RER); tx_ring[tx_ring_size - 1].des1 |= cpu_to_le32(TD_TER); /* Tell the adapter where the TX/RX rings are located. */ dc2114x_outl(dev, phys_to_bus((u32)&rx_ring), DE4X5_RRBA); dc2114x_outl(dev, phys_to_bus((u32)&tx_ring), DE4X5_TRBA); start_de4x5(dev); tx_new = 0; rx_new = 0; send_setup_frame(dev, bis); return 0; } static void dc21x4x_halt(struct eth_device *dev) { int devbusfn = (int)dev->priv; stop_de4x5(dev); dc2114x_outl(dev, 0, DE4X5_SICR); pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP); } static void read_hw_addr(struct eth_device *dev, bd_t *bis) { u_short tmp, *p = (u_short *)(&dev->enetaddr[0]); int i, j = 0; for (i = 0; i < (ETH_ALEN >> 1); i++) { tmp = read_srom(dev, DE4X5_APROM, (SROM_HWADD >> 1) + i); *p = le16_to_cpu(tmp); j += *p++; } if (!j || j == 0x2fffd) { memset(dev->enetaddr, 0, ETH_ALEN); debug("Warning: can't read HW address from SROM.\n"); #ifdef UPDATE_SROM update_srom(dev, bis); #endif } } static struct pci_device_id supported[] = { { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST }, { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 }, { } }; int dc21x4x_initialize(bd_t *bis) { struct eth_device *dev; unsigned short status; unsigned char timer; unsigned int iobase; int card_number = 0; pci_dev_t devbusfn; unsigned int cfrv; int idx = 0; while (1) { devbusfn = pci_find_devices(supported, idx++); if (devbusfn == -1) break; /* Get the chip configuration revision register. */ pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv); if ((cfrv & CFRV_RN) < DC2114x_BRK) { printf("Error: The chip is not DC21143.\n"); continue; } pci_read_config_word(devbusfn, PCI_COMMAND, &status); status |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; pci_write_config_word(devbusfn, PCI_COMMAND, status); pci_read_config_word(devbusfn, PCI_COMMAND, &status); if (!(status & PCI_COMMAND_MEMORY)) { printf("Error: Can not enable MEMORY access.\n"); continue; } if (!(status & PCI_COMMAND_MASTER)) { printf("Error: Can not enable Bus Mastering.\n"); continue; } /* Check the latency timer for values >= 0x60. */ pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer); if (timer < 0x60) { pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60); } /* read BAR for memory space access */ pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase); iobase &= PCI_BASE_ADDRESS_MEM_MASK; debug("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase); dev = (struct eth_device *)malloc(sizeof(*dev)); if (!dev) { printf("Can not allocalte memory of dc21x4x\n"); break; } memset(dev, 0, sizeof(*dev)); sprintf(dev->name, "dc21x4x#%d", card_number); dev->iobase = pci_mem_to_phys(devbusfn, iobase); dev->priv = (void *)devbusfn; dev->init = dc21x4x_init; dev->halt = dc21x4x_halt; dev->send = dc21x4x_send; dev->recv = dc21x4x_recv; /* Ensure we're not sleeping. */ pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); udelay(10 * 1000); read_hw_addr(dev, bis); eth_register(dev); card_number++; } return card_number; }