// SPDX-License-Identifier: GPL-2.0 /* * AM642: SoC specific initialization * * Copyright (C) 2020-2021 Texas Instruments Incorporated - https://www.ti.com/ * Keerthy * Dave Gerlach */ #include #include #include #include #include #include #include "common.h" #include #include #include #include #include #include #include #if defined(CONFIG_SPL_BUILD) static void ctrl_mmr_unlock(void) { /* Unlock all PADCFG_MMR1 module registers */ mmr_unlock(PADCFG_MMR1_BASE, 1); /* Unlock all CTRL_MMR0 module registers */ mmr_unlock(CTRL_MMR0_BASE, 0); mmr_unlock(CTRL_MMR0_BASE, 1); mmr_unlock(CTRL_MMR0_BASE, 2); mmr_unlock(CTRL_MMR0_BASE, 3); mmr_unlock(CTRL_MMR0_BASE, 5); mmr_unlock(CTRL_MMR0_BASE, 6); } /* * This uninitialized global variable would normal end up in the .bss section, * but the .bss is cleared between writing and reading this variable, so move * it to the .data section. */ u32 bootindex __section(".data"); static struct rom_extended_boot_data bootdata __section(".data"); static void store_boot_info_from_rom(void) { bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX); memcpy(&bootdata, (uintptr_t *)ROM_ENTENDED_BOOT_DATA_INFO, sizeof(struct rom_extended_boot_data)); } #if defined(CONFIG_K3_LOAD_SYSFW) && CONFIG_IS_ENABLED(DM_MMC) void k3_mmc_stop_clock(void) { if (spl_boot_device() == BOOT_DEVICE_MMC1) { struct mmc *mmc = find_mmc_device(0); if (!mmc) return; mmc->saved_clock = mmc->clock; mmc_set_clock(mmc, 0, true); } } void k3_mmc_restart_clock(void) { if (spl_boot_device() == BOOT_DEVICE_MMC1) { struct mmc *mmc = find_mmc_device(0); if (!mmc) return; mmc_set_clock(mmc, mmc->saved_clock, false); } } #else void k3_mmc_stop_clock(void) {} void k3_mmc_restart_clock(void) {} #endif #ifdef CONFIG_SPL_OF_LIST void do_dt_magic(void) { int ret, rescan; if (IS_ENABLED(CONFIG_TI_I2C_BOARD_DETECT)) do_board_detect(); /* * Board detection has been done. * Let us see if another dtb wouldn't be a better match * for our board */ if (IS_ENABLED(CONFIG_CPU_V7R)) { ret = fdtdec_resetup(&rescan); if (!ret && rescan) { dm_uninit(); dm_init_and_scan(true); } } } #endif void board_init_f(ulong dummy) { #if defined(CONFIG_K3_LOAD_SYSFW) struct udevice *dev; int ret; #endif #if defined(CONFIG_CPU_V7R) setup_k3_mpu_regions(); #endif /* * Cannot delay this further as there is a chance that * K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section. */ store_boot_info_from_rom(); ctrl_mmr_unlock(); /* Init DM early */ spl_early_init(); preloader_console_init(); do_dt_magic(); #if defined(CONFIG_K3_LOAD_SYSFW) /* * Process pinctrl for serial3 a.k.a. MAIN UART1 module and continue * regardless of the result of pinctrl. Do this without probing the * device, but instead by searching the device that would request the * given sequence number if probed. The UART will be used by the system * firmware (SYSFW) image for various purposes and SYSFW depends on us * to initialize its pin settings. */ ret = uclass_find_device_by_seq(UCLASS_SERIAL, 3, &dev); if (!ret) pinctrl_select_state(dev, "default"); /* * Load, start up, and configure system controller firmware. * This will determine whether or not ROM has already loaded * system firmware and if so, will only perform needed config * and not attempt to load firmware again. */ k3_sysfw_loader(is_rom_loaded_sysfw(&bootdata), k3_mmc_stop_clock, k3_mmc_restart_clock); #endif /* Output System Firmware version info */ k3_sysfw_print_ver(); #if defined(CONFIG_K3_AM64_DDRSS) ret = uclass_get_device(UCLASS_RAM, 0, &dev); if (ret) panic("DRAM init failed: %d\n", ret); #endif } u32 spl_boot_mode(const u32 boot_device) { switch (boot_device) { case BOOT_DEVICE_MMC1: return MMCSD_MODE_EMMCBOOT; case BOOT_DEVICE_MMC2: return MMCSD_MODE_FS; default: return MMCSD_MODE_RAW; } } static u32 __get_backup_bootmedia(u32 main_devstat) { u32 bkup_bootmode = (main_devstat & MAIN_DEVSTAT_BACKUP_BOOTMODE_MASK) >> MAIN_DEVSTAT_BACKUP_BOOTMODE_SHIFT; u32 bkup_bootmode_cfg = (main_devstat & MAIN_DEVSTAT_BACKUP_BOOTMODE_CFG_MASK) >> MAIN_DEVSTAT_BACKUP_BOOTMODE_CFG_SHIFT; switch (bkup_bootmode) { case BACKUP_BOOT_DEVICE_UART: return BOOT_DEVICE_UART; case BACKUP_BOOT_DEVICE_USB: return BOOT_DEVICE_USB; case BACKUP_BOOT_DEVICE_ETHERNET: return BOOT_DEVICE_ETHERNET; case BACKUP_BOOT_DEVICE_MMC: if (bkup_bootmode_cfg) return BOOT_DEVICE_MMC2; return BOOT_DEVICE_MMC1; case BACKUP_BOOT_DEVICE_SPI: return BOOT_DEVICE_SPI; case BACKUP_BOOT_DEVICE_I2C: return BOOT_DEVICE_I2C; }; return BOOT_DEVICE_RAM; } static u32 __get_primary_bootmedia(u32 main_devstat) { u32 bootmode = (main_devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_MASK) >> MAIN_DEVSTAT_PRIMARY_BOOTMODE_SHIFT; u32 bootmode_cfg = (main_devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_MASK) >> MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_SHIFT; switch (bootmode) { case BOOT_DEVICE_OSPI: fallthrough; case BOOT_DEVICE_QSPI: fallthrough; case BOOT_DEVICE_XSPI: fallthrough; case BOOT_DEVICE_SPI: return BOOT_DEVICE_SPI; case BOOT_DEVICE_ETHERNET_RGMII: fallthrough; case BOOT_DEVICE_ETHERNET_RMII: return BOOT_DEVICE_ETHERNET; case BOOT_DEVICE_EMMC: return BOOT_DEVICE_MMC1; case BOOT_DEVICE_MMC: if ((bootmode_cfg & MAIN_DEVSTAT_PRIMARY_MMC_PORT_MASK) >> MAIN_DEVSTAT_PRIMARY_MMC_PORT_SHIFT) return BOOT_DEVICE_MMC2; return BOOT_DEVICE_MMC1; case BOOT_DEVICE_NOBOOT: return BOOT_DEVICE_RAM; } return bootmode; } u32 spl_boot_device(void) { u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT); if (bootindex == K3_PRIMARY_BOOTMODE) return __get_primary_bootmedia(devstat); else return __get_backup_bootmedia(devstat); } #endif #if defined(CONFIG_SYS_K3_SPL_ATF) #define AM64X_DEV_RTI8 127 #define AM64X_DEV_RTI9 128 #define AM64X_DEV_R5FSS0_CORE0 121 #define AM64X_DEV_R5FSS0_CORE1 122 void release_resources_for_core_shutdown(void) { struct ti_sci_handle *ti_sci = get_ti_sci_handle(); struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops; struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops; int ret; u32 i; const u32 put_device_ids[] = { AM64X_DEV_RTI9, AM64X_DEV_RTI8, }; /* Iterate through list of devices to put (shutdown) */ for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) { u32 id = put_device_ids[i]; ret = dev_ops->put_device(ti_sci, id); if (ret) panic("Failed to put device %u (%d)\n", id, ret); } const u32 put_core_ids[] = { AM64X_DEV_R5FSS0_CORE1, AM64X_DEV_R5FSS0_CORE0, /* Handle CPU0 after CPU1 */ }; /* Iterate through list of cores to put (shutdown) */ for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) { u32 id = put_core_ids[i]; /* * Queue up the core shutdown request. Note that this call * needs to be followed up by an actual invocation of an WFE * or WFI CPU instruction. */ ret = proc_ops->proc_shutdown_no_wait(ti_sci, id); if (ret) panic("Failed sending core %u shutdown message (%d)\n", id, ret); } } #endif