summaryrefslogtreecommitdiffstats
path: root/drivers/nand_legacy
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/nand_legacy')
-rw-r--r--drivers/nand_legacy/Makefile16
-rw-r--r--drivers/nand_legacy/nand_legacy.c1615
2 files changed, 1631 insertions, 0 deletions
diff --git a/drivers/nand_legacy/Makefile b/drivers/nand_legacy/Makefile
new file mode 100644
index 0000000000..7e2cf66730
--- /dev/null
+++ b/drivers/nand_legacy/Makefile
@@ -0,0 +1,16 @@
+include $(TOPDIR)/config.mk
+
+LIB := libnand_legacy.a
+
+OBJS := nand_legacy.o
+all: $(LIB)
+
+$(LIB): $(OBJS)
+ $(AR) crv $@ $(OBJS)
+
+#########################################################################
+
+.depend: Makefile $(OBJS:.o=.c)
+ $(CC) -M $(CFLAGS) $(OBJS:.o=.c) > $@
+
+sinclude .depend
diff --git a/drivers/nand_legacy/nand_legacy.c b/drivers/nand_legacy/nand_legacy.c
new file mode 100644
index 0000000000..3989ca2a2d
--- /dev/null
+++ b/drivers/nand_legacy/nand_legacy.c
@@ -0,0 +1,1615 @@
+/*
+ * (C) 2006 Denx
+ * Driver for NAND support, Rick Bronson
+ * borrowed heavily from:
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * Added 16-bit nand support
+ * (C) 2004 Texas Instruments
+ */
+
+#include <common.h>
+
+#ifndef CFG_NAND_LEGACY
+#error CFG_NAND_LEGACY not defined in a file using the legacy NAND support!
+#endif
+
+#include <command.h>
+#include <malloc.h>
+#include <asm/io.h>
+#include <watchdog.h>
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+# include <status_led.h>
+# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
+#else
+# define SHOW_BOOT_PROGRESS(arg)
+#endif
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <linux/mtd/nand_legacy.h>
+#include <linux/mtd/nand_ids.h>
+#include <jffs2/jffs2.h>
+
+#ifdef CONFIG_OMAP1510
+void archflashwp(void *archdata, int wp);
+#endif
+
+#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
+
+#undef PSYCHO_DEBUG
+#undef NAND_DEBUG
+
+/* ****************** WARNING *********************
+ * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
+ * erase (or at least attempt to erase) blocks that are marked
+ * bad. This can be very handy if you are _sure_ that the block
+ * is OK, say because you marked a good block bad to test bad
+ * block handling and you are done testing, or if you have
+ * accidentally marked blocks bad.
+ *
+ * Erasing factory marked bad blocks is a _bad_ idea. If the
+ * erase succeeds there is no reliable way to find them again,
+ * and attempting to program or erase bad blocks can affect
+ * the data in _other_ (good) blocks.
+ */
+#define ALLOW_ERASE_BAD_DEBUG 0
+
+#define CONFIG_MTD_NAND_ECC /* enable ECC */
+#define CONFIG_MTD_NAND_ECC_JFFS2
+
+/* bits for nand_legacy_rw() `cmd'; or together as needed */
+#define NANDRW_READ 0x01
+#define NANDRW_WRITE 0x00
+#define NANDRW_JFFS2 0x02
+#define NANDRW_JFFS2_SKIP 0x04
+
+
+/*
+ * Exported variables etc.
+ */
+
+/* Definition of the out of band configuration structure */
+struct nand_oob_config {
+ /* position of ECC bytes inside oob */
+ int ecc_pos[6];
+ /* position of bad blk flag inside oob -1 = inactive */
+ int badblock_pos;
+ /* position of ECC valid flag inside oob -1 = inactive */
+ int eccvalid_pos;
+} oob_config = { {0}, 0, 0};
+
+struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+
+int curr_device = -1; /* Current NAND Device */
+
+
+/*
+ * Exported functionss
+ */
+int nand_legacy_erase(struct nand_chip* nand, size_t ofs,
+ size_t len, int clean);
+int nand_legacy_rw(struct nand_chip* nand, int cmd,
+ size_t start, size_t len,
+ size_t * retlen, u_char * buf);
+void nand_print(struct nand_chip *nand);
+void nand_print_bad(struct nand_chip *nand);
+int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, u_char * buf);
+int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, const u_char * buf);
+
+/*
+ * Internals
+ */
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+ size_t * retlen, u_char *buf, u_char *ecc_code);
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+ size_t * retlen, const u_char * buf,
+ u_char * ecc_code);
+#ifdef CONFIG_MTD_NAND_ECC
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+#endif
+
+
+/*
+ *
+ * Function definitions
+ *
+ */
+
+/* returns 0 if block containing pos is OK:
+ * valid erase block and
+ * not marked bad, or no bad mark position is specified
+ * returns 1 if marked bad or otherwise invalid
+ */
+static int check_block (struct nand_chip *nand, unsigned long pos)
+{
+ size_t retlen;
+ uint8_t oob_data;
+ uint16_t oob_data16[6];
+ int page0 = pos & (-nand->erasesize);
+ int page1 = page0 + nand->oobblock;
+ int badpos = oob_config.badblock_pos;
+
+ if (pos >= nand->totlen)
+ return 1;
+
+ if (badpos < 0)
+ return 0; /* no way to check, assume OK */
+
+ if (nand->bus16) {
+ if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
+ || (oob_data16[2] & 0xff00) != 0xff00)
+ return 1;
+ if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
+ || (oob_data16[2] & 0xff00) != 0xff00)
+ return 1;
+ } else {
+ /* Note - bad block marker can be on first or second page */
+ if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
+ || oob_data != 0xff
+ || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
+ || oob_data != 0xff)
+ return 1;
+ }
+
+ return 0;
+}
+
+/* print bad blocks in NAND flash */
+void nand_print_bad(struct nand_chip* nand)
+{
+ unsigned long pos;
+
+ for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
+ if (check_block(nand, pos))
+ printf(" 0x%8.8lx\n", pos);
+ }
+ puts("\n");
+}
+
+/* cmd: 0: NANDRW_WRITE write, fail on bad block
+ * 1: NANDRW_READ read, fail on bad block
+ * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
+ * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
+ * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
+ */
+int nand_legacy_rw (struct nand_chip* nand, int cmd,
+ size_t start, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ int ret = 0, n, total = 0;
+ char eccbuf[6];
+ /* eblk (once set) is the start of the erase block containing the
+ * data being processed.
+ */
+ unsigned long eblk = ~0; /* force mismatch on first pass */
+ unsigned long erasesize = nand->erasesize;
+
+ while (len) {
+ if ((start & (-erasesize)) != eblk) {
+ /* have crossed into new erase block, deal with
+ * it if it is sure marked bad.
+ */
+ eblk = start & (-erasesize); /* start of block */
+ if (check_block(nand, eblk)) {
+ if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
+ while (len > 0 &&
+ start - eblk < erasesize) {
+ *(buf++) = 0xff;
+ ++start;
+ ++total;
+ --len;
+ }
+ continue;
+ } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
+ start += erasesize;
+ continue;
+ } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
+ /* skip bad block */
+ start += erasesize;
+ continue;
+ } else {
+ ret = 1;
+ break;
+ }
+ }
+ }
+ /* The ECC will not be calculated correctly if
+ less than 512 is written or read */
+ /* Is request at least 512 bytes AND it starts on a proper boundry */
+ if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
+ printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
+
+ if (cmd & NANDRW_READ) {
+ ret = nand_read_ecc(nand, start,
+ min(len, eblk + erasesize - start),
+ (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
+ } else {
+ ret = nand_write_ecc(nand, start,
+ min(len, eblk + erasesize - start),
+ (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
+ }
+
+ if (ret)
+ break;
+
+ start += n;
+ buf += n;
+ total += n;
+ len -= n;
+ }
+ if (retlen)
+ *retlen = total;
+
+ return ret;
+}
+
+void nand_print(struct nand_chip *nand)
+{
+ if (nand->numchips > 1) {
+ printf("%s at 0x%lx,\n"
+ "\t %d chips %s, size %d MB, \n"
+ "\t total size %ld MB, sector size %ld kB\n",
+ nand->name, nand->IO_ADDR, nand->numchips,
+ nand->chips_name, 1 << (nand->chipshift - 20),
+ nand->totlen >> 20, nand->erasesize >> 10);
+ }
+ else {
+ printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
+ print_size(nand->totlen, ", ");
+ print_size(nand->erasesize, " sector)\n");
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
+{
+ /* This is inline, to optimise the common case, where it's ready instantly */
+ int ret = 0;
+
+#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
+ if(ale_wait)
+ NAND_WAIT_READY(nand); /* do the worst case 25us wait */
+ else
+ udelay(10);
+#else /* has functional r/b signal */
+ NAND_WAIT_READY(nand);
+#endif
+ return ret;
+}
+
+/* NanD_Command: Send a flash command to the flash chip */
+
+static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
+{
+ unsigned long nandptr = nand->IO_ADDR;
+
+ /* Assert the CLE (Command Latch Enable) line to the flash chip */
+ NAND_CTL_SETCLE(nandptr);
+
+ /* Send the command */
+ WRITE_NAND_COMMAND(command, nandptr);
+
+ /* Lower the CLE line */
+ NAND_CTL_CLRCLE(nandptr);
+
+#ifdef NAND_NO_RB
+ if(command == NAND_CMD_RESET){
+ u_char ret_val;
+ NanD_Command(nand, NAND_CMD_STATUS);
+ do {
+ ret_val = READ_NAND(nandptr);/* wait till ready */
+ } while((ret_val & 0x40) != 0x40);
+ }
+#endif
+ return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_Address: Set the current address for the flash chip */
+
+static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
+{
+ unsigned long nandptr;
+ int i;
+
+ nandptr = nand->IO_ADDR;
+
+ /* Assert the ALE (Address Latch Enable) line to the flash chip */
+ NAND_CTL_SETALE(nandptr);
+
+ /* Send the address */
+ /* Devices with 256-byte page are addressed as:
+ * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
+ * there is no device on the market with page256
+ * and more than 24 bits.
+ * Devices with 512-byte page are addressed as:
+ * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
+ * 25-31 is sent only if the chip support it.
+ * bit 8 changes the read command to be sent
+ * (NAND_CMD_READ0 or NAND_CMD_READ1).
+ */
+
+ if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
+ WRITE_NAND_ADDRESS(ofs, nandptr);
+
+ ofs = ofs >> nand->page_shift;
+
+ if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
+ for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
+ WRITE_NAND_ADDRESS(ofs, nandptr);
+ }
+ }
+
+ /* Lower the ALE line */
+ NAND_CTL_CLRALE(nandptr);
+
+ /* Wait for the chip to respond */
+ return NanD_WaitReady(nand, 1);
+}
+
+/* NanD_SelectChip: Select a given flash chip within the current floor */
+
+static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
+{
+ /* Wait for it to be ready */
+ return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
+
+static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
+{
+ int mfr, id, i;
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+ /* Reset the chip */
+ if (NanD_Command(nand, NAND_CMD_RESET)) {
+#ifdef NAND_DEBUG
+ printf("NanD_Command (reset) for %d,%d returned true\n",
+ floor, chip);
+#endif
+ NAND_DISABLE_CE(nand); /* set pin high */
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 1. Send ReadID command */
+ if (NanD_Command(nand, NAND_CMD_READID)) {
+#ifdef NAND_DEBUG
+ printf("NanD_Command (ReadID) for %d,%d returned true\n",
+ floor, chip);
+#endif
+ NAND_DISABLE_CE(nand); /* set pin high */
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 2. Send address byte zero */
+ NanD_Address(nand, ADDR_COLUMN, 0);
+
+ /* Read the manufacturer and device id codes from the device */
+
+ mfr = READ_NAND(nand->IO_ADDR);
+
+ id = READ_NAND(nand->IO_ADDR);
+
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+#ifdef NAND_DEBUG
+ printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
+#endif
+ if (mfr == 0xff || mfr == 0) {
+ /* No response - return failure */
+ return 0;
+ }
+
+ /* Check it's the same as the first chip we identified.
+ * M-Systems say that any given nand_chip device should only
+ * contain _one_ type of flash part, although that's not a
+ * hardware restriction. */
+ if (nand->mfr) {
+ if (nand->mfr == mfr && nand->id == id) {
+ return 1; /* This is another the same the first */
+ } else {
+ printf("Flash chip at floor %d, chip %d is different:\n",
+ floor, chip);
+ }
+ }
+
+ /* Print and store the manufacturer and ID codes. */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (mfr == nand_flash_ids[i].manufacture_id &&
+ id == nand_flash_ids[i].model_id) {
+#ifdef NAND_DEBUG
+ printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
+ "Chip ID: 0x%2.2X (%s)\n", mfr, id,
+ nand_flash_ids[i].name);
+#endif
+ if (!nand->mfr) {
+ nand->mfr = mfr;
+ nand->id = id;
+ nand->chipshift =
+ nand_flash_ids[i].chipshift;
+ nand->page256 = nand_flash_ids[i].page256;
+ nand->eccsize = 256;
+ if (nand->page256) {
+ nand->oobblock = 256;
+ nand->oobsize = 8;
+ nand->page_shift = 8;
+ } else {
+ nand->oobblock = 512;
+ nand->oobsize = 16;
+ nand->page_shift = 9;
+ }
+ nand->pageadrlen = nand_flash_ids[i].pageadrlen;
+ nand->erasesize = nand_flash_ids[i].erasesize;
+ nand->chips_name = nand_flash_ids[i].name;
+ nand->bus16 = nand_flash_ids[i].bus16;
+ return 1;
+ }
+ return 0;
+ }
+ }
+
+
+#ifdef NAND_DEBUG
+ /* We haven't fully identified the chip. Print as much as we know. */
+ printf("Unknown flash chip found: %2.2X %2.2X\n",
+ id, mfr);
+#endif
+
+ return 0;
+}
+
+/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
+
+static void NanD_ScanChips(struct nand_chip *nand)
+{
+ int floor, chip;
+ int numchips[NAND_MAX_FLOORS];
+ int maxchips = NAND_MAX_CHIPS;
+ int ret = 1;
+
+ nand->numchips = 0;
+ nand->mfr = 0;
+ nand->id = 0;
+
+
+ /* For each floor, find the number of valid chips it contains */
+ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+ ret = 1;
+ numchips[floor] = 0;
+ for (chip = 0; chip < maxchips && ret != 0; chip++) {
+
+ ret = NanD_IdentChip(nand, floor, chip);
+ if (ret) {
+ numchips[floor]++;
+ nand->numchips++;
+ }
+ }
+ }
+
+ /* If there are none at all that we recognise, bail */
+ if (!nand->numchips) {
+#ifdef NAND_DEBUG
+ puts ("No NAND flash chips recognised.\n");
+#endif
+ return;
+ }
+
+ /* Allocate an array to hold the information for each chip */
+ nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
+ if (!nand->chips) {
+ puts ("No memory for allocating chip info structures\n");
+ return;
+ }
+
+ ret = 0;
+
+ /* Fill out the chip array with {floor, chipno} for each
+ * detected chip in the device. */
+ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+ for (chip = 0; chip < numchips[floor]; chip++) {
+ nand->chips[ret].floor = floor;
+ nand->chips[ret].chip = chip;
+ nand->chips[ret].curadr = 0;
+ nand->chips[ret].curmode = 0x50;
+ ret++;
+ }
+ }
+
+ /* Calculate and print the total size of the device */
+ nand->totlen = nand->numchips * (1 << nand->chipshift);
+
+#ifdef NAND_DEBUG
+ printf("%d flash chips found. Total nand_chip size: %ld MB\n",
+ nand->numchips, nand->totlen >> 20);
+#endif
+}
+
+/* we need to be fast here, 1 us per read translates to 1 second per meg */
+static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
+{
+ unsigned long nandptr = nand->IO_ADDR;
+
+ NanD_Command (nand, NAND_CMD_READ0);
+
+ if (nand->bus16) {
+ u16 val;
+
+ while (cntr >= 16) {
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ cntr -= 16;
+ }
+
+ while (cntr > 0) {
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ cntr -= 2;
+ }
+ } else {
+ while (cntr >= 16) {
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ cntr -= 16;
+ }
+
+ while (cntr > 0) {
+ *data_buf++ = READ_NAND (nandptr);
+ cntr--;
+ }
+ }
+}
+
+/*
+ * NAND read with ECC
+ */
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+ size_t * retlen, u_char *buf, u_char *ecc_code)
+{
+ int col, page;
+ int ecc_status = 0;
+#ifdef CONFIG_MTD_NAND_ECC
+ int j;
+ int ecc_failed = 0;
+ u_char *data_poi;
+ u_char ecc_calc[6];
+#endif
+
+ /* Do not allow reads past end of device */
+ if ((start + len) > nand->totlen) {
+ printf ("%s: Attempt read beyond end of device %x %x %x\n",
+ __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
+ *retlen = 0;
+ return -1;
+ }
+
+ /* First we calculate the starting page */
+ /*page = shr(start, nand->page_shift);*/
+ page = start >> nand->page_shift;
+
+ /* Get raw starting column */
+ col = start & (nand->oobblock - 1);
+
+ /* Initialize return value */
+ *retlen = 0;
+
+ /* Select the NAND device */
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Loop until all data read */
+ while (*retlen < len) {
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /* Do we have this page in cache ? */
+ if (nand->cache_page == page)
+ goto readdata;
+ /* Send the read command */
+ NanD_Command(nand, NAND_CMD_READ0);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Read in a page + oob data */
+ NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
+
+ /* copy data into cache, for read out of cache and if ecc fails */
+ if (nand->data_cache) {
+ memcpy (nand->data_cache, nand->data_buf,
+ nand->oobblock + nand->oobsize);
+ }
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < 6; j++) {
+ ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
+ }
+
+ /* Calculate the ECC and verify it */
+ /* If block was not written with ECC, skip ECC */
+ if (oob_config.eccvalid_pos != -1 &&
+ (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
+
+ nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
+ switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
+ case -1:
+ printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+ ecc_failed++;
+ break;
+ case 1:
+ case 2: /* transfer ECC corrected data to cache */
+ if (nand->data_cache)
+ memcpy (nand->data_cache, nand->data_buf, 256);
+ break;
+ }
+ }
+
+ if (oob_config.eccvalid_pos != -1 &&
+ nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
+
+ nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
+ switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
+ case -1:
+ printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+ ecc_failed++;
+ break;
+ case 1:
+ case 2: /* transfer ECC corrected data to cache */
+ if (nand->data_cache)
+ memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
+ break;
+ }
+ }
+readdata:
+ /* Read the data from ECC data buffer into return buffer */
+ data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
+ data_poi += col;
+ if ((*retlen + (nand->oobblock - col)) >= len) {
+ memcpy (buf + *retlen, data_poi, len - *retlen);
+ *retlen = len;
+ } else {
+ memcpy (buf + *retlen, data_poi, nand->oobblock - col);
+ *retlen += nand->oobblock - col;
+ }
+ /* Set cache page address, invalidate, if ecc_failed */
+ nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
+
+ ecc_status += ecc_failed;
+ ecc_failed = 0;
+
+#else
+ /* Send the read command */
+ NanD_Command(nand, NAND_CMD_READ0);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Read the data directly into the return buffer */
+ if ((*retlen + (nand->oobblock - col)) >= len) {
+ NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
+ *retlen = len;
+ /* We're done */
+ continue;
+ } else {
+ NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
+ *retlen += nand->oobblock - col;
+ }
+#endif
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ page++;
+ }
+
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+ /*
+ * Return success, if no ECC failures, else -EIO
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EIO
+ */
+ return ecc_status ? -1 : 0;
+}
+
+/*
+ * Nand_page_program function is used for write and writev !
+ */
+static int nand_write_page (struct nand_chip *nand,
+ int page, int col, int last, u_char * ecc_code)
+{
+
+ int i;
+ unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef CONFIG_MTD_NAND_ECC
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
+#endif
+#endif
+ /* pad oob area */
+ for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
+ nand->data_buf[i] = 0xff;
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /* Zero out the ECC array */
+ for (i = 0; i < 6; i++)
+ ecc_code[i] = 0x00;
+
+ /* Read back previous written data, if col > 0 */
+ if (col) {
+ NanD_Command (nand, NAND_CMD_READ0);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ if (nand->bus16) {
+ u16 val;
+
+ for (i = 0; i < col; i += 2) {
+ val = READ_NAND (nandptr);
+ nand->data_buf[i] = val & 0xff;
+ nand->data_buf[i + 1] = val >> 8;
+ }
+ } else {
+ for (i = 0; i < col; i++)
+ nand->data_buf[i] = READ_NAND (nandptr);
+ }
+ }
+
+ /* Calculate and write the ECC if we have enough data */
+ if ((col < nand->eccsize) && (last >= nand->eccsize)) {
+ nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
+ for (i = 0; i < 3; i++) {
+ nand->data_buf[(nand->oobblock +
+ oob_config.ecc_pos[i])] = ecc_code[i];
+ }
+ if (oob_config.eccvalid_pos != -1) {
+ nand->data_buf[nand->oobblock +
+ oob_config.eccvalid_pos] = 0xf0;
+ }
+ }
+
+ /* Calculate and write the second ECC if we have enough data */
+ if ((nand->oobblock == 512) && (last == nand->oobblock)) {
+ nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
+ for (i = 3; i < 6; i++) {
+ nand->data_buf[(nand->oobblock +
+ oob_config.ecc_pos[i])] = ecc_code[i];
+ }
+ if (oob_config.eccvalid_pos != -1) {
+ nand->data_buf[nand->oobblock +
+ oob_config.eccvalid_pos] &= 0x0f;
+ }
+ }
+#endif
+ /* Prepad for partial page programming !!! */
+ for (i = 0; i < col; i++)
+ nand->data_buf[i] = 0xff;
+
+ /* Postpad for partial page programming !!! oob is already padded */
+ for (i = last; i < nand->oobblock; i++)
+ nand->data_buf[i] = 0xff;
+
+ /* Send command to begin auto page programming */
+ NanD_Command (nand, NAND_CMD_READ0);
+ NanD_Command (nand, NAND_CMD_SEQIN);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Write out complete page of data */
+ if (nand->bus16) {
+ for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
+ WRITE_NAND (nand->data_buf[i] +
+ (nand->data_buf[i + 1] << 8),
+ nand->IO_ADDR);
+ }
+ } else {
+ for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
+ WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
+ }
+
+ /* Send command to actually program the data */
+ NanD_Command (nand, NAND_CMD_PAGEPROG);
+ NanD_Command (nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+ {
+ u_char ret_val;
+
+ do {
+ ret_val = READ_NAND (nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ /* See if device thinks it succeeded */
+ if (READ_NAND (nand->IO_ADDR) & 0x01) {
+ printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
+ page);
+ return -1;
+ }
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /*
+ * The NAND device assumes that it is always writing to
+ * a cleanly erased page. Hence, it performs its internal
+ * write verification only on bits that transitioned from
+ * 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was
+ * not completely erased or the page is becoming unusable
+ * due to wear. The read with ECC would catch the error
+ * later when the ECC page check fails, but we would rather
+ * catch it early in the page write stage. Better to write
+ * no data than invalid data.
+ */
+
+ /* Send command to read back the page */
+ if (col < nand->eccsize)
+ NanD_Command (nand, NAND_CMD_READ0);
+ else
+ NanD_Command (nand, NAND_CMD_READ1);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Loop through and verify the data */
+ if (nand->bus16) {
+ for (i = col; i < last; i = +2) {
+ if ((nand->data_buf[i] +
+ (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
+ printf ("%s: Failed write verify, page 0x%08x ",
+ __FUNCTION__, page);
+ return -1;
+ }
+ }
+ } else {
+ for (i = col; i < last; i++) {
+ if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
+ printf ("%s: Failed write verify, page 0x%08x ",
+ __FUNCTION__, page);
+ return -1;
+ }
+ }
+ }
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /*
+ * We also want to check that the ECC bytes wrote
+ * correctly for the same reasons stated above.
+ */
+ NanD_Command (nand, NAND_CMD_READOOB);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+ if (nand->bus16) {
+ for (i = 0; i < nand->oobsize; i += 2) {
+ u16 val;
+
+ val = READ_NAND (nand->IO_ADDR);
+ nand->data_buf[i] = val & 0xff;
+ nand->data_buf[i + 1] = val >> 8;
+ }
+ } else {
+ for (i = 0; i < nand->oobsize; i++) {
+ nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
+ }
+ }
+ for (i = 0; i < ecc_bytes; i++) {
+ if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
+ printf ("%s: Failed ECC write "
+ "verify, page 0x%08x, "
+ "%6i bytes were succesful\n",
+ __FUNCTION__, page, i);
+ return -1;
+ }
+ }
+#endif /* CONFIG_MTD_NAND_ECC */
+#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
+ return 0;
+}
+
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * ecc_code)
+{
+ int i, page, col, cnt, ret = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > nand->totlen) {
+ printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
+ return -1;
+ }
+
+ /* Shift to get page */
+ page = ((int) to) >> nand->page_shift;
+
+ /* Get the starting column */
+ col = to & (nand->oobblock - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_OFF();
+#endif
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+ ret = -1;
+ goto out;
+ }
+
+ /* Loop until all data is written */
+ while (*retlen < len) {
+ /* Invalidate cache, if we write to this page */
+ if (nand->cache_page == page)
+ nand->cache_page = -1;
+
+ /* Write data into buffer */
+ if ((col + len) >= nand->oobblock) {
+ for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
+ nand->data_buf[i] = buf[(*retlen + cnt)];
+ }
+ } else {
+ for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
+ nand->data_buf[i] = buf[(*retlen + cnt)];
+ }
+ }
+ /* We use the same function for write and writev !) */
+ ret = nand_write_page (nand, page, col, i, ecc_code);
+ if (ret)
+ goto out;
+
+ /* Next data start at page boundary */
+ col = 0;
+
+ /* Update written bytes count */
+ *retlen += cnt;
+
+ /* Increment page address */
+ page++;
+ }
+
+ /* Return happy */
+ *retlen = len;
+
+out:
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_ON();
+#endif
+
+ return ret;
+}
+
+/* read from the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ int len256 = 0;
+ struct Nand *mychip;
+ int ret = 0;
+
+ mychip = &nand->chips[ofs >> nand->chipshift];
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with nand_read_ecc. */
+ if (nand->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+ NanD_Command(nand, NAND_CMD_READOOB);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ ((ofs >> nand->page_shift) << nand->page_shift) +
+ ((ofs & (nand->oobblock - 1)) >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+ }
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ NanD_ReadBuf(nand, buf, len256);
+
+ NanD_Command(nand, NAND_CMD_READOOB);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+ }
+
+ NanD_ReadBuf(nand, &buf[len256], len - len256);
+
+ *retlen = len;
+ /* Reading the full OOB data drops us off of the end of the page,
+ * causing the flash device to go into busy mode, so we need
+ * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
+
+ ret = NanD_WaitReady(nand, 1);
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+ return ret;
+
+}
+
+/* write to the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ int len256 = 0;
+ int i;
+ unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef PSYCHO_DEBUG
+ printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
+ (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
+ buf[8], buf[9], buf[14],buf[15]);
+#endif
+
+ NAND_ENABLE_CE(nand); /* set pin low to enable chip */
+
+ /* Reset the chip */
+ NanD_Command(nand, NAND_CMD_RESET);
+
+ /* issue the Read2 command to set the pointer to the Spare Data Area. */
+ NanD_Command(nand, NAND_CMD_READOOB);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ ((ofs >> nand->page_shift) << nand->page_shift) +
+ ((ofs & (nand->oobblock - 1)) >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+ }
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with nand_read_ecc. */
+ if (nand->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ ((ofs >> nand->page_shift) << nand->page_shift) +
+ ((ofs & (nand->oobblock - 1)) >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+ }
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ for (i = 0; i < len256; i++)
+ WRITE_NAND(buf[i], nandptr);
+
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+ { u_char ret_val;
+ do {
+ ret_val = READ_NAND(nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ if (READ_NAND(nandptr) & 1) {
+ puts ("Error programming oob data\n");
+ /* There was an error */
+ NAND_DISABLE_CE(nand); /* set pin high */
+ *retlen = 0;
+ return -1;
+ }
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+ }
+
+ if (nand->bus16) {
+ for (i = len256; i < len; i += 2) {
+ WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
+ }
+ } else {
+ for (i = len256; i < len; i++)
+ WRITE_NAND(buf[i], nandptr);
+ }
+
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+ { u_char ret_val;
+ do {
+ ret_val = READ_NAND(nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ if (READ_NAND(nandptr) & 1) {
+ puts ("Error programming oob data\n");
+ /* There was an error */
+ NAND_DISABLE_CE(nand); /* set pin high */
+ *retlen = 0;
+ return -1;
+ }
+
+ NAND_DISABLE_CE(nand); /* set pin high */
+ *retlen = len;
+ return 0;
+
+}
+
+int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
+{
+ /* This is defined as a structure so it will work on any system
+ * using native endian jffs2 (the default).
+ */
+ static struct jffs2_unknown_node clean_marker = {
+ JFFS2_MAGIC_BITMASK,
+ JFFS2_NODETYPE_CLEANMARKER,
+ 8 /* 8 bytes in this node */
+ };
+ unsigned long nandptr;
+ struct Nand *mychip;
+ int ret = 0;
+
+ if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
+ printf ("Offset and size must be sector aligned, erasesize = %d\n",
+ (int) nand->erasesize);
+ return -1;
+ }
+
+ nandptr = nand->IO_ADDR;
+
+ /* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_OFF();
+#endif
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("nand_write_ecc: Device is write protected!!!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+ ret = -1;
+ goto out;
+ }
+
+ /* FIXME: Do nand in the background. Use timers or schedule_task() */
+ while(len) {
+ /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
+ mychip = &nand->chips[ofs >> nand->chipshift];
+
+ /* always check for bad block first, genuine bad blocks
+ * should _never_ be erased.
+ */
+ if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
+ /* Select the NAND device */
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ NanD_Command(nand, NAND_CMD_ERASE1);
+ NanD_Address(nand, ADDR_PAGE, ofs);
+ NanD_Command(nand, NAND_CMD_ERASE2);
+
+ NanD_Command(nand, NAND_CMD_STATUS);
+
+#ifdef NAND_NO_RB
+ { u_char ret_val;
+ do {
+ ret_val = READ_NAND(nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ if (READ_NAND(nandptr) & 1) {
+ printf ("%s: Error erasing at 0x%lx\n",
+ __FUNCTION__, (long)ofs);
+ /* There was an error */
+ ret = -1;
+ goto out;
+ }
+ if (clean) {
+ int n; /* return value not used */
+ int p, l;
+
+ /* clean marker position and size depend
+ * on the page size, since 256 byte pages
+ * only have 8 bytes of oob data
+ */
+ if (nand->page256) {
+ p = NAND_JFFS2_OOB8_FSDAPOS;
+ l = NAND_JFFS2_OOB8_FSDALEN;
+ } else {
+ p = NAND_JFFS2_OOB16_FSDAPOS;
+ l = NAND_JFFS2_OOB16_FSDALEN;
+ }
+
+ ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
+ (u_char *)&clean_marker);
+ /* quit here if write failed */
+ if (ret)
+ goto out;
+ }
+ }
+ ofs += nand->erasesize;
+ len -= nand->erasesize;
+ }
+
+out:
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_ON();
+#endif
+
+ return ret;
+}
+
+
+static inline int nandcheck(unsigned long potential, unsigned long physadr)
+{
+ return 0;
+}
+
+unsigned long nand_probe(unsigned long physadr)
+{
+ struct nand_chip *nand = NULL;
+ int i = 0, ChipID = 1;
+
+#ifdef CONFIG_MTD_NAND_ECC_JFFS2
+ oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
+ oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
+ oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
+ oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
+ oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
+ oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
+ oob_config.eccvalid_pos = 4;
+#else
+ oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
+ oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
+ oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
+ oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
+ oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
+ oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
+ oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
+#endif
+ oob_config.badblock_pos = 5;
+
+ for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
+ if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
+ nand = &nand_dev_desc[i];
+ break;
+ }
+ }
+ if (!nand)
+ return (0);
+
+ memset((char *)nand, 0, sizeof(struct nand_chip));
+
+ nand->IO_ADDR = physadr;
+ nand->cache_page = -1; /* init the cache page */
+ NanD_ScanChips(nand);
+
+ if (nand->totlen == 0) {
+ /* no chips found, clean up and quit */
+ memset((char *)nand, 0, sizeof(struct nand_chip));
+ nand->ChipID = NAND_ChipID_UNKNOWN;
+ return (0);
+ }
+
+ nand->ChipID = ChipID;
+ if (curr_device == -1)
+ curr_device = i;
+
+ nand->data_buf = malloc (nand->oobblock + nand->oobsize);
+ if (!nand->data_buf) {
+ puts ("Cannot allocate memory for data structures.\n");
+ return (0);
+ }
+
+ return (nand->totlen);
+}
+
+#ifdef CONFIG_MTD_NAND_ECC
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+ 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+ 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+ 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+ 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+ 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+ 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+ 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+ 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+ 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+ 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+ 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+ 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+ 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+ 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+ 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+ 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/*
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+ u_char *ecc_code)
+{
+ u_char a, b, i, tmp1, tmp2;
+
+ /* Initialize variables */
+ a = b = 0x80;
+ tmp1 = tmp2 = 0;
+
+ /* Calculate first ECC byte */
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Calculate second ECC byte */
+ b = 0x80;
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Store two of the ECC bytes */
+ ecc_code[0] = tmp1;
+ ecc_code[1] = tmp2;
+}
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
+{
+ u_char idx, reg1, reg3;
+ int j;
+
+ /* Initialize variables */
+ reg1 = reg3 = 0;
+ ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+ /* Build up column parity */
+ for(j = 0; j < 256; j++) {
+
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[dat[j]];
+ reg1 ^= idx;
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (u_char) j;
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
+
+ /* Calculate final ECC code */
+ ecc_code[0] = ~ecc_code[0];
+ ecc_code[1] = ~ecc_code[1];
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+}
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ u_char a, b, c, d1, d2, d3, add, bit, i;
+
+ /* Do error detection */
+ d1 = calc_ecc[0] ^ read_ecc[0];
+ d2 = calc_ecc[1] ^ read_ecc[1];
+ d3 = calc_ecc[2] ^ read_ecc[2];
+
+ if ((d1 | d2 | d3) == 0) {
+ /* No errors */
+ return 0;
+ } else {
+ a = (d1 ^ (d1 >> 1)) & 0x55;
+ b = (d2 ^ (d2 >> 1)) & 0x55;
+ c = (d3 ^ (d3 >> 1)) & 0x54;
+
+ /* Found and will correct single bit error in the data */
+ if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+ c = 0x80;
+ add = 0;
+ a = 0x80;
+ for (i=0; i<4; i++) {
+ if (d1 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ c = 0x80;
+ for (i=0; i<4; i++) {
+ if (d2 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ bit = 0;
+ b = 0x04;
+ c = 0x80;
+ for (i=0; i<3; i++) {
+ if (d3 & c)
+ bit |= b;
+ c >>= 2;
+ b >>= 1;
+ }
+ b = 0x01;
+ a = dat[add];
+ a ^= (b << bit);
+ dat[add] = a;
+ return 1;
+ }
+ else {
+ i = 0;
+ while (d1) {
+ if (d1 & 0x01)
+ ++i;
+ d1 >>= 1;
+ }
+ while (d2) {
+ if (d2 & 0x01)
+ ++i;
+ d2 >>= 1;
+ }
+ while (d3) {
+ if (d3 & 0x01)
+ ++i;
+ d3 >>= 1;
+ }
+ if (i == 1) {
+ /* ECC Code Error Correction */
+ read_ecc[0] = calc_ecc[0];
+ read_ecc[1] = calc_ecc[1];
+ read_ecc[2] = calc_ecc[2];
+ return 2;
+ }
+ else {
+ /* Uncorrectable Error */
+ return -1;
+ }
+ }
+ }
+
+ /* Should never happen */
+ return -1;
+}
+
+#endif
+
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */