// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2015 Google, Inc * Written by Simon Glass */ #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /** * regmap_alloc() - Allocate a regmap with a given number of ranges. * * @count: Number of ranges to be allocated for the regmap. * Return: A pointer to the newly allocated regmap, or NULL on error. */ static struct regmap *regmap_alloc(int count) { struct regmap *map; map = malloc(sizeof(*map) + sizeof(map->ranges[0]) * count); if (!map) return NULL; map->range_count = count; return map; } #if CONFIG_IS_ENABLED(OF_PLATDATA) int regmap_init_mem_platdata(struct udevice *dev, fdt_val_t *reg, int count, struct regmap **mapp) { struct regmap_range *range; struct regmap *map; map = regmap_alloc(count); if (!map) return -ENOMEM; for (range = map->ranges; count > 0; reg += 2, range++, count--) { range->start = *reg; range->size = reg[1]; } *mapp = map; return 0; } #else /** * init_range() - Initialize a single range of a regmap * @node: Device node that will use the map in question * @range: Pointer to a regmap_range structure that will be initialized * @addr_len: The length of the addr parts of the reg property * @size_len: The length of the size parts of the reg property * @index: The index of the range to initialize * * This function will read the necessary 'reg' information from the device tree * (the 'addr' part, and the 'length' part), and initialize the range in * quesion. * * Return: 0 if OK, -ve on error */ static int init_range(ofnode node, struct regmap_range *range, int addr_len, int size_len, int index) { fdt_size_t sz; struct resource r; if (of_live_active()) { int ret; ret = of_address_to_resource(ofnode_to_np(node), index, &r); if (ret) { debug("%s: Could not read resource of range %d (ret = %d)\n", ofnode_get_name(node), index, ret); return ret; } range->start = r.start; range->size = r.end - r.start + 1; } else { int offset = ofnode_to_offset(node); range->start = fdtdec_get_addr_size_fixed(gd->fdt_blob, offset, "reg", index, addr_len, size_len, &sz, true); if (range->start == FDT_ADDR_T_NONE) { debug("%s: Could not read start of range %d\n", ofnode_get_name(node), index); return -EINVAL; } range->size = sz; } return 0; } int regmap_init_mem_index(ofnode node, struct regmap **mapp, int index) { struct regmap *map; int addr_len, size_len; int ret; addr_len = ofnode_read_simple_addr_cells(ofnode_get_parent(node)); if (addr_len < 0) { debug("%s: Error while reading the addr length (ret = %d)\n", ofnode_get_name(node), addr_len); return addr_len; } size_len = ofnode_read_simple_size_cells(ofnode_get_parent(node)); if (size_len < 0) { debug("%s: Error while reading the size length: (ret = %d)\n", ofnode_get_name(node), size_len); return size_len; } map = regmap_alloc(1); if (!map) return -ENOMEM; ret = init_range(node, map->ranges, addr_len, size_len, index); if (ret) goto err; if (ofnode_read_bool(node, "little-endian")) map->endianness = REGMAP_LITTLE_ENDIAN; else if (ofnode_read_bool(node, "big-endian")) map->endianness = REGMAP_BIG_ENDIAN; else if (ofnode_read_bool(node, "native-endian")) map->endianness = REGMAP_NATIVE_ENDIAN; else /* Default: native endianness */ map->endianness = REGMAP_NATIVE_ENDIAN; *mapp = map; return 0; err: regmap_uninit(map); return ret; } int regmap_init_mem(ofnode node, struct regmap **mapp) { struct regmap_range *range; struct regmap *map; int count; int addr_len, size_len, both_len; int len; int index; int ret; addr_len = ofnode_read_simple_addr_cells(ofnode_get_parent(node)); if (addr_len < 0) { debug("%s: Error while reading the addr length (ret = %d)\n", ofnode_get_name(node), addr_len); return addr_len; } size_len = ofnode_read_simple_size_cells(ofnode_get_parent(node)); if (size_len < 0) { debug("%s: Error while reading the size length: (ret = %d)\n", ofnode_get_name(node), size_len); return size_len; } both_len = addr_len + size_len; if (!both_len) { debug("%s: Both addr and size length are zero\n", ofnode_get_name(node)); return -EINVAL; } len = ofnode_read_size(node, "reg"); if (len < 0) { debug("%s: Error while reading reg size (ret = %d)\n", ofnode_get_name(node), len); return len; } len /= sizeof(fdt32_t); count = len / both_len; if (!count) { debug("%s: Not enough data in reg property\n", ofnode_get_name(node)); return -EINVAL; } map = regmap_alloc(count); if (!map) return -ENOMEM; for (range = map->ranges, index = 0; count > 0; count--, range++, index++) { ret = init_range(node, range, addr_len, size_len, index); if (ret) goto err; } if (ofnode_read_bool(node, "little-endian")) map->endianness = REGMAP_LITTLE_ENDIAN; else if (ofnode_read_bool(node, "big-endian")) map->endianness = REGMAP_BIG_ENDIAN; else if (ofnode_read_bool(node, "native-endian")) map->endianness = REGMAP_NATIVE_ENDIAN; else /* Default: native endianness */ map->endianness = REGMAP_NATIVE_ENDIAN; *mapp = map; return 0; err: regmap_uninit(map); return ret; } #endif void *regmap_get_range(struct regmap *map, unsigned int range_num) { struct regmap_range *range; if (range_num >= map->range_count) return NULL; range = &map->ranges[range_num]; return map_sysmem(range->start, range->size); } int regmap_uninit(struct regmap *map) { free(map); return 0; } static inline u8 __read_8(u8 *addr, enum regmap_endianness_t endianness) { return readb(addr); } static inline u16 __read_16(u16 *addr, enum regmap_endianness_t endianness) { switch (endianness) { case REGMAP_LITTLE_ENDIAN: return in_le16(addr); case REGMAP_BIG_ENDIAN: return in_be16(addr); case REGMAP_NATIVE_ENDIAN: return readw(addr); } return readw(addr); } static inline u32 __read_32(u32 *addr, enum regmap_endianness_t endianness) { switch (endianness) { case REGMAP_LITTLE_ENDIAN: return in_le32(addr); case REGMAP_BIG_ENDIAN: return in_be32(addr); case REGMAP_NATIVE_ENDIAN: return readl(addr); } return readl(addr); } #if defined(in_le64) && defined(in_be64) && defined(readq) static inline u64 __read_64(u64 *addr, enum regmap_endianness_t endianness) { switch (endianness) { case REGMAP_LITTLE_ENDIAN: return in_le64(addr); case REGMAP_BIG_ENDIAN: return in_be64(addr); case REGMAP_NATIVE_ENDIAN: return readq(addr); } return readq(addr); } #endif int regmap_raw_read_range(struct regmap *map, uint range_num, uint offset, void *valp, size_t val_len) { struct regmap_range *range; void *ptr; if (range_num >= map->range_count) { debug("%s: range index %d larger than range count\n", __func__, range_num); return -ERANGE; } range = &map->ranges[range_num]; ptr = map_physmem(range->start + offset, val_len, MAP_NOCACHE); if (offset + val_len > range->size) { debug("%s: offset/size combination invalid\n", __func__); return -ERANGE; } switch (val_len) { case REGMAP_SIZE_8: *((u8 *)valp) = __read_8(ptr, map->endianness); break; case REGMAP_SIZE_16: *((u16 *)valp) = __read_16(ptr, map->endianness); break; case REGMAP_SIZE_32: *((u32 *)valp) = __read_32(ptr, map->endianness); break; #if defined(in_le64) && defined(in_be64) && defined(readq) case REGMAP_SIZE_64: *((u64 *)valp) = __read_64(ptr, map->endianness); break; #endif default: debug("%s: regmap size %zu unknown\n", __func__, val_len); return -EINVAL; } return 0; } int regmap_raw_read(struct regmap *map, uint offset, void *valp, size_t val_len) { return regmap_raw_read_range(map, 0, offset, valp, val_len); } int regmap_read(struct regmap *map, uint offset, uint *valp) { return regmap_raw_read(map, offset, valp, REGMAP_SIZE_32); } static inline void __write_8(u8 *addr, const u8 *val, enum regmap_endianness_t endianness) { writeb(*val, addr); } static inline void __write_16(u16 *addr, const u16 *val, enum regmap_endianness_t endianness) { switch (endianness) { case REGMAP_NATIVE_ENDIAN: writew(*val, addr); break; case REGMAP_LITTLE_ENDIAN: out_le16(addr, *val); break; case REGMAP_BIG_ENDIAN: out_be16(addr, *val); break; } } static inline void __write_32(u32 *addr, const u32 *val, enum regmap_endianness_t endianness) { switch (endianness) { case REGMAP_NATIVE_ENDIAN: writel(*val, addr); break; case REGMAP_LITTLE_ENDIAN: out_le32(addr, *val); break; case REGMAP_BIG_ENDIAN: out_be32(addr, *val); break; } } #if defined(out_le64) && defined(out_be64) && defined(writeq) static inline void __write_64(u64 *addr, const u64 *val, enum regmap_endianness_t endianness) { switch (endianness) { case REGMAP_NATIVE_ENDIAN: writeq(*val, addr); break; case REGMAP_LITTLE_ENDIAN: out_le64(addr, *val); break; case REGMAP_BIG_ENDIAN: out_be64(addr, *val); break; } } #endif int regmap_raw_write_range(struct regmap *map, uint range_num, uint offset, const void *val, size_t val_len) { struct regmap_range *range; void *ptr; if (range_num >= map->range_count) { debug("%s: range index %d larger than range count\n", __func__, range_num); return -ERANGE; } range = &map->ranges[range_num]; ptr = map_physmem(range->start + offset, val_len, MAP_NOCACHE); if (offset + val_len > range->size) { debug("%s: offset/size combination invalid\n", __func__); return -ERANGE; } switch (val_len) { case REGMAP_SIZE_8: __write_8(ptr, val, map->endianness); break; case REGMAP_SIZE_16: __write_16(ptr, val, map->endianness); break; case REGMAP_SIZE_32: __write_32(ptr, val, map->endianness); break; #if defined(out_le64) && defined(out_be64) && defined(writeq) case REGMAP_SIZE_64: __write_64(ptr, val, map->endianness); break; #endif default: debug("%s: regmap size %zu unknown\n", __func__, val_len); return -EINVAL; } return 0; } int regmap_raw_write(struct regmap *map, uint offset, const void *val, size_t val_len) { return regmap_raw_write_range(map, 0, offset, val, val_len); } int regmap_write(struct regmap *map, uint offset, uint val) { return regmap_raw_write(map, offset, &val, REGMAP_SIZE_32); } int regmap_update_bits(struct regmap *map, uint offset, uint mask, uint val) { uint reg; int ret; ret = regmap_read(map, offset, ®); if (ret) return ret; reg &= ~mask; return regmap_write(map, offset, reg | (val & mask)); }